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ABSTRACT 

Rhesus monkeys (Macaca mulatta) reared during the first year of life without social contact develop 
persistent stereotyped movements, self-directed behaviors, and psychosocial abnormalities, but 
neurobiological mechanisms underlying the behaviors of socially deprived (SD) monkeys are unknown. 
Monkeys were reared in total social deprivation for the first 9 months of life; control monkeys were reared 
socially (SR) with mothers and peers. Subjects were killed at 19-24 yr of age. Because the behaviors of 
SD monkeys are reminiscent of changes in striatal or amygdalar function, we used immunocytochemistry 
for substance P (SP), leutine-enkephalin (LENK), somatostatin, calbindin, and tyrosine hydroxylase (TH) 
to evaluate qualitatively and quantitatively patterns of neurotransmitter marker immunoreactivity within 
subcortical regions. In SD monkeys, the chemoarchitecture of the striatum was altered. Neuronal cell 
bodies and processes immunoreactive for SP and LENK were depleted markedly in patch (striosome) 
and matrix regions of the caudate nucleus and putamen; the average density of SP-immunoreactive 
neurons was reduced 58% relative to SR monkeys. Calbindin and TH immunoreactivities were diminished 
in the matrix of caudate and putamen of SD monkeys. TH-immunoreactive neurons, but not cresyl violet-
stained neurons, in the substantia nigra pars compacta were decreased (43%) in SD monkeys. Peptide-
immunoreactive terminals were reduced in the globus pallidus and substantia nigra in SD monkeys. The 
nucleus accumbens was the least affected of striatal regions. Striatal somatostatin immunoreactivity was 
qualitatively and quantitatively similar in SD and SR monkeys. Several regions, for example, bed nucleus 
of the stria terminalis, amygdala, and basal forebrain magnocellular complex, that were in the same 
sections and are enriched in these markers did not appear altered in SD monkeys, suggesting a regional 
specificity for vulnerability. The altered chemoarchitecture of some basal ganglia regions in adult 
monkeys that experienced social deprivation as infants suggests that the postnatal maturation of 
neurotransmitter phenotypes in some structures is influenced by social environment. Abnormal motor and 
psychosocial behaviors resulting from this form of social/sensory deprivation may result from alterations in 
peptidergic and dopaminergic systems within the basal ganglia. 

 

 

Rhesus monkeys (Macaca mulatta) that have experienced social deprivation for extended periods during 
the first year of infancy develop abnormal motor and social behaviors (Mitchell, 1970; Harlow et al., 1971; 
Prescott, 1971; Goosen, 1981; Suomi, 1982; Kraemer, 1985) (Table 1), including stereotyped locomotion 
and gross rhythmic stereotypic movements, fearfulness, social withdrawal, inappropriate reproductive and 
maternal behavior, learning deficits, and self-directed behavior (e.g., self-huddling and self-injurious 



behaviors of varying intensity). Without intensive resocialization soon after the isolation period, early 
social deprivation can have devastating, prolonged effects on primate behavior that persist into adulthood 
(Mitchell, 1970; Harlow et al., 1971; Prescott, 1971; Goosen, 1981; Suomi, 1982; Kraemer, 1985). Thus, it 
is likely that these behaviors reflect structural and functional modifications in the brain (Prescott, 1971; 
Hubel, 1978). Environmental effects on postnatal brain development have been established in studies of 
visual deprivation and subsequent development of the visual system (Hubel, 1978). However, only a few 
Golgi studies (Riesen et al., 1977; Struble and Riesen, 1978; Floeter and Greenough, 1979) have 
attempted to define neuropathologic changes in the brains of socially deprived (SD) primates. 

This report defines some of the effects of early postnatal social deprivation on the brains of nonhuman 
primates. Brains obtained for this study were from SD monkeys that showed major dimensions of the 
isolate syndrome in adulthood, and the behaviors persisted virtually unchanged. The social competencies 
of the SD and socially reared (SR) monkeys described here were assessed in group living situations, and 
then attempts were made to modify the social deficits of these isolate monkeys (Frank, 1979). While 
these SD monkeys tolerated some passive social interaction, more complex forms of social reciprocity 
were strikingly absent. Moreover, the stereotyped behavior displayed by these SD monkeys hampered 
interactions with socially competent subjects. Other studies on the SD monkeys described here 
documented increased errors when the animals had to select the odd object of a set of three objects 
(Gluck et al., 1973), increased perseveration on a task following nonreward (Gluck and Sackett, 1976), 
inability to ignore redundant or irrelevant stimuli (Beauchamp and Gluck, 1988; Beauchamp et al., 1991), 
persistence of self-injurious behavior (Gluck and Sackett, 1974; Gluck et al., 1985), and perturbations in 
dopamine and dopamine-regulated functions (Lewis et al., 1990). 

SD rhesus monkeys manifest abnormalities in social and affective function (Table 1), as well as 
stereotypic movements and evidence of dopamine receptor supersensitivity (Lewis et al., 1990); thus, we 
examined initially subcortical forebrain structures (e.g., striatum and amygdala) because these regions 
have been implicated in affect, mood, motivation, and stereotypic movements (Stevens, 1973; Alexander 
et al., 1986; Scheel-Kruger, 1986). These structures are complex, chemically heterogeneous regions with 
integral compartments that differ in neurotransmitter composition and connections (Graybiel and 
Ragsdale, 1978, 1983; Beckstead et al., 1979; Haber and Elde, 1982; Beach and McGeer, 1984; 
Crutcher and DeLong, 1984; Gerfen, 1984; Gerfen et al., 1985; Haber, 1986; Berendse et al., 1988; 
DeLong et al., 1988; Ragsdale and Graybiel, 1988; Hadfield et al., 1989; Langer and Graybiel, 1989). 
Moreover, the striatum and amygdala undergo changes in neurotransmitters and neurotransmitter 
receptors postnatally to achieve the adult pattern of organization (Liozou, 1972; Olson et al., 1972; 
Tennyson et al., 1972; Graybiel et al., 198 1; Bachevalier et al., 1986; Nastuk and Graybiel, 1989; 
Sirinathsinghji and Dunnett, 1989). We used immunocytochemistry to test the hypothesis that the 
formation of chemoarchitectonic patterns within the forebrain of adult nonhuman primates was influenced 
by early social deprivation. Our results show that social deprivation of neonatal rhesus monkeys alters 
development of normal adult patterns of immunoreactivity for monoaminergic and neuropeptidergic 
transmitter markers within the striatum and some associated basal ganglia regions. Furthermore, the 
striatum appears to be more at risk than the amygdala and other basal forebrain regions. We hypothesize 
that the striatum may be more vulnerable because of its connectional organization and rate of postnatal 
maturation. 

