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ABSTRACT 

Basic understanding of the fundamental principles and mechanisms involved in learning is lacking for 
elasmobranch fishes. Our aim in this study was to experimentally investigate the learning and memory 
capacity of juvenile Port Jackson sharks, Heterodontus portusjacksoni. Sharks (N = 30) were conditioned 
over a 19-day period to associate an underwater LED light or stream of air-bubbles [conditioned stimulus 
(CS)] with a food reward [unconditioned stimulus (US)], using three procedures (delay, trace and control). 
During experiments, the CS signalled at a random time between 180 and 300 s for 30 s (six times per 
day). For the delay the US overlapped in time with the CS, for the trace the US delivered 10 s after the 
CS and for our control the US was delivered at random time between 180 and 300 s after the CS. H. 
portusjacksoni sharks trained in all procedures improved consistently in their time to obtain food, 
indicative of Pavlovian learning. Importantly, the number of sharks in the feeding area 5 s prior to CS 
onset did not change over time for any procedures. However, significantly more sharks were present 5 s 
after CS onset for delay for both air-bubble and light CS. Sharks trained in the delay and trace procedures 
using air-bubbles as the CS also displayed significantly more anticipatory behaviours, such as turning 
towards the CS and biting. Sharks trained with the light CS did not exhibit such behaviours; however, 
trace procedural sharks did show a significant improvement in moving towards the CS at its onset. At 20 
and 40 days after the end of the conditioning experiments, some sharks were presented the CS without 
reward. Two sharks trained in the delay procedure using air-bubbles as the CS exhibited biting 
behaviours: one at 20 and the other at 40 days. This study demonstrates that H. portusjacksoni have the 
capacity to learn a classical conditioning procedure relatively quickly (30 trials during 5 days) and 
associate two time-separated events and retention of learnt associations for at least 24 h and possibly up 
to 40 days. 

 

 

Introduction 

Learning, or the adaptive modification of behaviour based on experience, affects virtually every aspect of 
animal behaviour (Pearce and Bouton 2001). It allows an animal to develop, within its lifetime, an 
adaptive response to a completely novel situation that has potentially never been encountered in the 
species evolutionary past (Kawecki 2010). Studies investigating learning in fishes are widespread, having 
important implications for behaviour and fisheries as well as expanding our knowledge of how these 



processes evolved across the vertebrate lineage (Brown et al. 2011). More recently, its significance has 
also been highlighted for elasmobranch fishes (Guttridge et al. 2009) with notable demonstrations of 
social (Guttridge et al. 2013) and spatial learning (Schluessel and Bleckmann 2005, 2012). However, 
despite these efforts, surprisingly little is known about the fundamental learning capacities of this class of 
marine vertebrates (Guttridge et al. 2009). 

Nature provides a vast amount of sensory information that animals use to make decisions regarding 
behaviours such as what to eat or where to hide. Learning an association between events is essential 
because it allows animals to identify which event predicts the next and to respond to imminent biologically 
significant events more effectively (Hollis 1984; Nilsson et al. 2008a). Having the ability to learn an 
association with a stimulus, such as visual feature and odour of an approaching predator, for example, 
might increase the animal’s attention and preparedness to flee, thus increasing survival. In natural 
situations, events can overlap (i.e. sight of predator and then attack) or be separated in time (i.e. sight of 
fleeing individual indicating a predator might appear in the near future); thus, being able to learn 
associations with different temporal relationships would therefore be advantageous (Nilsson et al. 2008b). 

Associative learning occurs when an association or relationship between two events is established. In 
classical conditioning, a neutral stimulus [conditioned stimulus (CS)], such as a light, signals the delivery 
of a biologically significant event [unconditioned stimulus (US)], such as food (Lieberman 1990). Evidence 
of learning is considered when the CS elicits a response [conditioned response (CR)], which is 
appropriate to the imminent delivery of the US (Pearce and Bouton 2001). Since the classic experiments 
of Pavlov (1927), we have known that associative conditioning is most efficient when the CS–US 
presentations overlap in time, i.e. delay conditioning. However, the addition of a simple pronounced 
temporal gap between the CS and US, i.e. trace conditioning, can have profound effects on learning 
(Perisse and Waddell 2011). Subjects usually need more trials to acquire trace conditioning, and it is also 
known to recruit additional neural structures in mammals and insects, such as the hippocampus and 
mushroom body, respectively (Woodruff-Pak and Disterhoft 2008; Shuai et al. 2011). Interestingly, recent 
studies have found evidence for trace conditioning in a number of fish species including rainbow trout 
(Oncorhynchus mykiss), goldfish (Carassius auratus auratus), Atlantic cod (Gadus morhua) and halibut 
(Hippoglossus hippoglossus), with the latter two species being able to associate events that occur with a 
time gap of at least 60 s (Portavella et al. 2004; Nilsson et al. 2008a, b, 2010; Nordgreen et al. 2010). 

