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ABSTRACT 

Fish have become a popular experimental model and companion animal, and are also farmed and caught 
for food. Thus, surgical and invasive procedures in this animal group are common, and this review will 
focus on the anesthesia and analgesia of fish. A variety of anesthetic agents are commonly applied to fish 
via immersion. Correct dosing can result in effective anesthesia for acute procedures as well as loss of 
consciousness for surgical interventions. Dose and anesthetic agent vary between species of fish and are 
further confounded by a variety of physiological parameters (e.g., body weight, physiological stress) as 
well as environmental conditions (e.g., water temperature). Combination anesthesia, where 2 anesthetic 
agents are used, has been effective for fish but is not routinely used because of a lack of experimental 
validation. Analgesia is a relatively underexplored issue in regards to fish medicine. However, recent 
studies have investigated opioid agents, nonsteroidal anti-inflammatory drugs, and local anesthetics to 
determine their efficacy in minimizing pain and discomfort. The opioid morphine and the local anesthetic 
lidocaine do have significant effectiveness in reducing pain-related responses in rainbow trout 
(Oncorhynchus mykiss). Studies aimed at developing reliable analgesic protocols should explore a wide 
range of analgesic drug classes in several fish species. 

 

 

Recent research studies have suggested that fish are capable of nociception or pain perception. These 
investigations have demonstrated that bony (teleost) fish have nociceptors, receptors to detect potentially 
painful stimuli (Fig 1), which are very similar to those found in mammals.1-6 A variety of species also 
exhibit adverse behavioral and physiological responses to a potentially painful event7-12 that are 
ameliorated by the use of analgesia (Fig 2).13,14 Therefore, it would seem prudent to reduce any pain and 
discomfort during surgical interventions or when tissue damage has or is likely to occur. Anesthetic drugs 
have historically been used on fish in aquaculture, experimentation, and veterinary practice.15 Their use 
reduces the stressful impacts of handling, especially during routine procedures such as weighing, 
vaccination, blood sampling, tagging, experimental surgery, and veterinary procedures. Therefore, light 
anesthesia or sedation can improve the efficiency of rapid procedures. In invasive procedures in which 
tissue damage will occur, full or deep anesthesia or loss of consciousness is used to improve fish welfare 
and minimize the pain associated with surgical intervention.16-19 Anesthetic administration is usually 
achieved via immersion, with the drug being dissolved in water where the fish is held or an anesthetic 
vessel such as a tank or large bucket (also termed inhalation). When induction takes place through 
immersion, it is paramount to observe the fish and gauge the depth of anesthesia to reduce the incidence 



of overdose. Uptake of these chemicals is primarily via the gills and possibly the skin. The level of 
anesthesia is monitored by recording gill ventilation rates, maintenance of equilibrium (upright position), 
and reflex responses (e.g., swimming response to tail pinch). Research studies have measured rates of 
induction and recovery, responsiveness to external stimuli and handling, as well as pharmacokinetics of 
these agents. However, these research investigations often focus on a small range of species, testing 
only one anesthetic agent or a range of drugs on one species. 

Analgesia has received much less attention, especially before 20035; historically, fish were thought to be 
incapable of nociception or pain.20 However, studies are now trying to show the efficacy of analgesic 
medication in reducing or ameliorating any detrimental changes in behavior and physiology as a result of 
damage or noxious stimulation. This article will focus on what is known regarding anesthesia (primarily 
immersion) and analgesia in fish to provide an up-to-date account that can be referred to by scientists 
and veterinarians. Using the most efficient means of reducing stress and/or pain is crucial for the welfare 
of animals treated. 