Materials and Methods 

Male (n = 2) and female (n = 2) rhesus monkeys were reared in total isolation. The definition of terms and 
paradigms and detailed descriptions of housing conditions have been reviewed previously (Mitchell, 1970; 
Harlowet al., 1971; Goosen, 1981; Suomi, 1982; Kraemer, 1985). Total isolation involved separating 
infant monkeys from mothers no later than hours after birth and rearing them singly for 9 months in an 



enclosed, opaque, stainless-steel chamber (60 × 60 × 60 cm) that prevented visual-and tactile contact 
with conspecifics. For the first 20 d after birth. SD monkeys experienced limited handling for feeding, but 
after this period no handling was experienced. Control subjects-were rhesus monkeys socially reared 
(SR) with their mother and peers (n = 5) (i.e., infants reared in group housing with mothers) or feral (n = 2) 
monkeys that matured in the wild. Housing conditions for SD and SR monkeys were identical after the 
first 9 months of life. Monkeys in SD and SR groups participated previously in tests of learning, cognition, 
social behavior. stereotyped behavior, and self-injurious behavior. The SD monkeys used in this-study 
displayed abnormal reactions to noxious stimuli, deficits in response inhibition, slower adaptation to 
reinforcement contingencies, lower performance on oddity tasks, atypical cognitive processing, increased 
eye blink rate evoked by apomorphine, and increased rates of stereotyped and self-injurious behaviors 
(Sackett, 1972a; Beauchamp and Gluck, 1988; Lewis et al., 1990). All monkeys were 19-24 yr of age 
when killed.  

Table 1. Abnormal motor and psychopathologic behaviors of SD monkeysa 

Stereotyped locomotion and gross rhythmic movements 
Circling 
Somersaulting 
Pacing 
Swaying 

Abnormal social behaviors 
Fearfulness 
Withdrawal 
Lack of play 
Apathy and indifference to external stimuli 
Deficiencies in communication 
Aggressiveness 

Abnormal self-directed behaviors 
Oral fixations 
Huddling 
Self-injury 
Autoeroticism 

Abnormal reproductive behaviors 
Failure to establish normal heterosexual relations 
Deficits in display and orientation for copulation 

Abnormal maternal behaviors 
Indifference 
Abusiveness 

a Abnormal motor and psychopathological behaviors of isolation reared monkeys have been well documented 
(Mitchell, 1970; Harlow et al., 1971; Prescott, 1971; Goosen, 1981; Suomi, 1982; Kraemer, 1985 
 

Monkeys were restrained with ketamine, anesthetized with an overdose of pentobarbital, and perfused 
transcardially with cold 0.9% saline. Brains were cut stereotaxically; coronal blocks (1 cm thick) were 
immersion fixed (8 hr at 4°C) in 5% acrolein (Aldrich, Milwaukee, WI) prepared in 0.1 M phosphate buffer 
(pH 7.4), rinsed in buffer, cryoprotected (overnight at 4°C) in buffered 20% glycerol, and frozen with dry 
ice. Frozen sections (40 µm) were cut coronally through the entire extent of the striatum and processed in 



a series of six to eight sections per rotation, including sections for histological stains (cresyl violet, and 
hematoxylin and eosin) and immunocytochemical localization of neuropeptides, calbindin, and tyrosine 
hydroxylase (TH). Tissues were prepared for immunocytochemistry using polyclonal antisera to 
leucineenkephalin (LENK) and somatostatin-28 and monoclonal antibodies to substance P (SP), calcium-
binding protein (calbindin), and TH. Dilutions and sources of primary antisera are shown in Table 2. 
Immunohistochemical specificity of primary antibody was established by substituting antiserum with 
normal, nonimmune rabbit serum or mouse IgG used at comparable dilutions, and by preabsorption of 
antisera with an excess of synthetic antigen (Sigma). 

All sections were processed free floating utilizing an indirect peroxidase-antiperoxidase (PAP) technique. 
Because visualization of immunoreactive neuronal cell bodies and processes may depend on the 
immunocytochemical protocol employed (Graybiel and Chesselet, 1984), we compared three variations, 
designated protocols A, B, and C, in immunocytochemical processing of brain sections. Brain sections 
from age-matched SD and SR monkeys were always processed simultaneously regardless of protocol, 
and subsequent comparisons were made only between similarly processed sections. 
Immunocytochemical procedures were performed at 4°C unless otherwise specified. 

Table 2. Specifications of antisera 

Neurotransmitter/peptide marker Antiseraa Source 
   

Somatostatin polyclonal 
antisomatostatin 

Incstarb 

LENK polyclonal 
anti-LENK 

Incstar 

SP monoclonal 
anti-SP 

Sera Labc 

TH monoclonal 
anti-TH 

Boehringer Mannheimd 

Calbindin monoclonal 
anti-calbindin 

Sigmae 

GFAP monoclonal 
anti-GFAP 

Boehringer Mannheim 

a Polyclonal antibodies were raised in rabbits; monoclonal antibodies were produced by mouse-rat hybridoma cells. 
Dilutions ranged between 1:1000 and 1:2000 

b Stillwater, MN   
c Westbury, NY   
d Indianapolis, IN   
e St. Louis, MO   

 

For protocol A. 0.05 м Tris-buffered saline (TBS: 1.5% NaCl) was used. Sections were pretreated (10 
min) sequentially with 0.1 м sodium metaperiodate-TBS.and 1% sodium borohydride-TBS to reduce 
residual aldehvdes. Sections were treated with 0.4% Triton X-100 (Tx)-TBS (30 min), preincubated (1 hr) 
in 4% normal goat serum (NGS) or 10% nonfat dry milk/0.2% Tx-TBS, and subsequently incubated (48 
hr) in primarv antisera diluted in 0.1% Tx-TBS/2% NGS or 5% milk. Following primary antibody 
incubation, sections were rinsed and incubated (1 hr) with appropriate affinity-purified secondary IgG (i.e., 
goat anti-rabbit or goat anti-mouse: Cappel), diluted 1:100 in 0.1% Tx-TBS/2% NGS or 5% milk. Sections 
were rinsed and incubated (1 hr) with the appropriate PAP complex (i.e., rabbit or mouse PAP, 
Stemberger-Meyer), diluted 1:200 in 2% NGS or 5% milk TBS.  



For protocol B, 0.5 м TBS (0.9% NaCl) was used. Sections were pretreated (30 min) in 0.2% Tx-TBS at 
room temperature and incubated (48 hr) in primary antibody diluted in 0.3% Tx-TBS/1% NGS or 5% milk.  
Sections were rinsed in TBS and incubated (overnight) in secondary antibody diluted in 0.3% Tx-TBS/1% 
NGS or 5% milk. After secondary antibody incubation, the sections were rinsed at room temperature and 
incubated in PAP diluted in 0.3% Tx-TBS/1% NGS or 5% milk. 

