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ABSTRACT 

Magnetic resonance imaging offers a means of observing the internal structure of the brain where 
traditional procedures of embedding, sectioning, staining, mounting, and microscopic examination of 
thousands of sections are not practical. Furthermore, internal structures can be analyzed in their precise 
quantitative spatial interrelationships, which is difficult to accomplish after the spatial distortions often 
accompanying histological processing. For these reasons, magnetic resonance imaging makes 
specimens that were traditionally difficult to analyze, more accessible. In the present study, images of the 
brain of a white whale (Beluga) Delphinapterus leucas were scanned in the coronal plane at 119 antero-
posterior levels. Fromthese scans, a computer-generated three-dimensional model was constructed using 
the programs VoxelViewand VoxelMath (Vital Images, Inc.). This model, wherein details of internal and 
external morphology are represented in three-dimensional space, was then resectioned in orthogonal 
planes to produce corresponding series of “virtual” sections in the horizontal and sagittal planes. Sections 
in all three planes display the sizes and positions of such structures as the corpus callosum, internal 
capsule, cerebral peduncles, cerebral ventricles, certain thalamic nuclear groups, caudate nucleus, 
ventral striatum, pontine nuclei, cerebellar cortex and white matter, and all cerebral cortical sulci and gyri. 

 

 

Odontocetes (toothed whales, dolphins, and porpoises) have undergone a number of evolutionary 
modifications from their terrestrial ancestral state. Among these changes was a major increase in relative 
brain size. Several modern odontocete species possess encephalization levels second only to modern 
humans when brain-body allometry is taken into account (Ridgway and Brownson, 1984; Marino, 1998). 
An arguably equally dramatic transformation of odontocetes occurred in the anatomical structure and 
organization of their brains. Compared with many other mammalian brains, odontocete brain morphology 
is unusual in many respects. Researchers have stated that “…the lobular formations in the dolphin brain 
are organized in a pattern fundamentally different from that seen in the brains of primates or carnivores” 
(Morgane et al., 1980). Because of the fifty-five to sixty million year divergence between cetaceans and 



other mammals, odontocete brains represent a blend of early mammalian features along with unique 
derived characteristics (Ridgway, 1986, 1990; Glezer et al., 1988; Manger et al., 1998). The differences 
between odontocete and other mammalian brains of similar size are present at the level of cortical 
cytoarchitecture and immunohistochemistry (Garey et al., 1985; Garey and Leuba, 1986; Glezer and 
Morgane, 1990; Hof et al., 1992, 1995; Glezer et al., 1990, 1992a,b, 1993, 1998), cortical surface 
morphology (Jacobs et al., 1979; Morgane et al., 1980; Haug, 1987), noncortical structures and features 
(Tarpley and Ridgway, 1994; Glezer et al., 1995a,b), and ontogenesis (Oelschlager and Buhl, 1985; Buhl 
and Oelschlager, 1988; Oelschlager and Kemp, 1998). 

Fig. 1. Ventral surface of a three-dimensional digital reconstruction of the whole brain and labeled schematic 
illustration of the same image. 

 



 

Fig. 2. Three-dimensional digital reconstructions of the whole brain and resectioning to produce “virtual” horizontal 
sections. 

 

Fig. 3. Three-dimensional digital reconstructions of the whole brain and resectioning to produce “virtual” sagittal 
sections. 

 

Although there are a number of published descriptions of cetacean neuroanatomy (see Morgane et al., 
1986; Ridgway, 1990; for reviews of this literature) there are only a handful of studies in which 
morphometric analyses were conducted in a systematic way permitting quantitative comparative analysis 
with other mammals (Jacobs et al., 1984; Johnson et al., 1984; Schwerdtfeger et al., 1984; Garey and 
Leuba, 1986; Johnson et al., 1994; Tarpley and Ridgway, 1994; Manger et al., 1998; Marino, 1998). 
Furthermore, with the exception of Morgane et al. (1980), Ridgway and Brownson (1984), Haug (1987), 
and Tarpley and Ridgway (1994) there are no systematic anatomical descriptions of whole cetacean 
brains and substructures at the qualitative level. There currently exists no comprehensive cetacean 
neuroanatomical atlas either in paper or electronic format on which to base studies of cetacean brain 
organization and function. This situation is mainly due to the time and practicality associated with the 