Sharks’ capacity to learn was originally demonstrated using an operant conditioning regime (Clark 1959) 
and then later extended to include acoustic (Nelson 1967) and visual discrimination learning (Tester and 
Kato 1966). Gruber and Schneiderman (1975) reported the first authoritative account of classical 
conditioning in juvenile lemon sharks (Negaprion brevirostris). Training involved restraining the shark 
while exposing it to a light flash (CS) that was paired with an electric shock (US), producing an eye-blink 
response. These experiments suggested that sharks were able to learn discriminative tasks as rapidly as 
other vertebrates displaying comparable learning characteristics, such as gradual recovery when exposed 
to extinction sessions (Schneiderman and Gormezano 1964; Aronson et al. 1967). Since these early 
demonstrations, however, conditioning techniques have been primarily used as a tool to investigate 
sensory thresholds (Guttridge et al. 2009). Little if any information is known about the learning abilities of 
benthic sharks (Malyukova et al. 1983), and to our knowledge, no study has explored trace conditioning 
for any elasmobranch fish despite their position at the base of the vertebrate evolutionary tree. 

Surviving in complex and fluctuating environments is challenging for animals. Having the ability to retain 
information about where to find or how to handle prey might increase foraging efficiency (Brown et al. 
2011). Indeed, there are examples from various taxa of animals displaying impressive feats of memory; 
turtles (Pseudemys nelson) learnt and retained a novel food acquisition task for 7 months; corvid birds 
(Nucifraga columbiana) remembered 18–25 caches in a room containing 69 cache sites for as long as 9 



months, and rainbowfish (Melanotaenia duboulayi) learnt to avoid trawl apparatus in the laboratory with 
avoidance persisting for at least 11 months (Brown and Laland 2001). More recently, a number of studies 
on teleost fishes have explored this further (Nilsson et al. 2008a, b, 2010; Tlusty et al. 2008; Zion et al. 
2011), finding memory windows from 3 to 7 months for both trace and delay conditioning procedures, 
using acoustic and visual CS. Few studies have investigated memory capacity in elasmobranch fishes. 
The earliest documentation was of two adult lemon sharks that retained an operant conditioning response 
for up to 10 weeks (Clark 1959) with further speculations using visual discrimination training on nurse 
sharks (Ginglymostoma cirratum) (Graeber et al. 1973). More recently, Schluessel and Bleckmann (2012) 
investigated memory retention capabilities of spatial learning tasks in the grey bamboo shark 
(Chiloscyllium griseum), finding that some individuals retained spatial information for up to 6 weeks in the 
absence of reinforcement. However, we still understand very little about memory retention in 
elasmobranch fishes even though such capabilities are most likely widespread given their k-selected life 
history traits and evidence for site fidelity and prey selectivity (Grubbs 2010; Speed et al. 2010). 

Port Jackson sharks (Heterodontus portjacksoni) are a medium-sized (< 1.6 m), epibenthic species from 
a primitive order, the heterodontiformes that are endemic to Australia (Last and Stevens 2009). They 
have a broad diet and are often found aggregating close to reef structures (McLaughlin and O’Gower 
1971; Powter et al. 2010) with juveniles and adults displaying high site fidelity to specific core areas 
(Powter and Gladstone 2009). O’Gower (1995) speculated that Port Jackson sharks have impressive 
spatial memory capabilities using visual features of reef topology to return 24 h later after being displaced 
from their resting sites. At our study site (Merimbula, NSW), juveniles (\0.8 m) are abundant and have 
been successfully used in captive experimental studies (Peach 2001). These characteristics make the 
Port Jackson shark an excellent model species to experimentally investigate fundamental learning 
principles in elasmobranch fishes. 

