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DNA FINGERPRINTING REVEALS LOW GENETIC DlYhRSfl YIN 
GUNNISON'S PRAIRIE DOG (CYNOMYS GUNNISON!) 

SlEVEN E. TRAVIS, C. N. SLOBODCHIKOFF, AND PAUL KEIM 

Department of Biological Sciences. Box 5640, 
Northern Arizona University, Flagstaff. AZ 86011-5640 

The use of molecular techniques for the assessment of familial relationships among social 
species of mammals has become relatively commonplace. However, some species represent 
poor candidates for such studies due to naturally low levels of genetic diversity, leading to 
unacceptably large standard errors associated with estimates of relatedness. Here, we report 
on a preliminary study of genetic diversity within two populations of a social species of 
ground squirrel, Gunnison's prairie dog (Cynomys gunnisoni) using DNA fingerprinting. 
We observed low levels of diversity in the form of large mean coefficients of genetic 
similarity among individuals occupying the same population. Overall similarity, detennined 
from the combined data, yielded by three minisatellite probes, ranged from 55 to 61 %. 
These values place Gunnison's prairie dog at the extreme upper end of the range of simi­
larity values reported for outbred species of mammals (ca. 0.20-0.50). As a partial means 
of explaining these results, and as a means of comparing our results to those of similar 
studies using allozymes, we detennined the level of differentiation between our two study 
colonies in the form of an F-statistic analog. A value of 0.11 (± 2.26 X 10-3) was obtained 
and is similar to values reported from allozyme studies (0.07-0.12). A significance test of 
this value yielded a posilive result (D ~ 5.63, d./. ~ I, P < 0.025), demonstrating thaI 
gene flow between populations is limited, a factor that may help to maintain low levels of 
diversity. 

Key words: Cynomys gunnisoni, genetic diversity, population differentiation, DNA fin­
gerprinting 

Traditionally, behavioral and population 
ecological studies requiring a knowledge of 
familial relationships within and among so­
cial groups have had to rely on the con­
struction of pedigrees from observational 
dala (elutton-Brock, 1989). Early attempls 
to overcome the time-consuming nature and 
potential biases associated with this ap­
proach made use of allozyme polymor­
phisms (Hanken and Shennan, 1981; Hoog­
land and Follz, 1982; Schwartz and Anni­
tage, 1980; 1981). However, average het­
erozygosities and the proportion of loci that 
are actually polymorphic tend to be quite 
low for most species of mammals (Nevo, 
1978). Because detenninations of genetic 
relatedness often depend on the experi­
menters ability to unequivocally assign par-
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entage to individuals, low levels of genetic 
heterogeneity may prove highly problem­
atic (Lynch, 1988). As a result, there has 
been a concerted effort over the past decade 
to develop molecular techniques for the 
rapid generation of hypervariable genetic 
markers (Jeffreys el aI., 1985a; Taulz, 1989; 
Yos el aI., 1995; Williams el aI., 1990). im­
proved results have been obtained from 
RFLP analyses (Amos el aI., 1991; Harris 
el aI., 1991; Inoue el aI., 1991; Jeffreys el 
aI., 1985b; Lehman el aI., 1992; Packer el 
aI., 1991; Paul el aI., 1992a, 1992b; Ribble, 
1991; Tegelstrom el aI., 1991), particularly 
those involving minisatellite probes used to 
construct DNA fingerprints. 