preparation of such large brain specimens. Magnetic resonance imaging (MRI) offers a means of 
observing the internal structure of the brain where traditional procedures of embedding, sectioning, 
staining, mounting, and microscopic examination of thousands of sections are not practical. Furthermore 
internal structures can be analyzed in their precise spatial interrelationships, which is difficult to 
accomplish after the spatial distortions often accompanying histological processing. This study presents 
an anatomically-labeled three-dimensional atlas, created from MRI images, of the brain of one of the most 
behaviorally studied odontocetes, the white whale (Delphinapterus leucas). 

MATERIALS AND METHODS 

Specimen 

The specimen is the postmortem brain, fixed in 10% buffered formalin, of an adult female white whale 
(Delphinapterus leucas) who died of natural causes. The whale had been involved in several behavioral 
studies including studies of its hearing (Awbrey et al., 1988). At death, the brain was extracted from the 
skull, weighed, and placed in neutral buffered formalin for 4 years before scanning. Fresh brain weight 
was 1,871 g. Fixed brain weight was 1,755 g at the time of scanning. 

Magnetic Resonance Imaging 

The brain was removed from the fluid and placed in a head coil ventral side down. Images of the entire 
brain were acquired in the coronal plane at 119 antero-posterior levels with a 1.5 T Siemens scanner 
(slice thickness = 1.3 mm, slice interval = 1.3 mm, isotropic 1 mm voxels, MPRAGE sequence, field of 
view = 240 mm, matrix = 256 x 256). The scanning was done by Richard Buxton, PhD at the University of 
California, San Diego. 

Three-Dimensional Reconstruction and Reformatting 

Computer-generated three-dimensional reconstruction images were created by Timothy L. Murphy, using 
the software programs VoxelView and VoxelMath programs (Vital Images, Inc.) at the Laser Scanning 
Microscopy Laboratory at Michigan State University, Joanne Whallon, Director. The 3D rendered model, 
wherein details of internal and external morphology are represented in three-dimensional space, was then 
digitally resectioned in orthogonal planes to produce corresponding 0.9375 mmthick “virtual” sections in 
the horizontal (163 “virtual” sections) and sagittal (236 “virtual” sections) planes. 

Anatomical Labeling and Nomenclature 

All identifiable anatomical structures of the white whale brain were labeled in the originally-acquired 
coronal plane images as well as in the images from the “virtual” sectioned brain in the sagittal and 
horizontal planes. The nomenclature used is from Morgane et al. (1980). As a guide to the identification of 
structures, the MRI scans and the sections from the three-dimensional reconstruction of the whale brain 
were compared with the few published illustrations (or images of real stained) sections through the white 
whale brain and photographs of the whole brain (Yablokov et al., 1964; Morgane et al., 1980). They were 
also compared with similar MRI scans and “virtual” sections and three-dimensional reconstructions from 
the scans of brains of bottlenose dolphins (Tursiops truncatus) (Morgane et al., 1980). All were compared 
with complete alternate series of sections from brains of bottlenose dolphins, stained, respectively, for cell 
bodies (Nissl method), and for myelinated fibers in the same three orthogonal planes (coronal, sagittal, 
and horizontal). These stained section series are from the Yakovlev-Haleem collection at the National 
Museum of Health and Medicine and the Welker collection at the University of Wisconsin-Madison. 