The purpose of this study was to investigate the learning and memory capacity of juvenile Port Jackson 
sharks. To do this, individual sharks were conditioned over a 19-day period to associate an underwater 
light or stream of air bubbles (CS) with a food reward (US) to procedures: (1) delay (i.e. overlapping CS–
US), (2) trace (i.e. CS–US with short time interval, 10 s) and (3) control (i.e. US delivered at random time). 
Using this learning paradigm, we were able to determine whether Port Jackson sharks had the capacity 
for delay and/or trace conditioning and if so, whether the memory of the learnt CS–US association 
persisted over short (24 h) and possibly long (20–40 days) time periods. We also explored whether using 
a more biologically relevant CS influenced learning performance and expression of the CR. We predicted 
that Port Jackson sharks would be able to learn both delay and trace conditioning regimes using light or 
air-bubble as the CS and demonstrate retention of these at various time scales in the absence of 
reinforcement. More specifically, after training we expected sharks to exhibit CRs, with stimulus 
substitution leading to movement towards CS at onset and with feeding type behaviours directed towards 
the CS prior to US delivery. These responses were expected to be more frequent and pronounced in our 
sharks trained to the delay regime as seen in other fishes (Nilsson et al. 2008a, b, 2010). Port Jackson 
sharks are considered nocturnal, feeding primarily on small invertebrates that are buried in the sediment 
(Powter et al. 2010); thus, we also expected sharks trained to the air-bubble CS to exhibit more 
pronounced and persistent CRs than those trained to the light CS. 

Materials and methods 

Study location and study sharks 

The study was conducted at Merimbula Aquarium, NSW, Australia. Port Jackson sharks were our test 
subjects because of their abundance along the NSW coast, renowned hardiness in captivity and small 
body size (Peach 2001; Powter and Gladstone 2009). A total of 30 juvenile Port Jackson sharks (mean 



standard length ± standard deviation = 43 ± 3 cm) were obtained from the bycatch of a commercial fisher. 
Sharks were collected in batches (n = 6–10) every 3–4 weeks, a few days prior to the start of 
experiments. They were assessed for good condition, transported and then housed in two outdoor flow-
through seawater tanks (2,000 l). On arrival, each shark was restrained in a trough (0.1 9 0.6 m) to allow 
tagging, weighing (g) and measurement (cm). Sharks were marked with a unique colour-code tag to 
provide external individual identification (T-bar type, Hallprint Ltd), through the first or second dorsal fin. 

After 24 h in captivity, all sharks were fed 2 % of their body weight in squid (Loligo opalescens) pieces, a 
daily recommended allowance to sustain benthic shark species (Sims 1996). Sharks were released if they 
did not feed within 3 days of arrival. During non-experimental periods, sharks were fed to satiation every 3 
days on mixed diet of frozen squid and pilchard (Sardinops neopilchardus) pieces. Sharks were moved 
using nets and transported between tanks in plastic tubs (50 l). No sharks died during the experiments 
and all were weighed on release close to their capture site. We detected no significant difference between 
start and end weight, Wilcoxon signed-ranks test, P[0.1. An ethics permit (ARA 2010/041) to conduct 
scientific marine research was obtained from Macquarie University, Australia. 

Experimental set-up 

A seawater flow-through aquarium (2.5 m long, 1.5 m wide and 1 m deep) was used to train and house 
experimental subjects. Water temperature was maintained at 16–18 °C, and low-level aquarium lighting 
was provided during natural daylight hours. Plastic opaque barriers were fitted with supporting rocks to 
partition the tank into three main compartments: (1) holding area with gravel and rocky substrate to house 
the sharks in between daily experiments, (2) experimental area split into four sections (1–4) with the 
conditioned stimulus (CS) located in the top left corner of section 4 and feeding apparatus to deliver the 
unconditioned stimulus (US) *1 cm in front of the CS and (3) start box used to hold sharks in between 
experimental trials fitted with sliding doors to control the movement of sharks between compartments (Fig. 
1). The inflow was placed in the holding area and outflow in the experimental area removing olfactory 
cues emitted from the US between trials. A video camera linked to a monitor (out of view of the tank) was 
positioned above the experimental area providing full coverage (Fig. 1). 