The accurate assignment of genetic rela­
tionships from molecular data has some dif-
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ficulties. Despite high levels of genetic het­
erogeneity apparent from DNA fingerprints 
of most mammalian species (Gilbert et aI., 
1991; Hoagland et aI., 1991; Ribble, 1991), 
there are, nevertheless, highly inbred spe­
cies for which genetic profiles remain near­
ly identical among individuals, particularly 
when related individuals are included (Gil­
bert et aI., 1990a; Reeve et aI., 1990). Un­
der such circumstances, the mean genetic 
similarity for related individuals of a given 
order may be represented by an unaccept­
ably large standard error for the assignment 
of a specific relationship (Lynch, 1988). 
Therefore, it may not be possible to assign 
levels of relatedness by previously estab­
lished methods, such as through the use of 
a calibration curve (Gilbert et aI., 1991), but 
rather may require the formulation of an al­
ternative method (Travis et aI., 1996). A 
preliminary assessment of overall similarity 
among the members of a population or spe­
cies must necessarily be conducted prior to 
more in-depth studies of relatedness 
(Lynch, 1988). A prelintinary study of this 
kind may provide an added benefit by 
yielding the data necessary for a further as­
sessment of population structure. In this 
way, clues as to how the existing level of 
genetic heterogeneity is maintained may be 
provided. an issue that may be of potential 
consequence to the social dynamics occur­
ring within and among groups of relatives. 

This report presents the preliminary find­
ings from a much broader study of dynam­
ics of social systems in prairie dogs, using 
DNA fingerprinting as a means of assessing 
genetic relatedness (Travis et al., 1995, 
1996). Specifically, we studied Gunnison's 
prairie dog (Cynomys gunnisoni), whose 
range is restricted to grasslands of the Col­
orado Plateau encompassing portions of Ar­
izona. New Mexico, Utah, Colorado, and 
Wyonting (Hall, 1981). Like other members 
of the genus Cynomys, such as the more 
intensively studied black-tailed prairie dog 
(C. ludovicianus; Hoogland, 1981a, 1981b, 
1982, 1983, 1986, 1992; Hoogland and 
Foltz, 1982), Gunnison's prairie dogs were 

once characterized by vast colonies of in­
dividuals. Cattle grazing, as well as land de­
velopment, have both contributed to the rel­
atively recent fragmentation of many colo­
nies (Koford, 1958), potentially lowering 
population genetic heterogeneity by creat­
ing isolated demes, which may further be 
subject to the effects of random genetic 
drift. Therefore, one might expect high 
overall levels of similarity among DNA fin­
gerprints representing prairie dogs collected 
within the same sites, as well as significant 
levels of differentiation among sites. Allo­
zyme evidence exists to support this hy­
pothesis (Chesser, 1983; Daley, 1992; 
McCuUough and Chesser, 1987), and it re­
mains to be seen whether DNA-fingerprint­
ing data will corroborate previous results. 

Therefore. our purpose was twofold. 
First, we set out to establish the overall lev­
el of genetic heterogeneity at two sites for 
Gunnison's prairie dogs where our research 
on the social system has been ongoing since 
1987 (Travis and Slobodchikoff, 1993; 
Travis et al., 1995, 1996). Second. we at­
tempted to explain partially the observed 
levels of heterogeneity through an assess­
ment of population structure, and to deter­
mine the reliability of DNA fingerprinting 
for this purpose by comparing our results 
to those of other researchers who have been 
concerned with this issue as it pertains to 
social species of ground squirrels. 

MATERIALS AND METHODS 

1\vo colonies of Gunnison's prairie dogs near 
Flagstaff, Arizona, described previously as An­
telope Hill and Potato Lake (Travis and Slobod­
chikoff, 1993; Travis et aI., 1995, 1996), were 
characterized and compared genetically by DNA 
fingerprinting. On the basis of known densities 
within the study areas, each colony was esti­
mated to consist of several thousand individuals. 
Spatial separation between study colonies was 
ca. 13 km, a distance exceeding the maximum 
dispersal distance reported for prairie dogs, or 
10 km (Knowles, 1985). However, the existence 
of several intervening colonies (not character­
ized) between 2- and 5-km distances from the 
colonies of interest should have allowed gene 
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flow to occur through a series of intermediaries. 
Habitat lying between colonies consisted pri­
marily of ponderosa pine (Pinus ponderosa) for­
est. 