 



Fig. 4. Rostral-to-caudal sequence of originally-acquired 1.3 mm-thick coronal brain sections in 22 mm intervals and 
labeled schematic illustrations of each section. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 5. Dorsal-to-ventral sequence of reconstructed 0.9375-mm thick horizontal brain sections and labeled schematic 
illustrations of each section. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS 

Three-Dimensional Reconstruction 

Three-dimensional reconstructions of the white whale’s whole brain were produced from the original 
scans in the coronal plane. Figure 1 displays an image (or view) of the posterior-ventral surface of a 
computer-generated three-dimensional reconstruction of the whole brain and a labeled illustration of the 
image. Figures 2 and 3 also display three-dimensional reconstructions of the whole brain and the brain 
digitally recut in the horizontal and sagittal planes, respectively. These three-dimensional reconstructions 
clearly display many noted characteristics of the cetacean brain that diverge from most other terrestrial 
mammalian brains (Morgane et al., 1980). The foreshortened orbital lobes are evident in Figure 3 as is 
the pronounced bitemporal width of the brain in Figures 1 and the last “virtual” cut in Figure 2. The labeled 
“virtual” cut in Figure 3 shows the mesencephalic and pontine flexures reminiscent of brainstem flexure 
patterns in the embryonic state of most terrestrial mammals. These flexures remain present in adult 
cetacean brains. 

Anatomically-Labeled Two-Dimensional MRI Sections 

Figure 4a–l displays a rostral-to-caudal sequence of originally-acquired 1.3 mm-thick coronal MRI brain 
sections at 22 mm intervals along with a labeled schematic illustration of each section. Figure 5 displays a 
dorsal-toventral sequence of reconstructed “virtual” horizontal sections (0.9375 mm thick) and a labeled 
schematic of each section. Figure 6 displays a lateral-to-medial sequence of reconstructed “virtual” 
sagittal sections, also 0.9375 mm thick, through the left hemisphere at 18.75 mm intervals (with the last 
two images 10.3 mm apart) and a labeled schematic for each section.  

The high level of convolution of the cortex is evident in almost all of the figures. The extreme depth and 
density of cortical sulci are particularly evident in Figure 6 (c–f). These images also display an orbital-to-
occipital gradient of increased sulcation concordant with the increased elaboration of the occipital-parietal 
region over the orbital region. This occipital-parietal elaboration is evident in Figure 6 (g–j) in the striking 
triple-tiered arrangement of limbic, paralimbic, and supralimbic arcuate cortical lobules divided by the 
deep limbic and paralimbic clefts. This specific combination of occipital-parietal organization and 
elaboration is distinct from other mammals. 

In contrast to the distinctive cortical features, the odontocete brain generally resembles other mammalian 
brains on a subcortical level. The volumetric proportions of various subcortical features, however, reveal 
even more of the distinctive adaptations and allometric rearrangements associated with odontocete 
evolution. As seen in Figure 1, the olfactory bulbs are absent. In contrast, auditory processing areas are 
enlarged (though visual structures are not necessarily reduced). These include the proportionately large 
inferior colliculus compared with the superior colliculus as seen most clearly in Figure 4 (g,h). 

In keeping with behavioral and electrophysiological evidence for a high degree of hemispheric 
independence (Viamonte et al., 1968; Mukhametov et al., 1977; Mukhametov, 1984), the corpus callosum 
is small relative to the massive hemispheres, consistent with quantitative findings in other odontocete 
species and qualitative observations of the white whale brain (Tarpley and Ridgway, 1994). This is 
apparent in most of the figures but particularly in Figure 6 (g–l). 

The cerebellum is large relative to the hemispheres. This is especially evident in Figure 4 (g–j), and 
Figure 5 (i,j), and also in the sagittal images. As shown in Figure 4 (e,f) the cerebral peduncles are high 
on the lateral surface of the caudal diencephalon and through the entire midbrain, rather than on the 
basal inferior or ventral surface as in most mammals. The basal surface is instead occupied by a large 
mass of gray matter that appears to be continuous with the ventral striatum and the dorsal and ventral 



pallidum of the forebrain reaching from these structures to the pontine nuclei caudally. The approximation 
of apparent basal ganglia and pons may be a consequence of the flexing of the diencephalon and the 
midbrain bringing the brain stem into contact with the basal forebrain, or it may represent a specialized 
development of the basal ganglia.  