 

Fig. 1 Experimental set-up 



 

Fig. 2 Median (±IQR) time to consume US during delay (empty circles), control (filled circles) and trace 
(empty triangles) procedures for a light CS and b air-bubble CS. n = 5 per procedure 

 

Experimental protocol 

Sharks (N = 30) were randomly assigned to CS treatments: (1) underwater LED spot light (1.5 W, Prisma 
LED, Australia) or (2) air-bubbles (plastic tube connected to an air pump) and then to procedures: (a) 
delay, (b) trace and (c) control. Each CS was manually operated and signalled for 30 s using a digital 
timer. The US was a food reward (squid piece; pre-cut and weighed) loosely attached to monofilament 
that was controlled manually and weighed down by a sinker. Sharks were trained in groups of four to six 
over a period of 19 days according to the following schedule: Day 1—acclimation, Days 2–10—training, 
Day 11—memory retention trial, Days 12–17—training, Day 18—memory retention trial, and Day 19—
relocation or release (see Table 1 for experimental steps). During the acclimatisation period, all 
compartments were opened for exploration, and on completion, sharks were ushered to the holding area. 
An individual shark was then selected and ushered from the holding area into the start box for testing. 
After 60 s, the sliding door leading to the experimental arena was opened, and the test shark was given 
30 s to emerge from the start box. If 30 s passed, the shark was gently ushered into the experimental 
arena. The door to the start box was then closed. 



For all procedures, the CS signalled at a random time between 180 and 300 s for 30 s. For the delay 
treatment, the US was delivered 15 s after the onset of the CS. For the trace treatment, the US was 
delivered 10 s after CS termination, and for the control treatment, the US was delivered at a random time 
between 180 and 300 s after CS. Sharks were given 180 s to consume the reward and after consumption 
were ushered back into the start box and given 60 s until the start of the next trial. Each shark completed 
six trials per day, except on memory retention trials when only one was completed without the US. 
Individual shark total daily food intake was equivalent to 2 % of their body weight, divided equally among 
the six trials. All experiments were completed in daylight hours (8 am–5 pm), and individual sharks 
completed their trials at a similar time each day to allow for 24 h between feeds, ensuring motivation was 
consistent. 

Table 1 Description of experimental steps 

Task Description 
Shark capture Sharks captured, processed and housed in flow-through tanks 
Captive acclimation Sharks given 24 h and fed to satiation to ensure motivation to feed in captivity 

Day 1: Experimental acclimation Start of 19-day experimental trial period. Sharks moved to experimental tank and 
given 24 h to move between all sections 

Day 2–10 and 12–17: Training Individual sharks completed six trials per day trained to the CS and procedure that 
they were assigned to (see “Materials and Methods” section) 

Day 11 and 18: Memory trials Each shark presented with the CS, but no US 

Day 19: Holding or release After trial completion, all sharks were weighed, some released and some held for 
memory retention tests 

Day 39 or 59: Memory trials After 20- or 40-day absence from the set-up, sharks were moved into the 
experimental tank, given 24 h to acclimatise and then presented with the CS 

Release All sharks were released on completion of final memory trials, weighed and then 
fed to satiation 

 

Memory retention trials 

All sharks were tested for a response to the CS after 9 and 15 days of trials (i.e. experimental protocol 
Days 11 and 18). Some sharks were also held for retesting after 20 and 40 days (n = 7 and 3, 
respectively) after completing the initial training period (i.e. experimental protocol Days 39 and 59). During 
non-experimental periods, sharks were held in outdoor holding tanks (2,000 l) and fed to satiation every 
2–3 days on frozen squid and pilchards. 

Data analysis 

For our first analysis, it was important to demonstrate that all test sharks were able to consume the US in 
a similar time and that they improved consistently across CS treatments and procedures (control, delay 
and trace). Thus, we could rule out these influences on learning. To do this, we calculated the median 
time taken to consume the US (see Table 2) for all sharks, each day, across treatments and procedures. 
If sharks did not consume the US, then a ceiling time of 180 s was implemented. We used the 
nonparametric Kendall rank correlation to determine whether sharks improved through time and 
compared trial Days 1, 5, 10 and 15 using Kruskal–Wallis rank-sum test. This was to ensure that sharks 
performed consistently at different stages during the experiments. 



