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CHAPTER 25 

The Changing Paradigm in Preclinical Toxicology: 

in vitro and in silico Methods in Liver Toxicity 

Evaluations 

FoziaNoor 

Luxembourg Centre for Systems Biomedicine (1csB ), Universite du 

Luxembourg, Esch-sur-Alzette, Luxembourg 

Fozia.noor@unllu 

1 Toxicology in the 21st Century 

Toxicology is one of the sciences that have slowly but surely embraced technol­

ogy and new methods, focusing on high throughput and high content screen­

ings, omics technologies, and mathematical modeling. Thus, a transition in 

toxicology-from a traditional reductionist paradigm towards 21st century 

methods based on human biology and holistic multi-omics studies-is now 

becoming a reality. With the recent advances in human-cell cultivation tech­

niques, allowing in vivo-like in vitro long-term functionality, there is a shift in 

focus towards the mechanistic details of the adverse effects "over time" aimed 

at a better understanding of the dynamics of biological processes. 

In vitro methods, based on human primary cells, cell lines, and genetically 

modified reporter cell lines, have greatly expanded the scope of in vitro toxi­

cology. Other significant progress in the area of human-induced pluripotent 

stem cells (hiPscs) (Asgari et al., 2010; Schwartz et al., 2014; Shinde et al., 2016; 

Shtrichman, Germanguz and Itskovitz-Eldor, 2013) is allowing the application 

of patient and disease-specific hiPscs (Ghodsizadeh et al., 2010; McCracken et 

al., 2014; Siller et al., 2013). Moreover, the tools of precise genome editing with 

engineered nucleases, such as the zinc finger nucleases (zFNs), the transcrip­

tion activator-like effecter nucleases (TALE NS) and, more recently, the Clus­

tered Regularly Interspaced Short Palindromic Repeats ( CRISPR) associated 

Casg technology ( Gaj, Gersbach and Barbas, 2013; Kim, 2016; Komor, Badran 

and Liu, 2017) have opened up tremendous opportunities for the development 

of cell lines, especially those of human origin (Tobita, Guzman-Lepe and de 

L'Hortet, 2015). CRISPR/Casg technology was reported for genome editing in 

hiPscs (Flaherty and Brennand, 201s; Li et al., 2014; Seah et al., 201s; Suzuki 

et al., 2014). Another study reported on the simultaneous reprogramming and 
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THE CHANGING PARADIGM IN PRECLINICAL TOXICOLOGY 611 

gene correction of patient fibroblasts (Howden et al., 2015). Since 2015, more 

than 3,000 articles were published on studies using CRISPR/Casg genome edit­

ing, including more than goo articles using the technology in mammalian cells 

(PubMed, accessed June 11, 2017 ). With further technological developments, 

these human in vitro cellular models shall be highly useful in the screening 

of compounds for personalized medicine, allowing optimum therapy with 

minimum or no adverse effects, and in the study of adverse outcomes in differ­

ent strata of population. In addition to high-content screening, where several 

parameters are measured as simultaneous readouts in single cells ( Gasparri, 

2009 ), high-content imaging will play an important complimentary role in sys­

tems biology approaches (van Vliet et al., 2014). High-content platforms have 

been already used for the screening of compounds (Bale et al., 2014; Sirenko 

et al., 2014; Tolosa et al., 2014). 

Modem technologies of omics and high-content imaging are resulting in 

immense data sets which require large-scale data-processing tools. Powerful 

bioinformatics' tools are also required for data integration and the overarch­

ing interpretation of biological data from disparate sources. The inherent com­

plexity of biological systems is a challenge that is expected to be overcome by 

computational modeling of biological systems. Toxicology is, therefore, aiming 

at the integration of a tremendous amount of diverse information-at various 

levels of biological hierarchy (genome, transcriptome, proteome, and metab­

olome) and biological structure ( organelles, cells, tissues, organs, and organ­

ism )-with computational tools for understanding and predicting biological 

behavior ( e.g., adverse effect) under given conditions ( e.g., perturbation due to 

a toxin). This rejuvenated toxicology in modem terms is referred to as systems 

toxicology ( see Figure 25.1 ). 

1.1 Systems Toxicology 

The term systems toxicology is derived from systems biology and could be de­

fined as the study of biological systems, using omics technologies, with a focus 

on the mechanisms underlying complex biological processes, their interac­

tions and perturbations in response to a toxin combined with mathematical 

data integration and modeling. Systems toxicology, therefore, aims at under­

standing and exploring the way that different biological components are or­

chestrated as an ensemble in cells, tissues, and organisms. 

A biological system usually consists of a large number of functionally diverse 

and/or multitasking components interacting together in a nonlinear fashion 

in, so-called, biological networks spread over several levels of biological orga­

nization (Kitano, 2002 ). Systems biology aims at understanding the structural 

and functional connectivity in biological networks or simply the biological 
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FIGURE 25.I Modem toxicology leaning towards the systems biology approach to under­

standing and predicting adverse effects by integrating traditional endpoint 

measurements and pharmacokinetics/pharmacodynamics information with 

omics data and computational modeling. 

homeostasis. Almost 150 years ago, the French physiologist, Claude Bernard, 

put forward the idea that free life is based on the constancy of the internal en­

vironment. Later, in 1922, the American physiologist, Walter Canon, described 

homeostasis as the key principle of life. According to Hans Seyle (1956), since 

systems are robust, a system under stress will try to achieve a new homeostasis 

to maintain its functions, until the stress crosses a certain threshold, and the 

system collapses. Similarly, biological systems exposed to a stressor/toxin will 

try to adapt and survive. Acute exposure for a short period may constitute a 

temporary stress that may, or may not, manifest as a toxic effect(s), while the 

biological system tries to adapt or compensate. However, acute exposure at a 

very high dose may lead to acute exhaustion of the system's resources to cope 

and may lead to rapid system breakdown. On the other hand, upon repeated or 

chronic exposure to low levels of stress, the system inevitably acquires a new 

homeostasis. This new homeostasis may be accompanied by adverse effects 
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or disease development ( e.g., depression, cancer) over the period of exposure. 