Intensive live-trapping, marking, and tissue­
sampling procedures were conducted on 1.44-ha 
study plots at each colony, one to two times per 
week throughout the active season (early April 
through late October) of 1991. These areas rep­
resented a small subregion within each colony, 
encompassing five to ten group territories (Trav­
is et al., 1996). napping was highly successful 
and resulted in the collection of all adults from 
the study plots, as confinned by observations of 
marked animals from elevated viewing towers 
erected at each colony. Age was assessed on the 
basis of trapping records compiled over as-year 
period beginning in 1988, and, where necessary, 
from mass measurements taken by placing in­
dividuals in a cloth sac suspended from a spring 
scale. Blood samples were collected from all 
adult animals captured by toenail clipping from 
a hind foot. Blood was rinsed into is-mI, poly­
propylene, centrifuge tubes using an isotonic sa­
line buffer (IX SSe: 0.15 M NaCl, 15 mM so­
dium citrate, 1 mM EDT A). Samples were 
stored on ice in the field, and subsequently fro­
zen at -70°C. 

Total genomic DNA was extracted from blood 
samples according to the procedures of MUllen­
bach et al. (1989). The amount of DNA was 
quantified via fluorometry and adjusted to a final 
concentration of 150 lJ.g/mI. Four IJ.g of DNA 
from each sample was digested with 16 units of 
Rae 1lI in the presence of 1 mM spennidine, for 
5 h at 37°C. Digested samples were loaded on 
0.7% agarose gels as randomized alternating 
pairs of adult individuals from each colony ac­
cording to the recommendations of Lynch 
(1990). In addition, because comparisons of 
DNA fingerprints were to be conducted across 
several gels, each gel was loaded with two to six 
standards representing prairie dogs killed from 
outside the study plot at Antelope Hill Because 
the random sharing of fragments was high in this 
species (see below), all fragments scorable 
among members of the two study populations 
were present in these standards, providing a 
means of aligning fragments across multiple 
gels. DNA fragments were electrophoresed on 
20 by 22-cm gels at 2.2 V fcm for 24 h and trans­
ferred to Amersham Hybond N + membranes by 
southern blotting in 0.40 N NaOH. Membranes 

were hybridized sequentially with three minisat­
ellite probes; pV47-2 (Longmire et al., 1990), 
33.15, and 33.6 (Jeffreys et al., 1985a). Probe 
DNA (10-25 ng) was labeled with 32P_dCI'P by 
the random primer method (Feinberg and Vo­
gelstein, 1983). Prehybridization, hybridization, 
and washes were conducted according to Gilbert 
et al. (1990b). Membranes were autoradio­
graphed at -70°C for 1-14 days using Konica 
Medical X-Ray Film and intensifying screens. 
Prior to reprobing, DNA probes were stripped 
from membranes by washing in 0.5 N NaOH, 
o.!% SDS and 0.25 M Ths-He! (pH 7.0). 

We detennined mean coefficients of similari­
ty. S (Lynch, 1988), from profiles of individual 
DNA fingerprints compared among adult indi­
viduals both within and between colonies. This 
coefficient is calculated as the proportion of 
bands present in a given pair of individuals that 
are shared (i.e., S = 2Nf(NA + NB), where N is 
the number of bands shared between individuals 
A and B, and NA and NB are the total number 
of bands in individual A and individual B, re­
spectively). Based on values of S, we calculated 
an analog of Wright's F ST' denoted as F' (Lynch, 
1990). as a means of determining the level of 
genetic differentiation between colonies. Mean 
similarity coefficients were calculated from all 
possible pairwise comparisons of individuals 
and for all probes both individually and com~ 
bined. Before data from separate probes could 
be combined. however, it was necessary to de­
tennine whether any fingerprinting bands were 
revealed simultaneously by more than one 
probe, thereby yielding redundant information. 
We tested for nonindependence of bands by 
comparing similarly sized bands (determined 
from molecular weight ladders) among all indi­
vidual prairie dogs across all probes. Noninde­
pendence was concluded when identical banding 
patterns were observed across probes in 90% 
(chosen arbitrarily) of the individuals investigat­
ed. No instance of nonindependence was detect­
ed in these data, and combined counts of alleles 
detected from separate probes was considered 
justified. 