No previous conditioning experiments have been completed on a heterodontiforme shark species so we 
were unsure how or whether the sharks would respond to the CS. However, Port Jackson sharks usually 
spend most of their time resting on the bottom (Powter and Gladstone 2009), so we predicted that 
anticipatory behaviour induced by the CS would, at the very least, lead to sharks changing positions and 
moving into the CS compartment. Classical conditioning experiments using Atlantic halibut, a sedentary 
Teleost fish, showed such subtle behavioural movements (Nilsson et al. 2010). Therefore, for all trials the 
location of the shark was recorded 5 s prior to CS onset, as a baseline comparison, and 5 s during the CS 
to allow time for a response. Sharks were recorded as having entered a compartment once their head 
and first dorsal fin had crossed the demarcation line. For each CS (air-bubble and light), we calculated 
the median number of trials per day individual sharks were present in the CS zone 5 s before and into CS 
onset. We also recorded whether the shark moved (turned towards the CS) at the CS onset (within 2 s) 
and whether they displayed feeding type behaviours (i.e. biting) towards the CS (see behavioural 
ethogram; Table 2). These behaviours (median number) were then compared using a Friedman 
repeated-measures test across procedures (control, delay and trace) for CS (air-bubble and light) and 
then using Kruskal–Wallis rank-sum test at various experimental stages (trial Days 1, 5, 10 and 15). Post 
hoc tests with Bonferroni correction were also completed to identify whether any differences detected 
were between specific procedures. Nonparametric analyses were used throughout due to low replicates 
and non-normal data distributions. All statistical analyses were carried out in R version 2.12.1 (freeware 
available at www.r-project.org). 

Table 2 Ethogram of behaviours measured 

Behaviour Measure 
Consumption time Time (s) from US placement to consumption 
Position 5 s pre-CS Zone sector (1–4) 
Position 5 s into CS Zone sector (1–4) 
Movement Shark turns towards CS within 2 s of CS onset (yes/no) 
Bite Shark bites CS (yes/no) 
 

Results 

Learning trials 

Consumption times 

Port Jackson sharks consumed the US in 95 % of trials (mean number of US consumed during trials ± 
standard deviation = 85 ± 5) and improved across treatments and procedures in their times to consume 
the US, indicative of learning (Kendall’ rank correlation, all P < 0.001, Fig. 2). Importantly, these 
improvements were also relatively consistent (Fig. 2) as indicated by the lack of significant differences 
between US consumption time during the light CS across all procedures, for trial Days 1, 5, 10 and 15 
(Kruskal–Wallis rank-sum test, df = 2, P > 0.1 for all). This was also the case for our air-bubble CS for trial 
Days 1, 5 and 10 (Kruskal–Wallis rank-sum test, df = 2, P > 0.1 for all), but not for trial Day 15 where we 
found a significant difference (Kruskal–Wallis rank-sum test, χ2 = 6.15, df = 2, P = 0.046). Post hoc testing 
revealed that this was due to the difference between the control and trace procedures (pairwise U test,    
P = 0.011). 

 

 



Behaviours towards the CS 

Next, we compared the positions and behaviours (movement and bite, Table 2) of sharks across all trial 
days (1–15) and procedures (control, delay and trace). As expected, we detected no significant 
differences between the positions of sharks 5 s before CS onset for both CS across all procedures (Table 
3; Fig. 3). However, 5 s into the CS shark positions were significantly different across procedures for both 
CS, indicating that they were attracted to the CS and changed their position accordingly (Table 3; Fig. 3). 
When comparing movement and biting across trial days, CS and procedures, we detected significant 
differences for our air-bubble but not light CS (Table 3; Fig. 4). 

We further explored our data by assessing the positions and behaviour of sharks at various experimental 
stages (trial Days 1, 5, 10 and 15). When comparing trial Days 1 and 5, we detected no significant 
differences for all behaviours across procedures and for both CS, which was expected based on the low 
number of trial replicates at these early stages (Table 4; Figs. 3, 4). We also detected no differences, for 
trial Days 10 and 15, for the positions of sharks 5 s before the CS for all procedures and for both CS 
(Table 4); however, we did find significant differences between air-bubble CS trial Day 10 and light trial 
Day 15, for 5 s into the CS (Table 4; Fig. 3). Finally, when comparing the movement and biting behaviour 
of sharks, we found a significant difference at trial Day 10 for air-bubble CS movement, but no differences 
were detected at trial Days 10 and 15 for biting (both CS) (Table 4; Fig. 4). However, for our air-bubble 
CS, such differences were close to significance (P < 0.1) and were likely influenced by one control shark 
showing biting and movement towards the CS at these later experimental stages (Table 4; Fig. 4). 

