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Using Self-Organizing Maps to Recognize 
Acoustic Units Associated with Information 
Content in Animal Vocalizations 
John Placer, C. N. Slobodchikoff, Jason Burns, Jeffrey Placer, and Ryan Middleton 
Northern Arizona University 

 

 

ABSTRACT 

Kohonen self-organizing neural networks, also called self-organizing maps (SOMs), have been used 
successfully to recognize human phonemes and in this way to aid in human speech recognition. This 
paper describes how SOMS also can be used to associate specific information content with animal 
vocalizations. A SOM was used to identify acoustic units in Gunnison’s prairie dog alarm calls that were 
vocalized in the presence of three different predator species. Some of these acoustic units and their 
combinations were found exclusively in the alarm calls associated with a particular predator species and 
were used to associate predator species information with individual alarm calls. This methodology 
allowed individual alarm calls to be classified by predator species with an average of 91% accuracy. 
Furthermore, the topological structure of the SOM used in these experiments provided additional insights 
about the acoustic units and their combinations that were used to classify the target alarm calls. An 
important benefit of the methodology developed in this paper is that it could be used to search for groups 
of sounds associated with information content for any animal whose vocalizations are composed of 
multiple simultaneous frequency components. 

 

 

 

1. INTRODUCTION 

Research on animal vocalizations that contain multiple simultaneous frequency components often 
focuses on the general, aggregate structure of those vocalizations. Frequency and time parameters are 
gathered and an entire vocalization is characterized as a collection of frequency-time attributes. In some 
studies these aggregate properties of sounds have been compared for overlap using spectrogram cross 
correlation (Clark et al., 1987). Alternatively information has been extracted and analyzed statistically 
using multivariate methods such as Principal Components Analysis or Discriminant Function Analysis 
(Eakle et al., 1989; Galeotti and Pavan, 1991; Slobodchikoff et al., 1991; Galeotti et al., 1993; Blackshaw 
et al., 1996; Hill and Lill, 1998; Slobodchikoff et al., 1991; Ackers and Slobodchikoff, 1999; Lengagne, 
2001; Sousa-Lima et al., 2002; Baker and Logue, 2003) 

As an example of studies that focus on the general aggregate structure of vocalizations consider Fig. 1, 
which shows how sound spectrograms can be used to visually distinguish between different types of 
alarm calls vocalized by Gunnison’s prairie dogs. The shape of the spectrogram on the left is typical of 



dog-elicited alarm calls and the shape of the spectrogram on the right is typical of coyote-elicited alarm 
calls. In past studies analyses related to the general structure of alarm calls have been performed on data 
by measuring various macroscopic properties of collections of similar sound spectrograms of alarm calls. 
Properties such as ascending slope, descending slope, dominant frequency, and subdominant frequency 
were measured and the data was then subjected to discriminant function analysis (Slobodchikoff et al., 
1991). Note that the sound spectrograms in Fig. 1 were created from the same database that provided 
the data for the experiments discussed in this paper. 

In the types of studies referred to above, the macroscopic structure of vocalizations is examined while the 
detailed internal structure, the acoustic microstructure, of the vocalizations is left unexamined and 
unappreciated. One striking illustration of this is the case of repetitive vocalizations of animal signals; it is 
generally assumed that repeated vocalizations from a given animal convey the same information even 
when the frequency-time parameters of their sound spectrograms vary. However, alarm calls are an 
example of repetitive vocalizations whose internal variations might be highly significant. Alarm calls are 
often given as a series or bout of repetitive elements, as in the case of alarm calls vocalized by 
Gunnison’s prairie dog (Cynomys gunnisoni) in the presence of predators (Slobodchikoff et al., 1991). 
This paper presents a methodology for investigating the possibility that the variations in the acoustic 
properties of animal alarm calls are highly significant because these variations indicate the existence of 
distinct acoustic structures that encode information. 