Scoring of DNA fingerprints was conserva­
tive. All bands apparent from each individual 
fingerprint were first ranked for their relative in­
tensity within each lane as either low, medium, 
or high. Only medium and high intensity bands 
were used to compare across individuals. Shared 
bands were then assigned strictly on the basis of 
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TABLE t.-Band-sharing statistics from comparisons of DNA fingerprints constructed using three 
minisatellite probes; pV47-2. 33.15, and 33.6. DNA fingerprints from Gunnison's prairie dogs for 
two colonies in Arizona; Antelope Hill (AR) and Potato Lake (PL). 

Scorable bands Coefficients of 

Comparisons per individual similarity 

Probe Type Number Me~ Range SD Me~ Range SD 

pV47-2 AH (within) 780 0.62 0.24-0.95 1.60 X 10-4 

PL (within) 861 0.67 0.33---0.94 5.60 x 10-4 

AHlPL (between) 1,680 9.29 6-14 3.74 0.58 0.25-0.91 9.20 X to-oS 

33.15 AH (within) 820 0.51 0.00-0.94 2.14 X 10-4 

PL (within) 861 0.58 0.00-0.94 2.90 X 10-4 

AHJPL (between) 1,722 9.55 5-14 3.57 0.51 0.11--0.87 3.80 X 1O-~ 

33.6 AH (within) 820 0.46 0.00-1.00 NA' 
PL (within) 861 0.49 0.00-1.00 NA' 
AH/PL (between) 1,722 3.57 2-7 1.60 0.41 0.00-1.00 NA' 

Combined AH (within) 820 0.55 0.22--0.84 9.10 X 10-6 

PL (within) 861 0.61 0.30-0.87 2.17 X 10-4 

AHlPL (between) 1,722 22.16 15~30 12.97 0.53 0.22-0.79 1.51 X 10-4 

• Sampling variance was not calculated due to a severely limited number of scorable bands. 

size, without regard for intensity of band. Be­
cause we eliminated many low-intensity bands 
by this technique, the mean number of bands 
scorable per individual was <10 for each of the 
three probes. For this reason, a value of F' was 
calculated only on the basis of data from all 
probes combined. 

Lynch (1990) provided the means of calculat­
ing and testing for significance of an analog of 
Wright's FST from DNA fingerprint data calcu­
lated as: F' = (1 - Sb)/(2 - Sw - Sb)' where Sb 
is the mean coefficient of similarity between 
members of separate populations, and Sw is the 
mean coefficient of similarity within populations 
averaged over all colonies. Lynch and Crease 
(1990) provided a fonnula for calculating the 
sampling variance of F'. that is obtained by a 
first-order Taylor expansion. This variance sta­
tistic accounts for the covariance arising from 
multiple comparisons among a relatively small 
group of individuals. The test statistic, D. was 
used to test the null hypothesis of no population 
subdivision asswning a nonnal distribution of 
F', where D = F'2Nar(F'). D is distributed as a 
chi-square with one degree of freedom (Lynch 
and Crease, 1990). Our calculation of F' did not 
account for the tendency of prairie dogs to fonn 
distinct lineages within group territories (Ches­
ser, 1983), which may lead to localized differ­
entiation within colonies and inflate variance es­
timates (Chesser, 1991). Therefore, our signifi­
cance test should be considered conservative. 

RESULTS 

High levels of genotypic identity-in-state 
were detected among adult individuals 
within colonies, as revealed by unusually 
high mean within-colony coefficients of 
similarity (Table I). Mean coefficients of 
similarity were somewhat lower at Ante­
lope Hill, where they were based on 820 
pairwise comparisons of 41 individuals 
(range, 0.46-{).62 among the three probes 
scored individually), than at Potato Lake. 
where they were based on 861 pairwise 
comparisons of 42 individuals (range, 
0.49-0.67). These differences were reflect­
ed in the mean coefficients of similarity for 
all probes combined, with Antelope Hill 
showing a value of 0.55, and Potato Lake 
showing a value of 0.61. As expected, mean 
coefficients of similarity calculated on the 
basis of between-colony pairwise compari­
sons (n = 1,722) were consistently lower 
than those representing within-colony com­
parisons, ranging from 0.41 to 0.58 among 
individual probes. The between-colony co­
efficient of similarity for all probes com­
bined was 0.53. Sampling variances are 
given in Table 1. 