Memory retention 

After 9 days of training, few sharks responded to the light or air-bubble CS (Table 5). After 15 days, 
however, we found that all sharks (n = 5) trained in our delay air-bubble CS responded with biting and 
movement, a result that was significantly different to control sharks trained to the same CS (Table 5). 
While we did see other sharks trained in different procedures respond to the CS during memory retention 
trials, none of these were significantly different to our control sharks (Table 5). In addition, we also tested 
two control, two delay and three trace sharks for a response 20 days (i.e. Day 39) after training for our air-
bubble CS. One delay shark moved and bit the CS, and one control shark moved towards the air-bubble 
CS. Furthermore, we tested one control shark and two delay sharks 40 days after training (i.e. Day 59), 
finding that one shark trained in our delay procedure responded with biting and movement. 

Discussion 

This study has demonstrated that juvenile H. portusjacksoni can reliably learn a delay classical 
conditioning regime and provides preliminary evidence for trace conditioning in an elasmobranch fish. 
Sharks trained on an air-bubble CS showed strong CRs, such as turning towards and biting the CS prior 
to the delivery of the US. In contrast, such behaviours were absent for individuals trained on a light CS, 
despite anticipatory positional changes during CS presentation that are indicative of a learnt CS–US 
association. These findings support results from other animal taxa that show CS choice can influence 
how animals respond to a CS announcing a US (Lieberman 1990; Rescorla 2008). We also found that 
two individuals trained to our air-bubble CS were able to retain such CS–US associations for 20 and 40 
days after training as evidenced by them eliciting strong CRs. Taken together, these findings advance our 
knowledge of the learning capacities of elasmobranch fishes and emphasise the need for further research 
to understand how these processes evolved across the vertebrate lineage. 

Pavlovian conditioning is typically described as a form of learning in which a neutral or arbitrary CS 
becomes associated with a US and, as a consequence, the CS comes to elicit a CR (Domjan 2005). 



However, the tendency to associate some stimulus combinations more readily than others varies across 
taxa, as a consequence of evolutionary selection for specialised sensory, receptor and associated 
apparatus (Seligman 1970; Lieberman 1990). Indeed, the choice of CS, together with its spatial and/or 
temporal relationship with the US, can influence the speed at which learning takes place and the nature 
and intensity of the CR (Lieberman 1990; Rescorla 2008). This is effectively a preparatory response for 
the forthcoming US and usually reflects natural behaviour when an animal is expecting prey to be 
delivered (Hollis 1984). For instance, archer fish (Toxotes chatareus) respond to a light CS above the 
surface by squirting water in it when paired with a US (Waxman and McCleave 1978), a behaviour that 
reflects their natural foraging strategy (Schuster et al. 2006). Similarly in this study, the CRs of H. 
portusjacksoni trained to the air-bubble CS typically included biting-type behaviours or vigorous 
respiratory pumping, which they are known to exhibit when foraging in sandy substrates (McLaughlin and 
O’Gower 1971; Powter et al. 2010). Interestingly, such behaviours were completely absent from 
individuals trained in the light CS despite sharks moving into the CS zone, indicative of anticipatory 
behaviour. If we consider wild juvenile H. portusjacksoni behaviour, it is likely that the absence of these 
biting-type CRs reflects differences in the biological relevance of the CS. H. portusjacksoni are nocturnal, 
feeding primarily on cryptic benthic prey (Powter et al. 2010); thus, vision probably does not play an 
important role in prey detection and capture (McComb and Kajiura 2008). Morphological evidence from 
other benthic fishes also supports this theory with a clear pattern for relatively reduced optic tectum 
(Kotrschal and Palzenberger 1992; Wagner 2002; Yopak 2012). Furthermore, H. portusjacksoni possess 
a large olfactory surface area, suggesting a reliance on olfaction (Schluessel et al. 2008). Alternatively, it 
is also possible that the lack of biting-type CRs towards the light CS was a result of intrinsic attractive 
qualities of the air-bubble CS, although we believe that this is unlikely as 4 of 5 sharks trained in the 
control procedure remained completely unresponsive to the CS. The only individual that did respond 
started biting the air-bubble CS at trial Day 9; we suspect that this shark learnt that the CS always 
preceded the US despite a randomised temporal gap of B300 s between the CS and US. A further 
explanation is that the CS differed in strength or intensity. The air-bubble CS produced acoustic, 
mechanical and visual stimuli, whereas the light CS emitted visual and electrical cues; thus, it is possible 
that the air-bubble CS was detected more rapidly. Future trials should consider varying the intensity or 
isolating particular stimulus outputs to enable us to understand more about the structure of the shark 
learning paradigm, i.e. biases in attention and how information is generalised. 