Fig. 6. Lateral-to-medial sequence of reconstructed 0.9375 thick sagittal sections and labeled schematic illustrations 
of each section. 

 

 

 



 

 

      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
      
       



DISCUSSION 

This study presents the first MRI-based, anatomically labeled, three-dimensional atlas of the brain of the white 
(beluga) whale (Delphinapterus leucas). In addition, we have constructed three-dimensional models of the white 
whale brain and produced “virtual” horizontal and sagittal sections from these original images. These reconstructed 
images allow for the visualizing of a range of distinctive white whale brain features from various orientations by 
preserving the gross morphological and internal structure of the specimen. Because there are none of the distortions 
associated with histological processing, we have a more realistic view of the brain as it was in situ. 

Many cortical features are easily identified from the original MRI scans and “virtual” images. These include the 
distinctive lobular formations, gyral and sulcal patterns, and general gradient of elaboration in the parietal, occipital, 
and temporal regions. Subcortical allometry, including that of both gray and white matter structures, is easily 
assessed as well. Our findings are consistent with what has been noted in the few existing histological studies of the 
odontocete brain. Moreover, because we are able to preserve the internal structure of the specimen, neuroanatomical 
studies of brains from MRI set the stage for much-needed accurate and reliable morphometric analyses of various 
brain structures in odontocetes. These studies are underway. 

Evolutionary Considerations 

There is a deep evolutionary divergence of the Order Cetacea (of which Odontoceti is a suborder) from other 
mammalian lines. Furthermore, cetacean evolution is characterized by distinctive environmental pressures 
associated with a fully aquatic existence versus a terrestrial lifestyle. These related attributes make the comparative 
study of structure-function relationships in cetacean brains, compared with those of other mammals, uniquely 
valuable for improving our understanding of the parameters of mammalian brain evolution. 

The brain of the white whale as revealed in this study is characterized by similar morphological trends as those found 
n the bottlenose dolphin and other cetaceans (Morgane et al., 1980). Although there are differences among cetacean 
brains, these differences are relatively minor compared with the striking dissimilarities to brains of other mammals. 
The most obvious difference between cetacean brains and those of other mammals is in the gross morphological 
configuration of the whole structure and the lobules of the cerebral hemispheres. These are well-visualized in MRI 
scans. Evolution of overall brain shape in cetaceans may have been partly due to migration of the blowhole and 
telescoping of the skull, i.e., antorbital elongation and postorbital compression. This in turn may account for the 
distinctive construction of the midbrain, i.e., the corticopontine, corticobulbar and corticospinal fibers travel high on 
the lateral surface whereas the ventral surface is occupied by a large continuous mass of gray matter extending from 
the diencephalon rostrally to the pontine nuclei caudally. There may be distinctive organizational features of the basal 
ganglia that also contribute to this uniquely cetacean architecture. 

There is also adequate evidence that many of the anatomical changes in the cetacean brain represent changes in 
function, e.g., loss of olfactory structures and enlargement of acoustic structures. Similar, convergent changes in 
function, along with their neuroanatomical correlates, are observed in several brains of unrelated clades, such as 
many bats and primates (Johnson et al., 1984, 1994). In general, the cetacean brain possesses some common 
mammalian features in combination with specialized and highly unusual features, the function of which we have 
barely begun to understand. 

CONCLUSIONS 

If we are to eventually understand the functional significance of this mosaic of typical mammalian and uniquely 
cetacean features, the structural organization of the cetacean brain must be further elucidated. This can be rapidly 
and effectively accomplished by MRI-based studies of neuroanatomy. In comparison, already-existing data from the 
more traditional methods of sectioning and staining are very time-intensive, expensive, and vulnerable to spatial 
distortion compared with the data acquired by MRI. Studies like the present one are crucial for establishing the 
structural basis of and templates for future functional studies using non-invasive neuroimaging techniques to 
investigate the neurobiological basis of cetacean cognition and behavior. 
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