For protocol C, the same buffer as in protocol B was used. Sections were pretreated (5 min) with 10% 
methanol/3% H2O2, rinsed in TBS, and permeabilized (30 min) with 0.2% Tx-TBS at room temperature. 
Sections were incubated (48 hr) in primary antibody diluted in 1% NGS or 5% milk/TBS. Sections were 
rinsed in TBS, incubated (1 hr) in secondary antibody diluted in 1% NGS or milk/TBS, rinsed in TBS, and 
incubated (1 hr) in PAP diluted in 1% NGS or milk/TBS at room temperature. 

For all protocols, following the PAP step, sections were rinsed, and peroxidase activity was visualized 
using a standard diaminobenzidine (Sigma) reaction. Slides were coded and evaluated without 
knowledge of the subjects’ rearing history, although some SD monkeys showed macroscopic differences 
in staining intensity for some neurotransmitters. 

Mapping and quantitation of immunoreactive neurons within the striatum and substantia nigra were 
achieved using a computerized, video-based plotting system that included a Dage 70 series video 
camera with a high-gain setting for low light levels, a Zeiss Axiophot microscope, Minnesota Datametrics 
digitizing stage encoders, an AT-compatible computer, an Imaging Technology FG100 digitizing and 
display board, and a Hewlett Packard 7475A plotter. The software was provided by Dr. M. Molliver 
(Department of Neuroscience, The Johns Hopkins University School of Medicine) and adapted by C. 
Fleischman (Neuropathology Laboratory, The Johns Hopkins University School of Medicine). 
Operationally, the sections were scanned as the stage encoders record specimen position, with a 
resolution of 5 pm, and the video camera displayed constantly the field of view and captured a digital 
image of the field. Identifying symbols were placed over selected cells, using a mouse to control the 
cursor on the screen. The computer stored information on previously charted neurons and displayed cells 
on the screen when a region was rescanned. Similar procedures were used to draw boundaries of brain 
sections, outline contours of striatal patches, and trace fiber profiles in detail. After the section was 
mapped, the computer provided statistics on cell number and density and produced color-coded hard 
copies of the area of interest within the section of brain. 

In age-matched SD and SR monkeys, we mapped sections of the striatum, prepared 
immunocytochemically for substance P and somatostatin, at rostral, middle, and caudal levels. In 
addition, in age-matched SD and SR monkeys, we counted the numbers of TH-immunoreactive neurons 
and the numbers of Nissl-stained perikarya in four sections (matched by level) through the ventral 
tegmental area (VTA) and substantia nigra pars compacta. Statistical analyses of data were performed 
using a Student’s two-tailed t test for independent or paired samples. Probabilities of 5% were interpreted 
as statistically significant. 

Results 

Histology 

Grossly, the brains of SD and SR monkeys were indistinguishable. The histological appearance of the 
striatum, amygdala, and adjacent basal forebrain regions of SD monkeys was normal. In sections stained 
with cresyl violet or hematoxylin and eosin, there was no apparent evidence of neuronal cell loss, atrophy, 
or glial cell proliferation. Sections stained immunocytochemitally for glial fibrillary acidic protein (GFAP) 
verified the lack of glial changes. In the striatum, large (20-60 pm) neuronal cell bodies were intermingled 



with the preponderant medium-sized (10-20 µm) neuronal somata in apparently normal proportions. In the 
amygdala and bed nucleus of the stria terminalis, the major subdivisions were clearly discernible, and 
they showed no visually apparent cytoarchitectonic changes. In the absence of Golgi analyses, we cannot 
comment on dendritic morphology and orientation or axonal branching. 

Chemoarchitecture 

The different immunocytochemical protocols used for processing brain sections from SR and SD 
monkeys yielded differences in the intensities and details but not in general patterns or trends of changes 
in immunostaining between SD and SR monkeys. In these preparations, immunoreactivity was localized 
to perikarya and processes (dendrites, fibers, and putative terminals) of neurons. The results obtained 
using protocols A and B were similar with respect to patterns, but protocol A was superior to protocol B, 
because more authentic, immunoreactive neuronal perikarya were visualized using the former method, 
and because the numbers of peptide-containing cell bodies in the striatum and amygdala appear 
comparable to those in colchicine-treated monkeys. Protocol C was relatively insensitive compared to 
protocols A and B. The poorer results of protocol C likely result from inadequate exposure of antigens due 
to less use of permeabilizing agents. Our descriptions are based primarily on sections processed using 
the most sensitive method (i.e., protocol A). 

Basal ganglia 

Socially reared monkeys. The topography of the striatum in normal adult rhesus monkeys has been 
defined based on differential patterns of immunoreactivity for TH, SP, enkephalin, somatostatin, and 
calbindin (Haber and Elde, 1982; Graybiel and Ragsdale, 1983; Martin et al., 1990; Hadfield et al., 1989; 
Cork et al., 1990). Patterns of immunoreactivity in the striatum of individual SR monkeys varied little 
among animals. As in previous studies (Haber and Elde, 1982; Graybiel and Ragsdale, 1983; Martin et 
al., 1990; Hadfield et al., 1989; Cork et al., 1990), the striatal mosaic was divisible into two distinct 
compartments–the patches (striosomes) and the matrix (see Figs. 1, 2, 4, 5). In the caudate nucleus and 
putamen, the patches were enriched in immunoreactivity for SP and LENK, but immunoreactivity for TH 
was low. SP and LENK patches consisted of islands of immunoreactive neurons and processes (fibers 
and terminals). In contrast, the striatal matrix was more enriched in TH- and somatostatin-immunoreactive 
processes (fibers and terminals) and calbindin-immunoreactive neuronal perikarya than in the patches 
(Figs. 1-3); it contained SP and LENK immunoreactivity as well. Matrical regions of enriched TH 
immunoreactivity were associated with a feltwork of several fiber types and terminals and overlapped with 
regions highly immunoreactive for calbindin. Focal islands, less dense in TH and calbindin 
immunoreactivity than the matrical neuropil, occurred throughout the striatum. In the caudate nucleus, 
these islands low in TH immunoreactivity corresponded to the patches that were enriched in SP and 
LENK. 

A different pattern was seen in the nucleus accumbens: regions showing little TH were in spatial register 
with focal regions low in SP and LENK. Regions with high levels of SP- and LENK-immunoreactive cell 
bodies, fibers, and terminals overlapped a matrix rich in TH. Somatostatin-immunoreactive fibers and 
terminals were more enriched in the nucleus accumbens than in the dorsal striatum. In addition, fewer 
neurons and less neuropil were immunoreactive for calbindin in the medial nucleus accumbens than in 
the matrix of the caudate nucleus. 

The globus pallidus of SR monkeys showed its characteristic patterns of immunoreactivity. For example, 
peridendritic LENK immunoreactivity (woolly fibers) was enriched in the external pallidal segment but less 
dense in the internal pallidal segment. Peridendritic immunoreactivity for SP was sparse throughout 
external globus pallidus, except for the perimeter, and enriched in the internal globus pallidus. 