Table 3 Results’ summary of the behaviours of H. portusjacksoni during learning experiments compared 
across different procedures (delay, D; control, C; and trace, T) for CS (light, L; and air-bubbles, AB) 

Behaviour CS Χ2 P Value Post hoc D versus C Post hoc T versus C Post hoc T versus D 
5 s pre-CS L 2.78 n.s. n.s. n.s. n.s. 
 AB 1.72 n.s. n.s. n.s. n.s. 
5 s into CS L 21.1 ** ** n.s. n.s. 
 AB 6.04 * * * * 
Movement L 0.78 n.s. n.s. n.s. n.s. 
 AB 8.45 * * * n.s. 
Bite L 0 n.s. n.s. n.s. n.s. 
 AB 13.18 ** ** ** ** 
Friedman repeated-measures test 
** P < 0.01, *  P < 0.05, n.s  P  >  0.1, n = 5, df = 2 for all 
 

 



 

Fig. 3 Median (±IQR) number of sharks in CS zone 5 s before CS onset (filled circles) and 5 s into the start of 
the CS (empty circles) in a delay, b control and c trace procedures. Left and right figures represent the 
airbubble and light CS, respectively. n = 5 per procedure 

 

H. portusjacksoni trained in our two CS in both delay and trace procedures exhibited varied CRs including 
biting, turning towards the CS and positional changes. According to Pavlov’s (1927) stimulus substitution 
and classical stimulus response theory (Lieberman 1990), these are indicative of a sign-track response. It 
has been suggested that this type of response may be beneficial for animals that forage on prey that are 
sheltering under recognizable structures, such as stones or vegetation that could be associated as food 
and act as a CS (Purdy et al. 1999). The diet of juvenile H. portusjacksoni is dominated by benthic 



invertebrates, such as decapod crustaceans and echiurans (Powter et al. 2010). They have also been 
documented foraging in the sand substrate and on epiphytic organisms attached to seagrass blades 
(Powter and Gladstone 2008). This indicates that the strong sign-track response found here likely reflects 
their diet and foraging strategy. Furthermore, it is also expected to be advantageous for cruising 
predators, whose foraging behaviour involves orientation and approach to, and eventual chasing of the 
prey (Purdy et al. 1999; Nilsson et al. 2008a). H. portusjacksoni diet changes through ontogeny with 
adults feeding on more active and higher-trophic-level organisms, such as cephalopods (Powter et al. 
2010). Thus, a strong sign-track response could also be beneficial as they reach maturity and transition to 
more active prey. 

 

Fig. 4 Median (±IQR) number of sharks during delay (empty circles), control (filled circles) and trace (empty 
triangles) procedures that a turned and moved towards the CS within 2 s and b bit at the CS when it 
signalled. Left and right figures represent the air-bubble and light CS, respectively. Note sharks did not bite 
the light CS trials. n = 5 per procedure 

 

Like other animals, not all H. portusjacksoni trained in our trace procedure produced CRs or learnt a CS–
US association. Two of five did not exhibit any biting-type behaviours towards the air-bubble CS, and 
sharks trained in our light CS trace procedure did not show any differences between behaviour during 
trials relative to the control sharks. It has been suggested that it is more cognitively demanding to learn an 
association with a temporal gap. In mammals and insects, trace conditioning recruits additional neural 
structures (Woodruff-Pak and Disterhoft 2008; Shuai et al. 2011). Interestingly unlike cod, we did not find 
that sharks trained in our trace procedure spent more time in the zone where the US was forthcoming 



during the time interval. This might be because H. portusjacksoni prefer to stay at a distance before the 
CS is detected. To explore this further, future trials should separate the positions of the CS and US. 
Sharks towards the end of training (i.e. Days 10 onwards) would regularly move directly to the US–CS 
zone after entering the experimental arena. Unfortunately, it is not possible to determine whether they 
were tracking the signal (CS) or the goal (US). 