A link between acoustic microstructures and information encoding in alarm calls has been suggested by 
earlier studies of Gunnison’s prairie dog vocalizations. In two studies) Placer and Slobodchikoff, 2000, 
2001), composites of frequency ratio information taken from small partitions of Gunnison’s prairie dog 
alarm calls were used to classify those calls according to the species of predator that was present when 
the calls were vocalized. These results suggested that information about predator species was encoded 
in the acoustic microstructure of the alarm calls examined. However, the composite frequency ratio 
distributions did not themselves reveal the details of the acoustic structure of individual alarm call 
partitions nor did they provide any clues about how these small-scale acoustics might be organized to 
encode information in the macroscopic structure of an alarm call. 

In a later study (Placer and Slobodchikoff, 2004), Gunnison’s prairie dog alarm calls were decomposed 
into numerous equal-sized partitions and the four most energetic frequency components of each partition 
were extracted. The two lowest frequencies of the four were then used to identify the acoustic unit 
associated with any given partition. When the acoustic units created by this process were examined, it 
was discovered that there were unique acoustic units and combinations of acoustic units that occurred 
exclusively in vocalizations associated with specific predator species. These exclusive sounds were used 
to classify alarm calls according to the species of predator that was present when the calls were 
vocalized. However, the accuracy of the classifications of individual alarm calls were modest and varied 
significantly according to different criteria that were applied in the study. Nonetheless, the results of this 
research also suggested a potential link between acoustic microstructure and information encoding and 
they began to reveal some of the important features of the acoustic microstructure of alarm calls. 

In the work described in this paper new, more accurate techniques are developed that are used to 
recognize small-scale acoustic structures in animal alarm calls that might be used to encode information. 
These techniques are based on the self-organizing map (SOM) algorithm of Kohonen (1998). A SOM or 
Kohonen map is an artificial neural network that classifies input data into a number of clusters that are 
based on the features of the input data itself. In other words, a SOM is not told what the categories of 
interest are; the SOM uses its input data to discover for itself what the relevant categories are. This is a 
particularly important attribute for the study discussed in this paper where the relevant categories are 
acoustic units whose structures or features are not yet well understood. 



 

FIG. 1. Sound spectrograms showing a typical dog-elicited alarm call on the left-hand side and a typical 
coyote-elicited alarm call on the right-hand side. 

 

Self-organizing maps have been shown to be effective in the automatic recognition of human speech. 
Kohonen used a SOM to create a recognition system for human speech that could detect phonemes from 
a continuous speech signal (Kohonen, 1988). This “phonetic typewriter,” as Kohonen called it, was used 
to recognize both Finnish and Japanese phonemes. Since then SOMs have been used for the phoneme-
based recognition of a number of other languages including Chinese (Wu et al., 1992) and Slovene 
(Mihelic et al., 1992). SOMs have also been used as more general feature extractors of human speech 
that can utilize contextual information (Kangas et al., 1992). In sender recognition experiments with six 
mouse lemur males, Zimmermon and Lerch used a high performance Kohonen map trained for 
continuous human speech recognition. The success rate in recognizing these six individual males varied 
from 55.6% to 100% (Zimmerman and Lerch, 1993). 

This paper describes how SOMS can be used to characterize and identify classes of acoustic units that 
are associated with specific information content in animal vocalizations. A SOM was trained to identify 
clusters of acoustic units in Gunnison’s prairie dog alarms where each cluster contained sounds with 
similar acoustic properties. Individual sounds belonging to specific clusters as well as combinations of 
these sounds were found to be associated exclusively with alarm calls vocalized in the presence of a 
specific predator species. These sounds and sound combinations were used with high accuracy to 
classify the targeted alarm calls according to the species of predator that was present when the alarm 
calls were vocalized. Furthermore, the topological structure of the output layer of the SOM was shown to 
reveal interesting characteristics of these sounds and their combinations. The details of these 
experiments are presented in the following sections of this paper. 