ANESTHESIA IN FISH 

As with most other animals, induction and the depth of anesthesia in fish are generally divided into 
increasing stages or planes (Table 1). Monitoring of activity or swimming, posture, behavior, gill 
ventilation rate, eye movement, reflex responses, and heart rate is commonly done for fish; the degree of 
change desired will be dependent on the level of anesthesia required for a particular procedure. If 
induction is rapid, one can have difficulty differentiating one stage from another; therefore, use of the 
correct dose is particularly important to avoid overdose. For rapid and noninvasive procedures, light 
anesthesia can be sufficient (e.g., weighing, handling, inspection, gill scrape, external tagging). However, 
for invasive procedures and those of longer duration, surgical anesthesia is advised and may need to be 
accompanied by artificial ventilation of gills by flushing fresh or anesthetic-dosed water with a mouthpiece 
and pump when necessary. It is particularly important that the water is aerated and maintained at a 
similar temperature as its normal environment to avoid unnecessary stress to these poikilotherms. 
Hypoxia can elicit a stress response in fish, which may impede recovery after anesthesia.21 A hypoxic 
state can also occur if the gills are not fully irrigated, causing gill filaments to collapse and become 
ischemic. Indeed, all water-quality parameters should be identical to the fish’s normal tank water (e.g., 
pH, salinity, hardness), and ideally the water used for anesthesia should be obtained from the home tank 
or aquarium system to reduce stress. Other factors such as temperature, body weight, and fish condition 
influence a fish’s response to anesthesia. 

TYPES OF ANESTHETIC AGENTS 

A range of anesthetic agents are currently in use in laboratory, veterinary, and aquaculture contexts. The 
most common anesthetic drugs used in fish are MS-222 (Tricaine), benzocaine, isoeugenol, metomidate, 
2-phenoxyethanol, and quinaldine.16-19 Experimental studies have explored the induction, recovery rate, 
and pharmocokinetics as well as undesirable or adverse side effects. However, these research 
investigations are limited to a relatively small number of species and caution should be applied when 
using any of these agents on a nonvalidated species. Fish are incredibly diverse, and a shift in water 
quality and environmental requirements can significantly influence the efficacy of an anesthetic agent. 
Therefore, low doses should be used initially with incremental increases until the most effective dose is 
achieved (Table 2). Although this review focuses on immersion anesthesia, injectable anesthetics are 
fairly common in larger species of fish.17 

 



FIGURE 1. (A) Nerves in the tailfin of common carp (Cyprinus carpio) (x200). 1: nerve bundle, 2: blood vessel, 3: 
lepidotrichial hemisegment. (B) Detail from the red box in (A) shows a transverse section of the interior of the 
lepidotrichia segment of the tailray showing 2 nerves (EM, scale bar=5µm). (C) Nerve fibers in tailfin of common carp 
(TEM, scale bar=500 nm). Both C-fibers (1) and 3 categories of A-fibers (2) are present within the nerve. Schwann 
cell (3) producing the myelin sheets around A-fibers. Black spots in the neurite neuroplasm represent microtubules. 
C-fibers and A-fibers act as nociceptive afferents (adapted from Roques et al, 20106). (D) Section of the maxillary 
branch of the trigeminal nerve of rainbow trout showing the presence of A-delta and C-fibers that may act as 
nociceptors (x1000, scale bar = 2 µm; adapted from Sneddon, 20023). 

 



FIGURE 2. The mean time (± SE) rainbow trout (Oncorhynchus mykiss) took to resume feeding after being sham-
handled but not injected (control), injected with only saline solution, or only morphine, or only acid or acid plus 
morphine (*P <.05; modified from Sneddon 200313 

 

 