Figure 1. Differences in striatal compartmentalization of SP, LENK. and TH in SR and SD monkeys. The 
striatum in SR monkeys was intensely immunoreactive for SP (A), LENK (C), and TH (E). Patterns of 
immunoreactivity for SP and LENK were similar. In the caudate-nucleus, SP (A) and LENK (C) 
immunoreactivity was patchy (arrowheads) and associated with clusters of neuronal cell bodies and fine 
fibers and puncta (inset in A). The matrix (asterisks) had more loosely distributed SP and LENK neurons and 
less puncta than the patches. Immunoreactivity for TH in SR monkeys was very dense in the matrix of the 
putamen (E). Throughout the striatum, the patches were less dense in TH-immunoreactive fibers and 
terminals than in the matrix (asterisk). In the SD monkeys immunoreactivity for SP (B), LENK (D), and TH (F) 
was diminished, and the mosaic ordering was less prominent than in controls. Photographs in B and D are 
from adjacent sections. In the caudate nucleus, well-defined patches of neurons and processes 
immunoreactive for SP (B) and LENK (D) were visualized infrequently, and the remaining patches (arrows) 
showed lighter immunoreactivity (inset in B). In the matrix, neuronal cell bodies and processes 
immunoreactive for SP and LENK were also affected. In the putamen of SD monkeys (F), TH-immunoreactive 
fibers and terminals were depleted markedly in the matrix (arrows) but less severely affected in the patches 
(asterisks). Magnification, 25 ×. 

 



Figure 2. Calbindin immunoreactivity in the putamen of SR control monkeys (A) and SD monkeys (B). In 
control monkeys (A), the matrix (asterisk) contained many intensely immunoreactive neurons. Patches 
(arrows) had less immunoreactivity for calbindin than the matrix. In SD monkeys (B), calbindin 
immunoreactivity was greatly reduced in the putaminal matrix (asterisk). Magnification, 400 ×. 

 

 

Socially deprived monkeys. The striatal chemoarchitecture in the behaviorally impaired SD monkeys 
differed greatly from the patterns in SR monkeys. Sections from the four totally SD monkeys showed 
consistent changes in the patterns of immunoreactivity within the striatum (Figs. 1, 2, 4-6). Similar trends 
were observed in male and female SD monkeys. 

The caudate nucleus, putamen, and nucleus accumbens of the SD monkeys were all affected, but all 
regions were not equally affected. Of the striatal regions, the nucleus accumbens was least affected, and 
the caudate nucleus and putamen were most affected. In SD monkeys, neuropeptide immunoreactivity 
was severely changed in the head, body, and tail of the caudate nucleus and in the putamen. The 
normally well-defined patches containing SP- and LENK-immunoreactive neurons and terminals were 
greatly diminished in the caudate and putamen (Figs. 1, 4-6) and there were also decreases in SP- and 
LENK-immunoreactive neurons and terminals in the matrix. The average density of SP-immunoreactive 
neuronal cell bodies within the striatum was reduced 58% in SD monkeys (Table 3). Terminal 



immunoreactivity for SP and LENK was reduced only slightly in the nucleus accumbens of SD monkeys. 
In an attempt to enhance immunoreactivity for SP and LENK, additional sections were placed in the 
chromogen for longer periods, but this did not enhance specific staining in the SD subjects and instead 
resulted in an increase in nonspecific background staining when compared to control sera. 

The density of TH-immunoreactive fibers and axonal terminals within the matrix of the caudate nucleus 
and putamen in SD monkeys was reduced compared to controls, and in serially adjacent sections there 
was a corresponding reduction in calbindin immunoreactivity (Figs. 1, 2, 6). TH immunoreactivity in the 
nucleus accumbens was also diminished in SD monkeys but to a lesser degree. 

Figure 3. Patterns of somatostatin immunoreactivity in the striatum of SR (A) and SD (B) monkeys did not 
appear to differ. Both groups of monkeys had the normal distributions of somatostatin-immunoreactive 
neuronal cell bodies (arrowheads) and processes. Magnification, 400 ×. 

 

 

In contrast to the changes in SP, LENK, TH, and calbindin immunoreactivity, patterns of somatostatin 
immunoreactivity were unchanged in the striatum. Somatostatin-immunoreactive processes were 
enriched in the striatum, and neuronal cell bodies immunoreactive for somatostatin showed their 
characteristic distribution (Figs. 3, 4). The average density of somatostatin-immunoreactive neurons 



within the striatum of SD and SR monkeys did not differ significantly, although there was a trend for SD 
monkeys to have more neurons and a greater variance in average neuronal density (Table 3). 

Three additional observations support our data on changes in the striatal chemoarchitecture of SD 
monkeys. First, corresponding losses in terminal reactivity for SP and LENK were observed in the globus 
pallidus and substantia nigra (Figs. 5, 6); targets of projections from medium-sized spiny striatal neurons, 
but the ventral pallidum did not appear significantly affected. Second, SP immunoreactivity was reduced 
in thalamic nuclei related to the basal ganglia (Fig. 5). Third, the average number of TH-immunoreactive 
neuronal cell bodies in the substantia nigra pars compacta and VTA, the source of dopaminergic input to 
the striatum, was reduced significantly (43%) in three SD monkeys (mean = 624 neurons/section; 
standard deviation = 231 neurons) relative to three SR monkeys (mean = 1087 neurons/section; standard 
deviation = 167 neurons). VTA and compacta neurons both seemed to be affected; however, further 
quantitative analyses are needed to establish if the substantia nigra compacta is more affected than the 
VTA. In contrast, neuronal counts in the substantia nigra pars compacta/VTA, based on cresyl violet-
stained sections, did not differ significantly between the two groups, suggesting that nigral neurons in SD 
monkeys have a reduced capacity to produce TH. 

Amygdala and basal forebrain 

Of the subcortical structures surveyed in this study, the decreases in immunoreactivity for TH, SP, LENK, 
and calbindin in the striatum and associated regions of the basal ganglia in SD monkeys appeared 
regionally specific. In the same sections, the patterns of immunoreactivity for these markers appeared 
unchanged in adjacent subcortical forebrain regions (Figs. 7, 8). Patterns of immunostaining for TH, SP, 
LENK, and calbindin appeared normal in the nuclear divisions of the amygdala, defined broadly as the 
lateral, basolateral, basomedial, cortical, medial, and central nuclei. In SD and SR monkeys, TH 
immunoreactivity (fibers and terminals) was discretely distributed in moderate to high densities in the 
lateral, basolateral, and central nuclei, and less labeling was localized in the cortical and medial nuclei. 
The central nucleus was enriched in LENK and somatostatin immunoreactivity in SD and SR monkeys 
(Fig. 7). The capsular and medial part of the central nucleus displayed somatostatin and LENK 
immunoreactivity in the form of fine, varicose fibers, puncta, and peridendritic and perisomatic profiles. 
Neuronal perikarya immunoreactive for LENK and somatostatin were localized in the central part of the 
central lateral division. In the medial nucleus of the amygdala, processes and neurons immunoreactive for 
SP or calbindin were abundant irrespective of rearing condition. 