2. MATERIALS AND METHODS 

This study utilized digitized versions of Gunnison’s prairie dog alarm calls that were recorded over a 
period of 10 years (1988–1997) at two separate prairie dog colonies. Uher Model No. CR160AV and 



Sony TC-D5PRO II cassette recorders and a Sennheiser ME-88 shotgun microphone were used to 
record the alarm calls. Additional details about this library of alarm calls can be found in Placer and 
Slobodchikoff (2004). A total of 300 alarm calls was selected from this database where 100 alarm calls 
were vocalized in the presence of dogs, 100 in the presence of coyotes, and 100 in the presence of 
hawks. A system of computer programs was created by one of the authors (J.P.) that performed all the 
data analysis presented in this paper. Some of these programs were implemented using MATLAB, a 
high-performance numeric computation software package, and other programs were implemented using 
the computer language Java. 

 

FIG. 2. The experimental protocol used to classify prairie dog alarm calls by the predator species that was 
present when the calls were vocalized. 



The experiments discussed in this paper consisted of five distinct steps. First, each of the 300 alarm calls 
utilized in the experiments was preprocessed using the fast Fourier transform. Second, a self-organizing 
map was trained using the preprocessed data as input. Third, the trained SOM was used to translate the 
preprocessed alarm call data into sequences of symbols where each distinct symbol represented a 
distinct cluster of similar acoustic units. Fourth, the sequences of symbols were examined for single 
symbols and combinations of two or three symbols that were found exclusively in the alarm calls 
associated with a specific predator species. Fifth, these unique symbols were then used to classify the 
alarm calls according to the predator species present when the calls were vocalized. Furthermore, 
relationships among the unique symbols were examined. A graphical representation of these steps is 
given in Fig. 2. Each of these steps is described in detail in the sections provided below. 

Preprocess the alarm call data 

Each of the 300 alarm calls utilized in this study was preprocessed. Every alarm call was divided into 
equal-sized partitions of 256 data points each. The fast Fourier transform (FFT) was then applied to each 
partition’s data points in order to compute a power spectrum of the frequencies contained in that partition. 
The alarm call data had been recorded at 44 100 samples per second and each partition contained 256 
data points so the resolution of the FFT was just over 172 Hertz (44100/256). Since the upper limit of the 
frequencies that needed to be examined was only 9000 Hertz, each power spectrum contained 52 power 
values (the floor of 9000/172). A normalized distribution of the log of each power spectrum was then used 
to represent each partition. When the preprocessing just described was complete, each alarm call had 
been translated into a sequence of 25 vectors, where each vector contained 52 values. 

Build and train a self-organizing map 

A Kohonen map (SOM) was implemented for this experiment using the language Java. A SOM has two 
layers: an input layer and an output layer. Each neuron in the input layer is connected to each neuron in 
the output layer where each connection between an input neuron and an output neuron contains a 
weight. The input layer simply holds the values of the current input vector. The Kohonen map used in the 
experiments discussed in this paper had 52 input neurons, one neuron for each value in the normalized 
distribution of the log of the power spectrum of an alarm call partition. Since each input neuron was 
connected to each output neuron, every output neuron had 52 weights associated with it. 

The output neurons of a SOM can be arranged in a number of different spatial or topological structures. 
The SOM used in these experiments had an output layer that consisted of a simple 8×8 rectangular grid 
of neurons. During training, when an input vector is provided to a SOM, the output neuron whose weight 
vector is closest to the value of the input vector (i.e., the winning neuron) has its weights adjusted so that 
they more closely resemble the values of the input vector. Furthermore, not only are the weights of the 
winning output neuron adjusted, but the neurons in a neighborhood surrounding that output neuron also 
have their weights adjusted to more closely resemble the input vector. The closeness between two 
vectors was determined by a simple Euclidean distance measure. 