Table 4 Results’ summary of the behaviours of Port Jackson sharks during learning experiments compared 
across different trials (1, 5, 10 and 15), procedures (delay, control and trace) and CS (light and air–air-
bubbles) 

Behaviour Trial Day # Χ2  P value 
  Light Air-bubbles  Light Air-bubbles 
5 s pre-CS 1 2.67 1.55  n.s. n.s. 
 5 0.07 0.32  n.s. n.s. 
 10 3.68 1.08  n.s. n.s. 
 15 0.11 4.38  n.s. n.s. 
5 s into CS 1 1.61 1.91  n.s. n.s. 
 5 0.39 1.98  n.s. n.s. 
 10 4.74 8.49  0.09 * 
 15 7.62 2.82  ** n.s. 
Movement 1 2.53 1.07  n.s. n.s. 
 5 0.52 2.30  n.s. n.s. 
 10 1.85 7.66  n.s. ** 
 15 5.09 4.51  0.08 0.10 
Bite 1 NA 0  NA 1 
 5 NA 2.16  NA n.s. 
 10 NA 5.45  NA 0.06 
 15 NA 4.7  NA 0.09 
Kruskal–Wallis rank-sum test 
** P < 0.01, * P < 0.05, bolded P < 0.1,n.s. P > 0.1, n = 5 for all 

 

Table 5 Results’ summary of memory retention trials for Port Jackson sharks tested after 9 and 15 days of 
conditioning to procedures (delay, control and trace) and for CS (light and air–air-bubbles) 

Procedure # Trial Days Bite  Movement 
  Air-bubbles Light  Air-bubbles Light 
Delay 9 1 0  1 0 
 15 5* 0  5* 3 
Trace 9 0 0  2 3 
 15 1 0  0 3 
Control 9 0 0  0 1 
 15 1 0  1 0 
Wilcoxon signed-rank test 
* P < 0.05, all others P > 0.5, n = 5 for all 
 



Comparing the learning capabilities of H. portusjacksoni with other species should be made with caution. 
Most studies on fishes test their subjects in groups and have used different procedures and inter-trial 
intervals, which likely affect the learning process (Nilsson et al. 2008a, b, 2010; Brown et al. 2011). 
However, it is noteworthy to mention the only other authoritative account of classical conditioning in an 
elasmobranch fish. Gruber and Schneiderman (1975) trained juvenile lemon sharks in an aversive 
paradigm finding reliable (95 %) CRs after approximately 60 trials. Such learning is comparable to H. 
portusjacksoni trained in our delay air-bubble CS with most sharks either biting, turning towards the CS or 
moving into the CS zone by Day 10 (trial 60). This suggests to us that benthic shark species, although 
regularly perceived as sluggish and slow, are capable of learning a CS–US association just as effectively 
as their more active larger-brained relatives (Yopak 2012). 

All sharks were trained for six trials per day with 24 h between trial days. At our initial memory retention 
test after 9 days of training, only one shark trained in the delay procedure with air-bubble CS exhibited a 
strong CR. However, from trial Day 10 onwards, a number of sharks exhibited CRs regularly between 
experimental trial days, which suggests a memory window of at least 24 h. This was further confirmed at 
our end of training memory retention trials where all sharks trained to the air-bubble CS responded 
through biting and movement. We also found preliminary evidence for relatively long-term memory with 
two of four sharks retaining the CS–US association after 20- and 40-day absences from the set-up. For 
other animals, memory retention is often discussed in the context of variable versus stable environments, 
with those from the latter expected to have better long-term memories. Indeed, for predators foraging in 
highly changeable prey fields, a memory of past locations where prey was previously abundant may be 
maladaptive, since to adapt rapidly to change, a shorter memory window is desirable for finding new prey 
locations (Mackney and Hughes 1995). 

In conclusion, we have demonstrated that H. portusjacksoni, a benthic shark species, have the capacity 
to learn a classical conditioning procedure, display strong sign-tracked responses and have a memory 
window for two time-separated events of at least 24 h, possibly up to 40 days. These cognitive abilities 
make ecological sense. As juveniles, Port Jackson sharks are continuous feeders known to exhibit long-
term site fidelity (> 2 years) to specific seagrass beds (Powter and Gladstone 2009; Powter et al. 2010). 
This frequent use of particular areas coupled with regular non-intermittent feeding repeatedly exposes 
them to local prey organisms and associated habitats creating the conditions necessary for the evolution 
of impressive learning capabilities. Interestingly, recent morphological evidence indicates that benthic 
demersal elasmobranchs comprise the group with the smallest brains, reduced telencephalon and a 
smooth cerebellar corpus (Yopak 2012). Given that the latest findings in teleost fish show that cognitive 
ability can be dependent on brain size (Kotrschal et al. 2013), our study coupled with Kimber et al. (2013) 
highlights that sharks’ cognitive capabilities are most likely understated. 
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