Recent studies of the cyto- and chemoarchitecture of the basal forebrain of primates indicate that the bed 
nucleus of the stria terminalis (BST) is continuous through the substantia innominata with parts of the 
central and medial nuclei of the amygdala (Martin et al., 1988; de Olmos, 1990). In the BST-amygdala 
continuum of SD monkeys, patterns of immunoreactivity appeared unchanged (Fig. 8). Somatostatin- and 
LENK-immunoreactive neurons were present in their normal distributions within the central part of the 
lateral division of the BST. This division was also innervated densely by TH-immunoreactive terminals. 
Parts of the lateral BST, particularly the capsular posterior, and ventral parts, were enriched in 
peridendritic and perisomatic immunoreactivity for somatostatin and LENK. The medial division of the 
BST was enriched in SP immunoreactivity. Within the sublenticular substantia innominata, a dense, well-
delineated plexus of somatostatin- and LENK-immunoreactive woolly fibers extended from the ventral 
BST to the dorsal part, of the central amygdalar nucleus in all monkeys regardless of rearing history (Fig. 
8). 

The basal forebrain magnocellular complex also appeared unaffected in SD monkeys. Acrolein fixation is 
incompatible with available cholinergic markers (e.g., ChAT immunocytochemistry or AChE 
histochemistry) for the magnocellular complex. Thus, we relied on Nissl- and calbindin-stained sections, 



because calbindin and ChAT colocalize in neurons of the cholinergic basal forebrain complex in primates 
(Celio and Norman, 1985; Schatz et al., 1990). In SD monkeys, we did not see qualitative differences in 
the distribution, density, or size of neurons in the basal forebrain magnocellular complex. 

Figure 4. Representative maps showing the distributions of neuronal cell bodies immunoreactive for SP (A 
and B) and somatostatin (C and D) in middle- or caudal-level sections through the striatum of SR and SD 
monkeys. Each dot represents one neuron. SP-immunoreactive neurons within patch and matrix 
compartments were depleted markedly in SD monkeys (B) relative to SR controls (A). Note the loss of 
clusters (patches) of SP-immunoreactive neurons in the SD monkey. Approximately 1,000 to 3,000 neurons 
per section were counted, depending on the level of section. The distribution and density of somatostatin-
immunoreactive neurons were not changed within the striatum of SD monkeys (D) compared to SR monkeys 
(C). 

 



Figure 5. SP immunoreactivity in the basal ganglia of control, SR monkeys (A) and SD monkeys 
(B). Several regions in A were enriched in SP immunoreactivity, including the body and tail of the 
caudate nucleus (CN), putamen (P), and substantia nigra (SN). Note the SP-enriched patches (A, 
arrowheads) and the moderately stained matrix (asterisk) in the caudate nucleus and putamen of 
the SR monkey. The SN is also enriched in SP immunoreactivity in the control monkeys as well as 
the region in the vicinity of the basal ventral medial nucleus of the thalamus (arrows). In the SD 
monkeys, there was a loss of SP patches, the matrix was more lightly stained, and terminal 
immunoreactivity in the SN and thalamus (T) was reduced. LGN, lateral geniculate nucleus. 
Magnification, 5.5 ×. 

 

 

Discussion 

This study demonstrates that nonhuman primates that experienced abnormal environmental conditions, 
that is, social/sensory deprivation, during the first year of life have pronounced alterations in the patterned 
arrangements and organization of neurotransmitters in the basal ganglia. The caudate nucleus, putamen, 
and substantia nigra appear to be more vulnerable to social/sensory deprivation than the nucleus 
accumbens, amygdala, BST, substantia innominata, and basal forebrain magnocellular complex. 
Moreover, our observations suggest that the organization of chemically distinct compartments within the 
striatum of primates is not immutable and that the normal postnatal maturation of the striatum may be in 
part environmentally determined. Social and sensory deprivation in infancy may produce permanent 
structural and neurochemical changes in some subcortical basal ganglia regions mechanistically similar 
to induced changes in the development of visual and somatosensory systems. 

In SD monkeys, the striatal matrix was severely affected as demonstrated by the loss of calbindin and TH 
immunoreactivity. This observation was complemented by a decrease in TH-immunoreactive neurons in 
midbrain dopaminergic groups that project to striatum. Both patch and matrix compartments normally 
enriched in SP or LENK were also depleted in SD monkeys. The finding that medium spiny projection 



neurons of the striatum are affected is further supported by the loss of SP and LENK immunoreactivity in 
their targets (e.g., globus pallidus and substantia nigra pars reticulata). Together, these observations 
might reflect a general decrease in striatal function. However, patterns of somatostatin immunoreactivity 
in SD and SR monkeys did not differ significantly, indicating a selective decrease for some striatal 
neurotransmitters. Thus, it is difficult to conclude that an overall decrease in striatal function accounts for 
these observations in SD monkeys, nor is it possible to conclude that there was a generalized decrease 
in immunoreactivity for LENK, SP, calbindin, or TH, since other brain regions (e.g., bed nucleus of the 
stria terminalis, amygdala, nucleus basalis of Meynert) in the same section and adjacent to the striatum 
did not show changes in these neurotransmitter markers.  

Table 3. Numerical density (neurons/mm2) of SP- and somatostatin-immunoreactive neuronal cell bodies in 
the striatum of socially reared and socially deprived monkeys 

 SP Somatostatin 
SR 50.8 ± 12.9 7.7 ± 1.0 
SD 21.2 ± 4.3* 9.8 ± 2.7 

See Materials and Methods for details on cell counting. Values are mean ± standard deviation. Sections at 
representative rostral, middle, and caudal levels of the striatum were mapped. For SP, three SR and two SD 
monkeys were used. For somatostatin, three SR and four SD monkeys were used. 

* Significantly different (p  < 0.05) from control. 
 

Methodological considerations 

Although fixation and processing protocols are important variables in immunocytochemical studies, the 
changes we observed are unlikely to be the result of technical variables. The advantages of acrolein 
fixation for subsequent visualization of neuropeptide immunoreactivity in cell bodies and processes have 
been described previously (King et al., 1983), and we have previously employed this fixative, with 
excellent results, for delineation of striatal patch and matrix compartments (Martin et al., 1990; Hadfield et 
al., 1989; Cork et al., 1990) as well as for other forebrain regions (Martin et al., 1988). Moreover, brain 
tissues from SD and SR monkeys were prepared identically, and sections were processed simultaneously 
using the same reagents. It is also unlikely that the changes in the striatal neurochemical architecture of 
SD monkeys are the result of aging. We have studied the brains of aged monkeys using 
immunocytochemical techniques similar to those used here, but we have not observed alterations in the 
striatum comparable to those changes seen in the SD monkeys (Kitt et al., 1984, 1985; Struble et al., 
1984). 