MS-222 and Benzocaine 

This class of drugs is routinely used in clinical and veterinary medicine as topical analgesics. MS-222 
(ethyl 3-aminobenzoate, tricaine methanesulphonate, metacaine) and benzocaine (ethyl 4-
aminobenzoate) are the 2 most common anesthetic agents used in fish research studies and are also 
used in food fish production. Both drugs are approved for aquaculture use in several countries including 
the United States and Norway. These local anesthetics inhibit the initiation and propagation of action 
potentials by blocking voltage-sensitive sodium channels.22,23 Administration of MS-222 and benzocaine 
is usually via immersion, entering the body via gill uptake and producing anesthesia by impeding neuronal 
signal transmission peripherally to the central nervous system. In fish, the precise action of these agents 
is not fully known.24-26 Benzocaine is structurally similar to the chemical composition of MS-222; however, 
this agent must first be dissolved in an organic solvent (usually ethanol), whereas MS-222 is soluble in 
water but has an acidic pH that requires addition of a buffer (i.e., sodium bicarbonate is usually added to 
obtain the desired pH). Dosages of both drugs vary between species. For example, in Atlantic salmon 
(Salmo salar) MS-222 is administered at 65 mg/L, as is benzocaine,27 whereas in halibut (Hippoglossus 
hippoglossus),28 MS-222 is given at 80 mg/L and benzocaine at 40 mg/L; and in cod (Gadus morhua) 
MS-222 and benzocaine are administered at 60 mg/L and 25 mg/L, respectively.29 Increased heart rate 
and respiration are observed in the initial phase of anesthesia using these drugs, as well as 
hyperglycemia, and are followed by a depression of heart rate and ventilation.30,31 Side effects include 
hypoxemia, hypoglycemia, and increased levels of lactic acid, suggesting a reliance on anaerobic 
metabolism, increased hematocrit, and hemoglobin values, as well as erythrocyte swelling.21,31-36 Plasma 
catecholamine values increase in some species, suggesting a possible stress response.33,37,38 

Metomidate 

Metomidate hydrochloride (methyl 3-[1-phenylethyl] imidazole-4-carboxylate hydrochloride) is a 
nonbarbiturate hypnotic that activates and modulates inhibitory gamma-aminobutyric acid type A 
(GABAA) receptors and is a methyl analog of the imidazole derivative etomidate. This anesthetic agent is 
a centrally acting drug.39,40 Metomidate produces sedation and hypnosis in humans, 41 is a clinical and 
veterinary sedative,42,43 and affects adrenal steroidogenesis inhibiting production of cortisol,44,45 which has 



been observed in fish.46,47 Deleterious effects of metomidate in fish are reduced respiration and 
circulation, subsequently leading to hypoxemia and reduced pH of the blood.21,30,33 

 
TABLE 1. Descriptions of the stages of anesthesia and the parameters used to monitor anesthesia in fish. A number 
of procedures are provided as examples of what can be done to the fish under these levels of anesthesia 

Stage Plane Level of 
Anesthesia 

General 
Demeanor Activity Equilibrium 

Gill 
Ventilation 

Rate 
Reactivity Heart 

Rate 
Muscle 
Tone 

Examples of 
Procedures 

0  Normal Normal Normal Normal Normal Normal Normal Normal  

I  Lightly 
sedated Disoriented Reduced Normal Normal  Normal Normal  

II  Excitation Agitated Increased Difficulty Increased Increased Increased Normal  

III 1 Light 
anesthesia Anesthetized None Loss Decreased Reflex 

responses† Regular Decreased 

Weight; close 
visual inspection; 
external 
noninvasive tags, 
gill scrape 

 2 Surgical* Anesthetized None Loss Shallow None Reduced Decreased 

Invasive tags; 
tissue removal; 
injection; blood 
sampling; gill  
biopsy, lesion 
dressing,  recovery 
surgery‡ 

 3 Deep Anesthetized None Loss Rare 
movements None Reduced Relaxed Non-recovery 

surgery‡ 

IV  Overdose Apparently 
dead None Loss None None Cardiac 

failure None  

           

Adapted from Bell, 198792; Burka et al, 199748; McFarland, 195993; McFarland and Klontz, 196994; Summerfelt and Smith, 199019. 

*Some authors suggest there is an intermediate stage between light and surgical termed medium plane anesthesia. 

†An example of a reflex response is the fish swimming in response to a tail pinch. 