Our results indicate a significant level of 
genetic differentiation between the Ante-
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lope Hill and Potato Lake colony (D ~ 
5.63, d.! ~ I, P < 0.025), with an F'-value 
of 0.11 for all probes combined and a sam­
pling variance of 2.26 X 10-3• If it is as­
sumed that FST will remain constant over 
time, due to a balance between genetic drift 
and gene flow, then the number of dispers­
ers moving between colonies each genera­
tion can be estimated from the following 
foonula: N.,m = (lAFST) - lA, where Ne is 
the effective population size and m is the 
migration rate (Wright, 1969). Using this 
fonnula in concert with an FST of 0.11, we 
obtain a value of 2.02 dispersers per gen­
eration necessary to maintain the current 
level of population differentiation over 13 
km. It is unlikely that dispersal between 
colonies occurred in a single step due to the 
limited dispersal capabilities of prairie 
dogs; therefore, the level of gene flow be­
tween nearest-neighboring colonies would 
have to be >2.02 dispersers to maintain the 
observed level of gene flow. 

DISCUSSION 

The similarity coefficients revealed here 
are higher than those generally reported for 
other outbred manunalian species. The low­
est values reported for outbred species are 
at or just below 0.20 (e.g., 0.16 for the Cal­
ifornia mouse, Peramyscus calif amicus, us­
ing probe 33.6-Ribble, 1991), while the 
highest values rarely exceed 0.50 (e.g., 0.49 
for the African lion, Panthera leo, using a 
feline-specific minisatellite probe-Gilbert 
et al., 1991, Packer et al., 1991). Highly 
inbred species may display similarity coef­
ficients approaching unity, as is exemplified 
by the naked mole rat (Heterocephalus gla­
ber), where S-values as high as 0.99 have 
been revealed using the probe M13 (Reeve 
et al., 1990). It appears that Gunnison's 
prairie dogs fall at the upper end of the 
range of S-values representing outbred 
manunals. This is perhaps not surprising 
because an earlier study by Benedix (1988) 
reported complete monomorphism at 38 of 
40 allozyme loci investigated, although no 
estimate of F "T was calculated. 

Frequent population bottlenecks resulting 
from a recent history of outbreaks of syl­
vatic plague may have contributed to the 
paucity of genetic diversity within popula­
tions of Gunnison's prairie dog. The prev­
alence of the plague-causing bacterium, 
Yersinia pestis, among populations of all 
five North American species of prairie dogs 
is well-documented. Rates of. mortality dur­
ing plague epizootics have been known to 
exceed 97%, often nearly eliminating entire 
colonies within a single active season 
(Barnes, 1982; Cully, 1989, 1991; Lech­
leitner et al., 1962, 1968; Olsen, 1981; Ray­
or, 1985). For example, Rayor (1985) re­
ported the complete elimination of a colony 
of Gunnison's prairie dogs numbering 
1,000-1,500 individuals within a period of 
2 months, while Cully (1991), working with 
the same species, reported a reduction in 
size of colony from 2,800 to 120 individ­
uals over one active season. Such extreme 
bottlenecks may contribute to the temporal 
persistence of pronounced founder effects 
and subsequent drift, which ultimately may 
contribute to genetic differentiation among 
popUlations. 

Restricted gene flow, as evidenced by a 
significant level of differentiation between 
colonies, may further have contributed to 
the maintenance of low levels of diversity 
within populations. Possible barriers to 
gene flow between colonies existed in the 
foon of intervening forest habitats that may 
have been inhospitable to dispersing prairie 
dogs. The existence of territoriality within 
colonies may have further hindered dispers­
al by subjecting individuals to high levels 
of aggression as they attempted to under­
take long-range movements (Chesser, 1983; 
Rayor, 1988). 