Possible mechanisms accounting for chemoarchitectonic changes in SD monkeys 

We do not know why the basal ganglia appear to be more vulnerable to the effects of early social 
deprivation than other brain regions that we have studied. Several mechanisms could explain these 
observations, including alterations in individual activity or changes in behavioral state (e.g., stress), 
abnormalities in afferent regulation of target regions, or perturbations in postnatal development. 

It is possible that the changes in the basal ganglia may reflect a behavioral state- or activity-dependent 
phenomenon; that is, the ongoing behavioral state of these animals at the time of death could be a 
mechanism producing changes in striatal chemoarchitecture. The concentration of SP immunoreactivity in 
monkey visual cortex (Hendry et al., 1988) and the level of preproenkephalin mRNA in the nucleus of the 
spinal tract of the trigeminal nerve (Nishimori et al., 1990) show an activity-dependent regulation. This 
seems an unlikely explanation, because the general physical activity of SD monkeys initially is equal to or  



Figure 6. This diagram depicts some of the features of the organization of the primate striatum and its inputs 
and outputs in SR and SD monkeys.  A, SR monkeys: SP-immunoreactive neurons (asterisks), fibers (short, 
beaded lines), and terminals (solid circles) were enriched in some areas to form discrete patches (arrows) 
but also were distributed diffusely throughout the matrix of the caudate nucleus (CN) and putamen (P). The 
putamen contained fewer patches than the caudate. Patches also contained LENK immunoreactivity in a 
distribution that was similar to SP. The nucleus accumbens (NA) had a matrix enriched in SP and LENK 
immunoreactivity. TH-immunoreactive terminals (small dots) formed a diffuse matrix throughout the caudate, 
putamen, and nucleus accumbens, but there was less immunoreactivity in the patches. Calbindin-
immunoreactive neurons (not shown) were similar in distribution to that of TH terminals. Somatostatin 
immunoreactivity (not shown) was present in both patch and matrix compartments, but processes were 
relatively enriched in the matrix. B, SD monkeys: patch and matrix regions as delineated by SP neurons, 
fibers, and terminals were decreased compared to controls; TH terminals were decreased in the matrix. 
LENK was also decreased in the patches and matrix. Calbindin was decreased in matrix, and somatostatin 
was unchanged. C, SR monkeys: patterns of immunoreactivity in the caudate and putamen were similar to 
those seen in Figure 6A. SP- and LENK-immunoreactive terminals, forming peridendritic arrays (smooth, 
branching lines), were associated with striatopallidal and striatonigral projections in globus pallidus (GP) 
and substantia nigra par reticulata (SNr). Large, TH-immunoreactive neurons (triangles) were in the 
substantia pars compacta (SNc). TH-immunoreactive terminals (small dots) were present in the matrix of the 
caudate nucleus and putamen. D, SD monkeys: fewer TH-immunoreactive neurons and terminals were in the 
SNc and striatum, respectively. As in Figure 6B, there were fewer SP- and LENK-positive patches in the 
caudate and putamen. SP and LENK terminal immunoreactivity was also decreased in GP and SNr. 
 

 



greater than that of SR controls (Griffin and Harlow, 1966; Miller et al., 1971; Fittinghoff et al., 1974); thus, 
the quality and nature of the motoric activity, rather than the frequency of the activity, may be an 
important variable. Furthermore, these changes may result from early, chronic stress. At 2 yr of age, 
these SD monkeys had consistently higher basal levels of plasma cortisol than SR subjects, but they did 
not have a higher rise in plasma cortisol than controls following adrenocorticotropic hormone injection or 
playroom stress (Sackett, 1972a). Stress can produce neuropathological changes in hippocampus (Uno 
et al., 1989) but effects of stress on the basal ganglia in early postnatal periods are not clear. 

Figure 7. Patterns of LENK immunoreactivity in the central amygdalar nucleus in SD (A) and SR (B) monkeys. 
In SD and SR monkeys, the central nucleus of the amygdala was enriched in LENK-immunoreactive neuronal 
perikarya, woolly fibers, and putative terminals. The central nucleus of the amygdala also showed similar 
patterns of immunoreactivity for somatostatin in SD and SR monkeys. Magnification, 50 ×. 

 

Another explanation is that striatal afferents have important roles in the steady-state regulation of peptide 
expression in medium spiny neurons in adult animals. Medium spiny neurons containing SP or 
enkephalin receive synaptic input from dopaminergic nigrostriatal and excitatory corticostriatal afferents 
(Kubota et al., 1986a, b; Gerfen, 1988). Treatment of rats with dopamine antagonists, and manipulation of 
dopaminergic projections to the striatum, can influence levels of striatal peptides and mRNA transcripts 



encoding for peptides. Specifically, haloperidol treatment decreases SP immunoreactivity, SP mRNA, and 
preprotachykinin mRNA but increases enkephalin immunoreactivity in the striatum (Hong et al., 1979; 
Bannon et al., 1986). Similarly, destruction of the nigrostriatal dopaminergic system decreases cellular 
levels of mRNA encoding for SP but increases cellular levels of mRNA encoding for enkephalin (Young et 
al., 1986). In addition, µ-opiate receptors, localized in the patches on elements postsynaptic to 
dopaminergic terminals (Unterwald et al., 1989) disappear in the striatum following lesions of the 
nigrostriatal dopaminergic pathway (Sirinathsinghji and Dunnett, 1989). 

Figure 8. In SD (A) and SR (B) monkeys, patterns of immunoreactivity for somatostatin in the bed nucleus of 
the stria terminalis (BST) did not differ. Regardless of rearing history, the bed nucleus was enriched in 
perikaryal, punctate, and peridendritic immunoreactivity for somatostatin. The ventral continuation of the 
BST (arrowheads) into the substantia innominata was also unaffected in SD and SR monkeys. A similar 
pattern was seen with antisera to LENK. P, putamen. GPe, globus palliclus pars externa; ic, internal capsule; 
ac, anterior commissure. Magnification, 6.5 ×. 