The neighborhood radius for the SOM used in this experiment began at 4 neurons and was decreased 
linearly as training progressed. The degree of adjustment of weights in a SOM is determined by a 
learning constant. When the weight vector on the winning output neuron is adjusted to align more closely 
with the current input vector, the learning constant limits the amount of this alignment. With a learning 
constant of 1.0, the weight vector would be moved so that it is exactly aligned with the input vector. A 
learning constant of 0.5 would cause the weight vector to be moved half of the distance to complete 
alignment. In this experiment the learning constant began with the value 0.7 and was decreased linearly 
to the value 0.05 as training progressed. Both the neighborhood radius and the learning constant reached 



their final values of 0 and 0.05, respectively, one-half of the way through the SOM training session. In the 
second half of the session, called the convergence phase, the neighborhood vanishes so that only the 
winning neuron itself is adjusted with each input. Furthermore, the learning constant is quite small so that 
the SOM slowly refines and adjusts the weights on its winning output neurons. 

TABLE 1. The mapping of the Kohonen map’s output neurons to symbol names. Each cell represents an 
output neuron and the text in each cell is the name of the symbol associated with that cell. 

S1 S2 S3 S4 S5 S6 S7 S8 
S9 S10 S11 S12 S13 S14 S15 S16 
S17 S18 S19 S20 S21 S22 S23 S24 
S25 S26 S27 S28 S29 S30 S31 S32 
S33 S34 S35 S36 S37 S38 S39 S40 
S41 S42 S43 S44 S45 S46 S47 S48 
S49 S50 S51 S52 S53 S54 S55 S56 
S57 S58 S59 S60 S61 S62 S63 S64 

 

TABLE 2. Statistics for the alarm calls correctly classified by predator species with the standard deviations 
for the final averages given as parenthesized values. 

Run # Dog %Correct Hawk %Correct Coyote %Correct Average %Correct 
1 82 100 91 91 
2 90 100 88 92.67 
3 75 100 91 88.67 
4 91 100 95 95.33 
5 95 100 91 95.33 
6 81 100 90 90.33 
7 92 100 83 91.67 
8 82 100 88 90.00 
9 92 100 89 93.67 

10 81 100 83 88.00 
Average %Correct 86.1 (6.64) 100 (0) 88.9 (3.70) 91.67 (2.57) 

 

A training session of a SOM consists of repeatedly presenting the vectors in the input data set (the 
preprocessed alarm calls in our case) to the SOM and allowing the SOM to adjust the weights on its 
connections. The SOM used in this experiment was trained for 100 epochs. One epoch is completed 
when all of the vectors in the input data set have been presented to the SOM. One major result of training 
a SOM is that the weights of its output neurons approach values that represent groups or clusters of 
similar vectors in the input data set. In effect, each output neuron becomes an exemplar of a class of 
similar vectors in the input data set. Recall that each vector in the input data set used in this experiment 
represents the acoustic unit found in a partition of one of the 300 target alarm calls. Therefore, the output 
nodes of the SOM used in this experiment represented clusters of similar acoustic units found in the 
partitions of the alarm calls utilized for the experiment. 

Another major result of training a SOM is found in the topology or spatial ordering of its output layer. 
Since neighborhoods of output neurons have their weights adjusted together, similar input patterns will be 
recognized by output neurons that are spatially close to each other in the output layer of the SOM. In the 



experiments discussed here, this means that similar acoustic units will be found in neurons that lie close 
to each other in the 8×8 output grid of the SOM. 

Translate each preprocessed alarm call into a sequence of symbols 

After the SOM was trained in this experiment, it was then used to translate each preprocessed alarm call 
into a sequence of symbols. To understand how this was done consider that the output layer of the SOM 
was an 8×8 matrix of neurons. Each neuron had a unique symbol associated with it according to its 
position in the matrix. The mapping of symbols to output neurons is shown in Table 1. Each cell in the 
matrix in Table 1 represents an output neuron in the SOM used in these experiments. The text contained 
in any given cell is the name of the symbol associated with that cell. After training the SOM, the 
preprocessed partitions composing each alarm call were once again provided as input to the trained 
SOM. Each input vector (i.e., preprocessed partition) provided to the SOM was replaced by the symbol 
associated with the winning neuron produced by that input vector; thus, each partition in each alarm call 
was replaced by a specific symbol. In this way, each preprocessed alarm call was translated into a 
sequence of symbols. For example, the sequence of symbols  

S9S46S40S40S23S35S35S35S42S35S23S35S42S35S35S35S8S40 

was produced when the trained SOM was used to translate one of the preprocessed alarm calls that had 
been vocalized in the presence of a dog. 