The persistence of kin groups of females 
within shared territories, a characteristic of 
prairie dogs as well as many other species 
of North American ground squirrels (An­
derson, 1989), is of potential consequence 
to the maintenance of genetic homogeneity 
within colonies and genetic differentiation 
between colonies, because it favors high 
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levels of coancestry within territorial social 
groups (Chesser, 1991). For example, the 
persistence of a female on a territory oc­
cupied by several different breeding males 
over several consecutive breeding seasons 
may produce multiple litters of half-sibs. 
Alternatively, coancestry within territories 
would be promoted in situations where 
males maintain their associations with spe­
cific kin groups of females for a period of 
several consecutive years. This could allow 
sufficient time for the attainment of repro­
ductive maturity by their female offspring, 
with whom they then could mate. 

The level of genetic differentiation re­
ported in the current investigation is rep­
resented by an analog FsT-value that is 
equal to or slightly higher than those re­
ported in other studies of population sub­
division among species of social North 
American ground squirrels. The majority of 
these studies report overall values of FST 

closely approximating 0.07. Schwartz and 
Armitage (1980) reported a mean F" of 
0.07 using eight variable allozyme systems 
to estimate differentiation among nine pop­
ulations of the yellow-bellied marmot 
(Marmota flaviventris). Chesser (1983) re­
ported a range of FsT-values with a mean 
of 0.07 among populations of the black­
tailed prairie dog occupying the same geo­
graphic region, using seven variable allo­
zyme systems. Finally, McCullough and 
Chesser (1987) reported an overall FST-val­
ue of 0.07 among three populations of the 
Mexican prairie dog (c. mexican us) based 
on electrophoresis of 30 enzyme loci. Daley 
(1992) provided the sole exception, report­
ing a mean FST of 0.12 among eight culled 
populations of the black -tailed prairie dog 
using four variable allozyme systems. Thus, 
it is clear that the analog FsT-value of 0.11 
reported for the Gunnison's prairie dog us­
ing DNA fingerprinting is sinrilar to values 
reported using allozyme systems. The slight 
differences that do exist are not likely to be 
statistically (or biologically) significant due 
to a relatively large standard error associ­
ated with our reported value, i.e., 0.0475. 

In conclusion, our results suggest a need 
to exercise caution in the application of 
DNA fingerprinting data to studies of ge­
netic relatedness in Gunnison's prairie dog, 
where the assignment of specific relation­
ships is called for. Observed coefficients of 
similarity in excess of 0.60 necessarily must 
have been due to small numbers of alleles 
representative of the mini satellite loci 
screened by the three probes used in this 
study. Likewise, the overall number of loci 
detected by DNA fingerprinting was rela­
tively small, something substantially <30 
(determined simply on the basis of the max­
imum number of fragments scorable for any 
one individual in our study). Lynch (1988) 
has determined that, even in highly diverse 
species with an extreme of 100 alleles per 
minisatellite locus, the standard errors of 
estimate for first-, second-, third-, and 
fourth-order relatives, given infonnation on 
25 loci, are 14, 20, 35, and 53%, respec­
tively. For Gunnison's prairie dogs, it 
would be necessary to allow for a much 
larger margin of error that would all but 
eliminate the possibility of establishing spe­
cific relationships among individuals of in­
terest. Nevertheless, the estimation of com­
parative levels of relatedness remain pos­
sible, allowing for the assessment of differ­
ences in overall levels of relatedness among 
experimental groups (Travis et al., 1995). In 
addition, high levels of DNA-fingerprint 
similarity do not preclude the assignment of 
parent -offspring relationships by paternity 
testing (Travis et al., 1996). Thus, we have 
shown that, while the utility of DNA fin­
gerprinting to studies of mammalian social 
systems may be limited in species lacking 
genetic diversity such as Gunnison's prairie 
dog, as long as a conservative approach to 
the assessment of relatedness is exercised, 
molecular techniques such as this may yield 
infonnation that would not be available by 
any other means. 
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