 



Our observations showing changes in neuropeptides in the striatum of SD monkeys are only partially 
consistent with a dopaminergic denervation of the striatum. The loss of SP immunoreactivity, the 
reduction in the number of TH-immunoreactive neurons in the substantia nigra, and the dopamine 
receptor supersensitivity (Lewis et al., 1990) in SD monkeys would support this concept. However, nigral 
lesions in rats increase preproenkephalin mRNA and enkephalin immunoreactivity within the striatum 
(Young et al., 1986; Voorn et al., 1987). In contrast, ablation of corticostriatal afferents reduces both 
preprotachykinin and preproenkephalin mRNAs in neurons of the striatum (Uhl et al., 1988; Somers and 
Beckstead, 1990). Striatal changes produced by cortical lesions may be mediated by reduced excitatory 
amino acid neurotransmission, thereby influencing steady-state levels of neuropeptides in striatal neurons 
(Somersa and Beckstead, 1990). It is possible that changes within midbrain dopaminergic groups and 
within cerebral cortex and its glutamatergic projections are related to the alterations observed in the 
striatum of SD monkeys. 

Alternatively, the postnatal development of basal ganglia chemoarchitecture may be vulnerable in SD 
infant monkeys. Striatal neurotransmitters and their receptors undergo remodeling during early postnatal 
periods to establish their final adult patterns. Ontogenetic changes in patch/matrix compartments are 
observed with monoamines, SP, enkephalin, and receptors for these transmitters as well as other 
neuropeptides and ACh (Liozou, 1972; Olson et al., 1972; Tennyson et al., 1972; Graybiel et al., 1981; 
Quirion and Dam, 1986; Lowenstein et al., 1989; Nastuk and Graybiel, 1989; Tribollet et al., 1989). In 
addition, pre- and postnatal changes in glycoconjugated molecules, neuropeptides, glutamate, and 
dopamine suggest that these substances may act as morphogenic growth regulators in the developing 
brain or as trophic factors for regional postnatal remodeling (Quirion and Dam, 1986; Lankford et al., 
1988; Steindler et al., 1988; Tribollet et al., 1989; Bettler et al., 1990; Boylan et al., 1990). For example, 
early postnatal development of the mouse neostriatal mosaic involves cordoning off territories with 
galactosyl-containing glycoconguates synthesized by glial cells (Steindler et al., 1988). In cats, SP in 
medium spiny striatal neurons may function as a trophic factor before synaptogenesis in the neostriatum 
(Boylan et al., 1990). In rats, endogenous opiates can influence neuronal ontogeny by changing the time 
course and magnitude of dendritic arborization and spine elaboration (Hauser et al., 1987). The role of 
glutamate in synaptic plasticity is well recognized, and glutamate receptor gene transcripts are expressed 
in forebrain regions later in development and in regions where neuronal differentiation and synaptic 
formation may occur (Bettler et al., 1990). Interestingly, glutamate receptors are involved in experience-
dependent, postnatal development of visual cortex (Kleinschmidt et al., 1987). Finally, dopamine or 
dopamine neurotransmission may play a role in neuronal morphogenesis during ontogeny. Depletion of 
dopamine retards synaptogenesis in the putamen of fetal rabbits (Tennyson et al., 1982) and presynaptic 
dopamine may be important for development of medium spiny neurons in the neostriatum (Tennyson et 
al., 1983). The normal development of enkephalinergic and SPergic systems in the basal ganglia is 
dependent on the availability of dopamine and/or the integrity of nigrostriatal dopamine neurons (Sivam 
and Krause, 1990) a view consistent with our observations in SD monkeys. 

The pharmacological and physiological properties of nigrostriatal dopamine neurons indicate that they are 
in a dynamic state of flux during early postnatal development (Pitts et al., 1990). Postsynaptic 
synaptogenesis of terminals of nigrostriatal dopaminergic neurons is thought to continue postnatally in the 
striatum (Loizou, 1972; Olson et al., 1972). Moreover, in neonatal rats, dopamine D1-receptors are more 
dense in the striaturn than in adjacent regions and are located preferentially in striatal patches (Lankford 
et al., 1988). In vitro, dopamine can reduce motility of growth cones of retinal neurons via D1-receptor 
activation (Lankford et al., 1988) and stimulate retraction of photoreceptors via D2-receptor activation 
(Dearry and Bumside, 1986). A signal that retards motility of growth cones could facilitate adhesive 
contacts between filopodia and synaptic formation by stabilizing the cell-cell contacts of nascent junctions 
(Lankford et al., 1988). Because the regulation of striatal development by interactions of transmitter-



specific neuronal systerns is clearly complex, and because it may require a fine balante between a variety 
of factors or signals, postnatal pattern formation within the striatum may be particularly vulnerable to 
environmental factors. Early, postnatal social and somatosensory deprivation may interfere, directly or 
indirectly, with expression of specific molecules critical for formation and stabilization of neurochemically 
distinct compartments of the striatum in infant primates. 

The amygdala in SD monkeys 

It is intriguing that the chemoarchitecture of the amygdala is apparently unchanged in SD monkeys, 
because the amygdala in rhesus monkeys also matures postnatally as evidenced by the distribution of 
opiate receptors in newborn monkeys (Bachevalier et al., 1986). The behaviors of SD monkeys share 
many similarities with behaviors of monkeys with limbic lesions (MacLean, 1990) or monkeys that as 
infants received limbic lesions, that is, bilateral amygdalectomy and hippocampectomy (Bachevalier, 
1990). Monkeys with limbic lesions are passive, withdraw from social contact, fail to play, and have 
locomotor stereotypies. However, bilateral amygdalectomy of newborn primates does not influence 
subsequent development of behaviors characteristic of SD monkeys (Kling and Green, 1967). These 
authors concluded that these behaviors are mediated by subcortical regions other than the amygdala 
(Kling and Green, 1967). Our chemoarchitectonic observations on SD monkeys are consistent with this 
supposition, and they suggest that abnormalities of the basal ganglia, but not the amygdala, may 
contribute to the behaviors of SD monkeys, perhaps because connections and neurotransmitters of the 
striatum mature more slowly than those of the amygdala. For example, corticostriate projections from 
prefrontal cortex in rhesus monkeys undergo postnatal maturational changes up to 24 months of age 
(Johnson et al., 1976). Thus, social deprivation for the first 9 months of life may interfere with the 
postnatal developmental timing of the striatum but not the amygdala. 