Analyze the symbol sequences for unique sounds and combinations of sounds 

After this translation process in which each preprocessed alarm call was expressed as a sequence of 
symbols, the symbols contained in the translated alarm calls were analyzed in order to identify any single 
symbols (monograms), neighboring pairs of symbols (digrams) and sequences of three symbols 
(trigrams) that were found only in the alarm calls associated with a particular species of predator. During 
this part of the analysis only monograms, digrams, and trigrams that occurred at least 20 times in the 
target alarm calls were examined. This precaution was meant to guard against the use of acoustic units 
that rarely occurred and that might be artifacts of the arbitrary way in which alarm calls were partitioned. 
Three sets of symbols were constructed: one for monograms, digrams, and trigrams that occurred only in 
alarm calls associated with coyotes, another set for monograms, digrams, and trigrams that occurred only 
in alarm calls associated with dogs, and a third set for monograms, digrams, and trigrams that occurred 
only in alarm calls associated with hawks. 

Classification of the alarm calls by predator species 

In principle, any alarm call that could be shown to contain a monogram, digram, or trigram that was 
uniquely associated with a given predator species could itself be unambiguously associated with that 
same predator species. Thus, the three sets of unique monograms, digrams, and trigrams described 
above were used to classify the alarm calls by predator species. The percentage of alarm calls that could 
be identified unambiguously in this way for a given predator species was considered the percentage of 
correctly identified alarm calls for that predator species. 

3. RESULTS 

Kohonen maps are initialized with random connection weights before training. One consequence of this is 
that the final connection weights that result from any given training session will vary. This, in turn, means 
that the results of translating alarm calls into symbol sequences and the associated classification 
accuracies will vary among a number of separately trained SOMs. Therefore, in order to determine 



average classification accuracies, 10 experimental runs, each performed with a separately trained 
Kohonen map (SOM), were executed. The data resulting from these 10 experimental runs are given in 
Table 2. 

Each row in Table 2 except the last gives the data associated with a separate experimental run. The last 
row provides the means of all the data generated in the 10 experiments with standard deviation values 
given in parentheses. The first value of each row simply gives an identifying number for that experimental 
run. The second, third, and fourth values give the percentage of alarm calls classified correctly for the 
predator species dog, hawk, and coyote, respectively. The last value provides the average correct 
classification for that run across all species of predators. 

Table 1, which maps symbols to output neurons, is expanded in Table 3 to include information about the 
monograms, digrams, and trigrams that were found to be unique to a particular predator species. The 
name in bold at the top center of each cell (output neuron) is the name of the symbol associated with that 
cell. If that symbol is found at the start of one or more monograms, digrams or trigrams found exclusively 
in alarm calls associated with only one predator species, then all of those monograms, digrams, and 
trigrams are listed below the symbol. Cells that contain such lists also specify the relevant predator 
species in parentheses next to the cell’s symbol name at the top of the cell. Symbols associated with cells 
that contain no lists below their symbol name simply do not occur at the beginning of a monogram, 
digram or trigram that is unique to a particular predator species. 