‡Usually accompanied by the use of artificial ventilation where the gills are irrigated with fresh or anesthetic dosed water. 

 

2-Phenoxyethanol 

2-Phenoxyethanol is commonly used as a preservative in vaccines, skin products, and perfumes. The 
precise mode of action of this anesthetic in fish is unknown, but it may involve an expansion of neuronal 
cell membranes48 and, therefore, may suppress activity in the central nervous system. Side effects 
include impaired ventilation, reduced cardiovascular responses, lowered blood O2, increased CO2, and 
reduced pH, as well as a possible stress response including higher concentrations of plasma adrenaline 
and glucose.33,49 2-Phenoxyethanol also reduces immune function of the animal in which it is used.50 

 



TABLE 2. Summary of selected anesthetic agents used in fish showing the range of doses, used in a variety of 
species and the resultant side effects (see Neiffer and Stamper, 200917 for species-specific information and also the 
citations in text) 

Anesthetic Agent Dose 
(mg/L-1) 

Side Effects 

Initial Secondary 

MS-222 50-400 

Tachycardia 
Increased 
respiration 
Hyperglycemia 

Decreased cardiovascular responses 
Hypoglycemia 
Increased lactate, hematocrit, and catecholamines 
Erythrocyte swelling 

Benzocaine 25-150 

Tachycardia 
Increased 
respiration 
Hyperglycemia 

Decreased cardiovascular responses 
Hypoglycemia 
Increased lactate, hematocrit, and catecholamines 
Erythrocyte swelling 
Suppressed immune function 

Clove 0il 4-150  Decreased ventilation and cardiovascular responses 

Eugenol 20-200  Increased catecholamines and hematocrit 

Isoeugenol 3.6-120   

Metomidate 0.06-10  

Reduced adrenal steroid production leading to 
reduced cortisol 
Reduced respiration, circulation, and pH of blood 
Hypoxemia 

2-Phenoxyethanol 0.25-600  

Decreased ventilation rate, heart rate, blood 
pressure, and blood pH 
Increased adrenal hormones 
Hyperglycemia 
Reduced immune function 

Quinaldine 10-50 Tachycardia Decreased heart rate and respiratory function 

Quinaldine sulphate 5-100  Increased cortisol and serum immunoglobulin M 
Hyperglycemia 

    

These doses are not appropriate for all species or under all conditions (e.g., temperature, body size, and 
physiological state must be investigated before use). When working with unfamiliar species or agents, use the 
lowest doses and low numbers of fish to test anesthetic efficacy. 

 

 

 



Isoeugenol 

Isoeugenol (2-methoxy-4-prop-1-enyl-phenol), a component of clove oil, is structurally similar to eugenol, 
a potent analgesic used in dentistry. This anesthetic agent impedes sodium, potassium, and calcium 
channels, inhibits N-methyl D-aspartate (NMDA) receptors, and potentiates GABA A receptors.51-55 
Isoeugenol has become a commonly used fish anesthetic and is the active ingredient in Aqui-S (Aqui-S 
New Zealand LTD, Lower Hutt, New Zealand); it is also an approved drug in some countries for use in 
aquaculture. Detrimental side effects of isoeugenol include impaired ventilation and depression of the 
cardiovascular system, which result in slower heart rate, decreased cardiac output, and reduced blood 
pressure.21,30 Increased plasma catecholamines and increased hematocrit may indicate a stress response 
elicited by the use of this anesthetic agent.21 

Quinaldine 

The quinoline family of compounds has antiseptic and antipyretic properties and is used in a variety of 
preparations, including antimalarial medicines. Quinaldine (2-methylquinoline) has been used to 
anesthetize fish for many years, but its mode of action is unknown. Initially, fish display a tachycardia; 
however, this is soon followed by bradycardia and impaired respiration.56 Elevated stress responses have 
also been recorded.34,50 

 