Complex neural circuits in SD monkeys 

Reductions in informative sensory input at critical stages of development produce many behavioral 
abnormalities (e.g., social inadequacies and self-directed or stereotyped behavior; see Table 1). 
Therefore, it is unlikely that changes in a single brain region are responsible for these alterations. Our 
data strongly suggest that social deprivation alters the normal development of patch and matrix 
compartments within the striatum. Multiple topographic, parallel, and functionally segregated connections 
link cerebral cortex and striatum (Goldman and Nauta, 1977; Alexander et al., 1986; Gerfen, 1990). 
Electroencephalographic studies of other SD monkeys have shown that the most severely behaviorally 
impaired SD monkeys have physiologic aberrations in the caudate nucleus and sensory relay nuclei for 
proprioceptive and vestibular function in the cerebellum and somatosensory thalamus (Heath, 1972). A 
lack of tactile contact with other monkeys has been shown to be responsible for some of these behaviors 
of SD monkeys (Missakian, 1969; Suomi, 1982). Perhaps in early postnatal life, maintenance of critical 
levels of tactile input of a specific quality and emotional content is important for normal brain maturation. 
Early somatosensory and social deprivation might produce transneuronal effects on the postnatal 
development of particular neuronal ensembles not only within the striatum per se but within corticostriatal, 
basal ganglia-thalamocortical or cerebella-thalamocortical circuits, thereby resulting in altered striatal 
neurochemistry, impaired sensory information processing, and aberrant behavior. This interpretation is 
supported by several findings in our study of SD monkeys: (1) loss of TH, calbindin, SP, and LENK 
immunoreactivity in the striatum; and (2) reduced terminal immunoreactivity for SP and LENK in recipient 
regions of striatal output neurons (e.g., substantia nigra and globus pallidus) and in recipient regions 
(e.g., thalamus) of nigral and pallidal projections. We also have preliminary evidence, consistent with 
preliminary data from other investigators using different experimental conditions (Morrison et al., 1990) 
suggesting that the density of monoaminergic innervation (fibers and varicosities) is reduced in several 
cortical areas in SD monkeys. Until these studies of cortical changes are complete, we cannot assign a 



role for them in the social deprivation syndrome. If this hypothesis is correct, there are abundant data 
linking these regions to aberrant behavior. The striatum is thought to have a critical role in psychomotor 
behavior, and restricted lesions of the striaturn or connectionally related cortical regions produce similar 
behavioral deficits (Divac and Oberg, 1979). Hence, our results from behaviorally impaired SD monkeys 
are in concert with other data linking behavioral deficits and impaired integrative functions of 
interconnected subcortical and cortical systems. However, it is clear that analyses of other brain regions 
(e.g., neo- and allocortex, thalamus, and cerebellum) in SD monkeys and of the postnatal development of 
striatal chemoarchitecture and connectivity in SR and SD monkeys would help to clarify the specificity of 
chemoarchitectonic changes resulting from social deprivation. 

Behavior of SD monkeys and possible relationships with chemoarchitectonic changes 

These SD monkeys displayed marked stereotyped and self-injurious behaviors (Lewis et al., 1990) as 
well as deficits in blocking (Beauchamp et al., 1991). The latter finding (Beauchamp et al., 1991) suggests 
that SD monkeys develop and maintain an association to an irrelevant stimulus and thus process 
information inefficiently. Dopaminergic mechanisms have been implicated in stereotypies and self-
mutilation (Lewis et al., 1990) and in the capacity to ignore irrelevant or redundant information (Crider et 
al., 1982). Moreover, SD monkeys show evidence for dopamine receptor supersensitivity (Lewis et al., 
1990), and therefore may have long-term alterations in central dopaminergic function (Lewis et al., 1990). 
Our present immunocytochemical findings support and extend this hypothesis by showing that 
dopaminergic-neuropeptidergic systems within the striaturn are compromised in SD monkeys 

Conclusions 

Few studies have examined neurobiologic effects of social deprivation in primates. Previous studies have 
shown either no change in monoamine metabolite concentrations in cerebrospinal fluid (Lewis et al., 
1990) or significantly increased cerebrospinal fluid concentrations of norepinephrine in SD monkeys 
following amphetamine administration (Kraemer et al., 1984). The neural mechanisms mediating this 
change are not clear. This study is the first to document at a cellular level an association between 
environmental or psychological stress during early development of nonhuman primates and subsequent 
long-term, regional alterations in neurotransmitter specific systems within the brain. Moreover, this report 
suggests an important link between abnormalities of the striatal mosaic and aberrant behavior. It also 
shows that subcortical regions can be highly abnormal chemically but appear unremarkable in common 
histological preparations. Finally, this study introduces, but leaves unresolved, several questions. Can 
early social experience shape the postnatal development of striatal structure/function and subsequent 
behavior in primates? Are there interdependent critical periods in the postnatal ontogeny of specific 
forebrain regions and in the development of normal socialization? 

Our results suggest that early experience can produce multiple, but selective, neurotransmitter changes 
in specific brain regions and thereby contribute to subsequent behavioral patterns. Systems within the 
brain that undergo the most postnatal maturation are likely to be the most vulnerable. Conceptually, 
genetic factors (e.g., neuronal birthdate, migration, and efferent connectivity) would play an important role 
in prenatal, experience-independent pattern formation within the striatum. In contrast, environmental 
factors in early life would have a critical role in postnatal, experience-dependent pattern formation within 
the striatum. Although distinct periods of cell proliferation and migration and establishment of efferent 
connectivity contribute to striatal patch and matrix formation (Fishell and van der Kooy, 1987; van der 
Kooy and Fishell, 1987), the chemical phenotypes and afferents of striatal neurons appear to be partly 
dependent upon the social environment experienced by primates during infancy. Moreover, if 
chemoarchitectonic changes within the basal ganglia correlate with subsequent aberrant behavior, these 
chemoarchitectonic changes should be gender, time, and species dependent. 



Most of the behavioral effects of asocial rearing (Table 1) are more pronounced in males than females 
(Sackett, 1972b). Furthermore, attempts to induce changes in the postrearing stereotypic and self-
directed behaviors of juvenile and adult rhesus monkeys have failed in general (Capitanio, 1986). 
However, rhesus monkeys that have been reared asocially for 6-12 months and housed subsequently 
with young infants gradually develop normal social behaviors and a marked reduction in self-directed and 
stereotyped behavior (Suomi and Harlow, 1972; Novak and Harlow, 1975). Therefore, immutable 
biological changes have not been induced during 12 months of asocial rearing, and earlier biological 
effects can be reversed by intensive therapeutic experiences. In contrast, monkeys that do not receive 
“therapy” develop the complete spectrum of abnormal behaviors (Table 1), suggesting that associated 
neural substrates may depend on brain development between infancy and adulthood. Finally, in contrast 
to the persistent effects of asocial rearing on rhesus monkeys, pig-tailed macaque (Macaca nemastrina) 
infants, isolated for the first 9 months of life, recover spontaneously after removal from social deprivation 
(Gluck and Sackett, 1976). The ways in which social deprivation, gender, time, and species interact with 
neural mechanisms to produce behavioral deficits have implications for pharmacological, environmental, 
psychological, and social interventions. Because the environment in which development occurs can 
profoundly influence human behavior (Kolb and Whishaw, 1985), SD monkeys may be an important 
model for clarifying how early postnatal social/sensory distortions and psychological stress during infancy 
can alter specific neurotransmitter circuits, thereby resulting in stereotypies, self-injurious behaviors, and 
abnormal social behaviors. 
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