To better explain Table III some examples are needed. Consider the cell named S24. This cell contains a 
list with only one digram (S24S21), which begins with symbol S24. This digram is found only in the alarm 
calls associated with the species coyote; the species name is shown in parentheses next to the cell’s 
symbol name. Now consider cell S62. The list in this cell contains two digrams, S62S62 and S62S37, 
both of which begin with symbol S62. The digram S62S62 indicates that the sound associated with 
symbol S62 is held across two partitions of an alarm call. Notice again that the predator species coyote is 
specified in parentheses next to the cell’s symbol name. Finally, consider cell S4. The predator species 
specified in this cell is dog and the list provided in the cell simply contains S4. This means that the 
monogram S4 occurs only in alarm calls associated with dogs; therefore, no digrams or trigrams 
associated exclusively with dogs begin with the symbol S4. 

Other types of information can also be gained from Table 3. For example, notice that the cells associated 
with dogs and coyotes each tend to have short lists of unique monograms, digrams, and trigrams. 
However, the cells associated with hawks tend to contain long lists. A closer look at these long lists 
reveals that combinations of a small group of symbols (S35, S51, S53, S58, and S60) are used to create 
most of the digrams and trigrams in all of the lists associated with hawks. These same symbols are used 
in differing orders and combinations throughout the lists. 

4. DISCUSSION 

Kohonen maps were used to associate individual alarm calls with specific predator species with average 
accuracies of greater than 91%; these results demonstrate that Kohonen maps are useful tools for 
exploring and identifying sounds associated with specific information content in animal vocalizations. 
Furthermore, analysis of the digrams and trigrams specific to a particular predator species revealed 
certain types of symbol patterns associated with specific predator species. For example, in Table 3, 
digrams and trigrams associated with hawks were regrouped into new lists where the same two symbols 
were used in each digram or trigram. This regrouping revealed how particular symbols can occur in 
different orders or be expressed for varying lengths of time or both. As an example, consider the list 



below that is composed of digrams and trigrams associated only with hawks, where each digram and 
trigram contains only the symbols S53 and S60: 

S53S60, S53S53S60, S60S53, S60S53S53. 

The symbol sequences in the list above indicate that the symbol S53 can occur either before or after the 
symbol S60. In other words, the relative order of the two sounds is not fixed. Furthermore, recall that S53 
represents a sound (acoustic unit) expressed in a single partition of an alarm call whereas S53S53 
represents the sound S53 expressed across two partitions of an alarm call. Thus, in the list above the 
sound represented by symbol S53 can be expressed for a single partition of time (S53S60, S60S53) or it 
can be held across two partitions of time (S53S53S60, S60S53S53). Similar kinds of relationships can be 
found in digrams and trigrams containing different pairs of symbols. Whether these patterns of symbols 
represent a first glimpse of lexical structures or a first glimpse of syntactic structures in prairie dog alarm 
calls is yet to be determined. However, the patterns are clearly evident and they are seen to occur in 
vocalizations restricted to a specific predator species. 

It should also be mentioned that the variety of symbols (sounds) associated with specific predator species 
in Table 3 is probably less diverse than it might seem at first. Symbols that lie close to each other in the 
Kohonen map output layer and that are unique to the same predator species might well represent slight 
variations of the same basic sound. For example, consider cells S25 and S26, which list digrams unique 
to alarm calls associated with dogs. These cells are located next to each other and the digram in each 
cell only contains the symbol named by that cell. Thus, it is likely that symbols S25 and S26 refer to the 
same basic sound expressed in slightly different ways. In human speech, where the phonemes are 
known, several different output neurons located close together in a given SOM will recognize variations of 
the same phoneme. It seems reasonable to assume that a particular meaningful sound found in a 
nonhuman animal vocalization also would be expressed with some variation. 

One area for future research would be to combine the recent progress made in using formants to identify 
acoustic structures in alarm calls (Slobodchikoff and Placer, 2006) with the knowledge gained from the 
experiments discussed in this paper. Specific formant information could be combined with the general 
spectral information utilized by the Kohonen maps to see if an improvement in the performance of the 
SOMs is achieved. Improvement in SOM performance, reflected by improved classification accuracies, 
would result in more accurate clustering of like sounds and would provide more detailed information about 
the small-scale acoustic structure of the vocalizations. 