FIGURE 3. Mean induction time (s±SE) of Atlantic cod (Gadus morhua) of body size 100 g and 1000 g 
anesthetized at 8°C and 16°C with benzocaine (BZ), MS-222 (MS222), metomidate (Met), and 2-
phenoxyethanol (2-phe) administered individually. Induction time is defined as time from submersion in the 
anesthesia bath to total loss of equilibrium. For benzocaine (1000-8C not tested) and MS-222, induction times 
were found to increase with increasing body weight but not for metomidate or 2-phenoxyethanol. Induction 
rates were shorter at 16°C than at 8°C except for 2-phenoxyethanol in the 1000 g fish (adapted from Zahl et al, 
200929). 

 

 



ADMINISTRATION OF ANESTHETIC AGENTS 

Generally, the anesthetic drugs discussed above are administered as a single agent in fish. However, in 
veterinary and clinical practice, combining agents with different properties provides a more complete 
anesthesia than one single drug alone. Complementary effects between the different agents can result in 
safer, lower doses. In some cases, induction and recovery are improved and adverse side effects are 
reduced.57 Combination anesthesia has been explored in fish. For example, MS-222 and quinaldine 
administered to rainbow trout (Oncorhynchus mykiss) and northern pike (Esox lucius) resulted in less 
mortality and adverse side effects.58 Quinaldine used with diazepam (dose range, 0.6-1.2 parts per 
million) lowered the dose of both agents when anesthetizing gilthead sea bream (Sparus aurata) and 
European sea bass (Dicentrarchus labrax).59,60 This drug combination also reduced the mortality rate and 
undesirable effects of quinaldine in the 2 fish species in which it was investigated.59,60 MS-222 immersion 
anesthesia combined with intraoperative injections of local analgesics has been used during surgical 
procedures in koi carp (Cyprinus carpio).61 Administration of butorphanol improved subsequent behavior 
and recovery, whereas ketoprofen reduced muscle damage; therefore, their use may be beneficial. This 
approach was also effective in Atlantic cod when they were administered a combination of metomidate 
and either benzocaine or MS-222.29 Recovery times were much faster with a combination of these agents 
than one alone. In halibut, combination anesthesia also allowed the dose of each anesthetic drug used to 
be reduced. Improvements in induction and recovery rates were dependent on body size, with smaller 
fish having quicker induction times but larger fish exhibiting a much faster recovery rate compared with 
the use of one agent.28 Thus, combination anesthesia may be safer because this allows a reduction in 
dose, which is generally reflected in better recovery and lower mortality rates along with reduced adverse 
side effects in some cases. More experimental studies are needed to develop reliable combination 
protocols on a greater variety of fish species. 

FACTORS AFFECTING ANESTHESIA 

Biological factors such as age, sex, body condition and weight, developmental stage, growth and 
physiological status, health, and reproductive condition, as well as abiotic factors such as water quality, 
temperature, and oxygenation affect the efficacy of fish anesthesia. In fish, body condition, water 
temperature, and physiological stress have been investigated to determine their precise effects on 
anesthesia. 

Body Condition 

Research investigations have focused on body weight because drug dosing is often relative to the weight 
of an animal. However, some experimental studies on fish conclude that there is no effect of weight on 
induction and recovery,62,63 whereas others have opposite findings (Fig 3).29,47,64 Larger body size in 
whitefish (Coregonus lavaretus) was found to be associated with decreased induction times; in contrast, 
larger-sized rainbow trout had longer induction times and there was no effect in Atlantic salmon or brown 
trout (Salmo trutta).65 Induction increased with greater body weight in Senegalese sole (Solea 
senegalensis) using isoeugenol, 2-phenoxyethanol, and metomidate, but not for MS-222.66 Yet, MS-222 
and benzocaine action were affected by body weight in Atlantic cod; larger fish had longer induction and 
recovery times (Fig 3).29 Only recovery was affected by body size when using metomidate in Atlantic cod, 
whereas the characteristics of 2-phenoxyethanol anesthesia had no relationship with size. Thus, these 
agents appear to have species-specific differences in their action, and research into factors such as lipid 
solubility and lipid content of fish is needed to explore the mechanisms of these body weight 
relationships.  

 



FIGURE 4. Mean (A) induction and (B) recovery time (s ± SE) in Atlantic halibut (Hippoglossus hippoglossus) 
anesthetized with benzocaine (BZ) and MS-222. Induction time is recorded in seconds and is defined as the 
time from submersion in the anesthesia bath to total loss of equilibrium. Recovery is defined as time from 
transfer to recovery bath to regain of equilibrium. Average body weight of the fish was 1243 g, exposure time 
was 5 minutes, and water temperature was 8°C or 15°C. Induction was significantly shorter at the higher 
temperature, but recovery was significantly longer (adapted from Zahl et al, 201191).  

 

 

Water Temperature 

Fish are poikilothermic and as such their physiology and metabolic rate are dependent on ambient water 
temperature. Studies have explored the impact water temperature has on the efficacy of anesthetic 
agents. Higher temperatures often reduce induction and recovery times. For example, isoeugenol in 
Atlantic salmon, brown trout, whitefish, perch (Perca fluviatilis), rainbow trout, and roach (Rutilus rutilus); 
benzocaine in striped bass (Morone saxatilis); 2-phenoxyethanol and isoeugenol in Atlantic cod, Atlantic 
halibut, European sea bass, and gilthead sea bream; and isoeugenol in rainbow trout have shorter 



induction and recovery rates at higher temperatures. 29,63,65-69 MS-222 anesthesia is faster at higher 
temperatures in a variety of freshwater and marine fish.70-72 However, there is not a consistent simple 
relationship with water temperature relative to induction and recovery. For example, induction was much 
quicker in halibut at higher temperatures but recovery was more prolonged (Fig 4). Caution should be 
applied in regards to the relationship between water temperature and anesthesia. Furthermore, rapid  
changes in water temperature may cause stress to fish and effect their metabolic rate, circulation, and 
uptake of the anesthetic agent(s).29 

 

FIGURE 5. Mean plasma cortisol concentrations (± SE) of sunshine hybrid striped bass (Morone chrysops x M. 
saxatilis) exposed to low concentrations of several anesthetic agents for 15 minutes (Aqui-S; Clove oil, Clo; 
metomidate, met; MS-222; quinaldine sulfate, QS; quinaldine, Quin. 

 

 

Physiological Stress 

Anesthesia is profoundly affected by stress in fish. Stress results in increased cardiovascular responses 
and gill blood flow, producing greater diffusion of immersion anesthetic agents. Therefore, it is vital that 
stress is minimized before and during the anesthetic event. As outlined above, many anesthetic drugs 
elicit hormonal stress responses as a side effect (Fig 5).28,46 Acute stress before anesthesia with MS-222 
in Atlantic cod resulted in shorter induction time and prolonged recovery.29 A deeper plane of anesthesia 
was observed in these fish after an acute stressor such that the dose of MS-222 was reduced to avoid 
mortality. However, the benefits of using anesthetic agents during potentially stressful procedures to 
render the fish unconscious are important to minimize any negative impacts on their welfare. Several 
studies have shown that handling stress is profoundly reduced when fish are anesthetized.46,73-78 Cortisol 
is elevated during handling in Atlantic salmon, but when anesthetized with metomidate, cortisol release is 
prevented.47 Therefore, the physiological status of the fish should be evaluated before anesthetizing the 
animal so that one can determine the most appropriate agent and dose. Monitoring of heart rate during 
prolonged procedures is advisable, especially during invasive surgery because this physiologic parameter 
is a direct reflection of the fish’s level of anesthesia (Fig 6). 