Another fruitful area for future research would be to apply the techniques discussed in this paper to 
recordings of animal vocalizations that allow the exploration of new types of information encoding. For 
example, we are now preparing to use Kohonen mapping techniques to study a newly recorded set of 
alarm calls that will allow us to search not only for predator species information but also for descriptive 
information about predators and for information about the individuals that are vocalizing. In future work, 
as the Kohonen methodology is applied to recordings of alarm calls vocalized in a wide variety of 
situations, it might be possible to develop an acoustic dictionary for prairie dog communications. In such a 
dictionary each acoustic pattern in a large collection of such patterns would be associated with specific 
information content. It would then be possible to examine all the patterns found in the dictionary in order 
to attempt to develop a general theory of the lexical structure of prairie dog communications. The 
development of this type of rudimentary lexicon for prairie dog communications would also make it 
possible to attempt a higher level examination of the complete structure of alarm calls to see if a syntactic 
structure could be determined for these calls. Information about a possible syntactic structure of alarm 
calls might even allow the synthetic creation of alarm calls for playback experiments.  



TABLE 3. Lists of monograms, digrams, and trigrams that are unique to a specific predator species. The list 
below the bold heading in each cell gives all of the monograms, digrams, and trigrams that begin with the 
symbol named in the heading and that are unique to the particular predator species also named in the 
heading of the cell. 

        
S1 S2(Dog) 

S2S2 
S3 S4(Dog) 

S4 
S5 S6 S7 S8 

S9 S10(Coyote) 
S10S10 

S11 S12(Coyote) 
S12S12 

S13 S14(Dog) 
S14S14 

S15 S16 

S17 S18 S19(Coyote) 
S19S37 

S20 S21(Coyote) 
S21S21 
S21S10 

S22(Coyote) 
S22S22 

S23 S24(Coyote) 
S24S21 

S25(Dog) 
S25S25 

S26(Dog) 
S26S26 

S27 S28 S29 S30 S31(Coyote) 
S31S31 

S32 

S33 S34 S35(Hawk) 
S35S35 
S35S60 

S35S35S60 
S35S35S58 
S35S35S53 
S35S60S53 
S35S58S11 

S35S53 
S35S53S51 

S36 S37(Coyote) 
S37S37 
S37S62 
S37S19 
S37S12 

S38(Coyote) 
S38S38 

S39 S40 

S41 S42 S43(Dog) 
S43S43 

S44(Dog) 
S44S63 

S45 S46 S47 S48 

S49(Dog) 
S49 

S50 S51(Hawk) 
S51S51 
S51S53 

S51S51S53 
S51S53S53 
S51-53-60H 

S52 S53(Hawk) 
S53 

S53S60 
S53S60S60 
S53S60S58 

S53S51 
S53S51S53 

S54(Dog) 
S54S54 

S55 S56 

S57 S58(Hawk) 
S58S35S35 

S58S11S32H 

S59 S60(Hawk) 
S60S58 

S60S60S58 
S60S58S58 
S60S58S35 

S60S53 
S60S53S53 

S60S35 

S61 S62(Coyote) 
S62S62 
S62S37 

S63(Dog) 
S63S63 

S64(Dog) 
S64S64 

 

Most of the work done by researchers on animal vocalizations has been focused on the macrostructure 
and general acoustic characteristics of those vocalizations. Consequently, not many tools have been 
developed with which to study the acoustic microstructure of animal vocalizations. Yet, the vocalizations 
of a growing number of animals are being shown to contain referential communication which conveys 



information about types of predators, degrees of danger, and other details about the world in which these 
animals live. These discoveries suggest that understanding the small-scale structure of animal 
vocalizations might be vitally important to determining the level of complexity of those communications 
and the actual information they contain. New methodologies and software tools for studying the acoustic 
microstructure of animal vocalizations need to be created so that detailed models and analyses related to 
these communications can be developed. The experiments described in this paper show how Kohonen 
maps might well provide one class of these needed tools. 
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