ANALGESIA IN FISH 

In clinical and veterinary practice, analgesic drugs are administered to reduce pain and improve well-
being, thereby promoting recovery of the patient. Analgesic protocols are available for a variety of 
animals,57,70 but these drugs are generally not administered to fish.61,79 Research on teleost fish 



demonstrates that potentially painful events impair their normal behavior and may be indicative of 
discomfort.6-8,10,11,13,80,81 Prolonged changes in behavior have been observed, but relatively few studies 
have explored the use of analgesia to reduce these abnormal activities. The major classes of analgesic 
drugs are opioids, nonsteroidal anti-inflammatory drugs (NSAIDs), local anesthetics, and miscellaneous 
drugs that have pain-relieving properties (e.g., antidepressants). Only the first 3 classes have been 
explored as potential pain-relieving drugs in fish (Table 3). 

 

FIGURE 6. An example of a laboratory set up where long-term anesthesia is maintained. Surgically 
anesthetized rainbow trout (Oncorhychus mykiss) are placed in a purpose-built cradle, covered with wet 
tissues to prevent drying out of the skin, held in place with Velcro straps, and fitted with a purpose-built 
mouthpiece and tubing to supply temperature controlled, aerated water. Heart rate is monitored via 
electrodes placed under both pectoral fins to gauge level of anesthesia along with reflex responses such as 
no response to tail pinch. This is taken from a nonrecovery procedure (photo by Dr P. J. Ashley in the 
Sneddon Laboratory). 

 

 

Opioids 

Opioid drugs, typified by morphine, produce analgesia by acting on the 3 opioid receptors (mu, delta, and 
kappa) located on neuronal cell membranes. The presynaptic action of opioids inhibits neurotransmitter 
release, thereby blocking not only the activity of nociceptors but also centrally blocking transmission. 
Morphine administered to rainbow trout ameliorated the effects of a potentially painful stimulus; fish did 
not show a suspension in feeding and morphine reduced ventilatory responses and anomalous 
behaviors, which were exhibited by noxiously treated fish (Fig 2).13 Noxiously stimulated trout also do not 
show a neophobia to novel objects; however, morphine administration to noxiously treated fish resulted in 
normal fear responses during these tests.9 Therefore, it was concluded that morphine is an effective 
analgesic in rainbow trout. Morphine did not increase the temperature threshold in goldfish (Carassius 
auratus) in cases in which the fish performed an escape response to noxious heat but did ameliorate 
subsequent adverse changes in behavior of the fish in the tank after temperature threshold testing, which 
suggests morphine had a possible effect on reducing pain in these fish.12 Morphine behaves 
pharmocokinetically similar in fish compared with mammals; however, excretion rates are much slower 
(half-life of 37 hours and total elimination time of 56 hours) and morphine persists for a prolonged period 



after administration.82,83 This suggests that its use is favorable in chronic conditions or after major surgery 
because no further doses may be required.  

 

TABLE 3. The analgesic drugs tested in fish showing the range of doses tested, the species of fish that these 
were tested on, side effects including whether the analgesic improved pain-related changes, and a comment 
on efficiency as an analgesic 

Analgesic Dose Species Side Effects Efficacy 

Lidocaine 0.1-2 mg/kg Trout (IM) 
Zebrafish (IM) None observed Very efficient at 1 mg/kg 

Morphine 5-50 mg/kg 
Trout (IM) 
Flounder (IP) 
Goldfish (IM) 

None observed Very efficient at 5 mg/kg 

Buprenorphine 0.01-0.1 mg/kg Trout (IM)  
Reduced activity 
No impact on 
feeding or ventilation 

Not efficient 

Carprofen 1-5 mg/kg Trout (IM) 
Depressed activity 
 
Increased ventilation 

Reduced time to feed using  
2.5 mg/kg 

Butorphanol 0.25-5 mg/kg Koi carp (0.4; IM) 
Dogfish (IM)  

Dogfish - not efficient 
Improved behavior in Koi 
 

Ketoprofen 1-4 mg/kg 
Koi carp (2; IM) 
 
Dogfish (IM) 

No impact on 
behavior in Koi Not efficient 

     

Adapted from Sneddon, 200313; Harms et al, 200561; Davis et al, 200686; Newby et al, 200682; Newby et al, 200983; 
Mettam et al, 201114; Nordgreen et al, 200912; Sneddon, unpub. data. 
Abbreviations: IM, Intramuscularly; IP, Intraperitoneally. 

 

 

Studies have investigated reflex responses to electric shock using the opioids, tramadol, dermorphine, 
and β-casomorphin in cod, steelhead trout (Salmo mykiss), carp, and rainbow trout and have found a 
reduction in the magnitude of the response.84,85 Butorphanol has been explored in the chain dogfish 
(Scyliorhinus rotifer) and koi carp as part of a combined anesthetic protocol; however, it appeared to have 
limited effectiveness. 61,86 Buprenorphine was found to have poor analgesic properties in rainbow trout.14 

Nonsteroidal Anti-inflammatories The NSAID class of drugs works by inhibiting arachidonate cyclo-
oxygenase (COX) enzymes to reduce the production of thromboxanes and prostaglandins, providing 
antiinflammatory, antipyretic, and analgesic properties.57,87 Very few NSAIDs have been evaluated with 
respect to analgesia in fish. Ketoprofen was used in the chain dogfish to determine the minimum 



anesthetic concentration of MS-222 to prevent a response to an acute noxious stimulus; however, this 
approach was not effective.86 Ketoprofen did reduce the indicators of muscle damage postsurgery in koi 
carp but did not ameliorate subsequent behavioral changes.61 Carprofen was investigated in rainbow trout 
that exhibited pain and the fish resumed feeding more quickly than fish with no analgesia. However, when 
a 5.0 mg/kg carprofen dose was administered to rainbow trout, the fish were found to have depressed 
activity, even in control fish, and as such may be a deleterious side effect (Table 3).14 NSAIDs require 
further investigation if they are to be recommended as a reliable, effective analgesic in fish. The chronic 
use of NSAID analgesic drugs in mammals, birds, and reptiles can result in gastric ulcers or renal 
disease, but these effects are currently unknown in fish. 

Local Anesthetic Agents 

Local anesthetic agents inhibit the propagation of action potentials by blocking sodium channels and by 
affecting membrane function.57,88,89 Therefore, local anesthetic drugs impede pain sensation by blocking 
nociceptive transmission. Relatively few studies have explored local anesthetic drugs; however, 
novocaine is known to reduce reflex responses in cod90; this alone is not considered sufficient evidence to 
recommend its use in vivo. Lidocaine has been explored in rainbow trout with substantial success (Table 
3).14 Lidocaine at a dose of 1 mg/kg was effective in reducing all of the adverse behavioral and 
physiological responses to pain in this species. More research is necessary to test the wide range of local 
anesthetic agents on a range of fish species to construct reliable analgesic protocols. 

CONCLUSION 

A variety of anesthetic drugs have been investigated for their properties to provide effective anesthesia of 
fish. However, given the significant diversity of fish species and their associated environmental and 
physiological requirements, it would be prudent to apply caution when selecting an anesthetic agent. 
Tentative exploration of the correct dose is vital because many factors influence anesthetic action 
including body size, water temperature, and physiological status. Combination anesthesia requires more 
attention given the positive findings from a number of studies that demonstrate reduced mortality rates 
and lower doses, which also appears to result in reduced side effects and better recovery. Humane 
treatment of fish subject to tissue-damaging, invasive procedures demands that any pain and discomfort 
are reduced by the use of an analgesic agent. However, the development of robust, valid analgesic 
protocols requires further study given the limited number of scientific studies. Currently, only morphine 
and lidocaine can be recommended in one species, the rainbow trout. Therefore, analgesic drugs need to 
be investigated in a range of species to determine their applicability in a variety of patient conditions; this 
will also require the development of pain  indicators specific to the pain type and fish species.8,79 
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