Upon accumulation of long-term stress, when the system's capacity to main­

tain altered homeostasis is exhausted, the system will break down, ultimately 

leading to the extinction of the system. 

Understanding biological processes means a step towards understanding 

the mechanisms of adverse effects, which in turn means understanding the mo­

lecular and functional changes in a system upon perturbation of the system's 

homeostasis. A mechanistic understanding requires system-wide quantitative 

measurements of these molecular and functional changes. Recent progress in 

omics technologies is playing a decisive role in linking system-level understand­

ing to quantitative molecular knowledge (Ideker, Galitski and Hood, 2001). An 

essential part of systems toxicology is the mathematical modeling of biological 

responses based on mechanisms and the use of such computational models 

for predicting responses by changing the parameters of perturbation. Systems 

toxicology is, therefore, the integration of traditional toxicology with modern 

techniques of integrated testing strategies, high-throughput screenings, phar­

macokinetics/pharmacodynamics knowledge, high-content screenings, omics 

technologies, in silico tools and modeling. Recent advances in cell-culture 

techniques, mimicking in vivo organs, are allowing for the acquisition of 

physiologically relevant information that will enhance pathways-based under­

standings for the discovery of novel targets and prediction of risks of adverse 

outcomes. 

1.2 Pathways of Toxictty 

The concept of pathways of toxicity (Po Ts) evolved after the famous report 

from the United States National Research Council in 2007, titled Toxicology 

in the 21st Century, which recommended a shift in testing from animals to 

human-cell systems for the assessment of toxicity pathways (Krewski et al., 

2010 ). Other terms, such as the mode of action ( M OA) and the adverse outcome 

pathways (AOP) are currently used to structure and describe biological pro­

cesses over biochemical pathways leading to adverse effects. This information 

can be mapped on various levels of biological organization ( e.g., from cells to 

populations and even ecologies) ( see Figure 25.2 ). 

A PoT is a cellular response pathway, which upon sufficient perturbation 

will lead to an adverse health effect. A PoT should describe the molecular basis 

of the adverse response. It is assumed that a limited number of PoTs are con­

served over cell types, organs, and even species, and should mediate the same 

adverse outcome (Bouhifd et al., 2015). PoTs aim at molecular annotations of 

network perturbations and their causes from high-content phenotyping (Har­

tung and McBride, 2011 ). It should be possible to derive Po Ts from simple in vitro 

tests, as in the ToxCast program in the us, which evaluated 2,000 compounds 
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FIGURE 25.2 Organization of scientific information at different levels of biological 

complexity with commonly used terminologies, such as PoT, MOA, and AOP. 

ADAPTED FROM GOCHT ET AL. (2015) 

in more than 700 assays and around 300 signaling pathways (Attene-Ramos 

et al., 2013; Hsieh et al., 2017). 

The molecular mechanisms over a series of causal events can be described as 

the MOA. It is important to distinguish a mechanism of action from the mode 

of action. A mechanism of action describes the primary chemico-biological in­

teraction between a compound and a structural moiety in a biological system 

(Blaauboer and Andersen, 2007 ). This is more or less equivalent to the mo­

lecular initiating event in an AOP. The MOA describes functional and structural 

changes that follow the primary interaction of a compound with its biological 

target and result in quantifiable changes at the organism level (Blaauboer and 

Andersen, 2007 ). The M OA-based paradigm is based on the concept of toxicity 

pathways. A PoT represents a set of molecular events that ultimately lead to a 

measurable adverse outcome associated with the stressor/toxin. As such, MOA 

and AOP are sometimes used in similar contexts. 

1.3 Adverse Outcome Pathways 

The concept of AO P was developed in the field of ecotoxicology. Ankley et al. 

(2010, p. 730) defined AOP as "a conceptual construct that portrays existing 

knowledge concerning the linkage between a direct molecular initiating event 

and an adverse outcome at a biological level of organization relevant to risk 

assessment". The term AOP is a misnomer, since pathways are not intrinsically 

adverse or non-adverse but they may lead to adverse effects or disease after per­

turbation. The AOP framework allows the organization and structuring of infor­

mation for improved decision making in risk assessment (Edwards et al., 2016 ). 

The concept of AOP is now embraced by scientists all over the world, with 

international efforts for harmonization and guidance on AOP construction and 

development, such as the Organisation for Economic Co-operation and De­

velopment ( OECD) guideline (2013) and recently published AOP development 

strategies, principles, and best practices (Villeneuve et al., 2014a,b ). AOPs have 
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been described for skin sensitization, liver cholestasis, liver steatosis, and 

fibrosis ( OECD, 2012; Vinken et al., 2013; Willett et al., 2014). More recently, 

there are suggestions that the AOP framework can also be used for organizing, 

structuring, and describing the pathways involved in diseases (Langley et al., 

2017; Noor, 2015). 

An AOP will begin upon exposure to a compound. The interaction of that 

compound with the biological target will depend on its physico-chemical 

properties and could be analyzed using methods of quantitative structure­

activity relationships ( QSARs ). The interaction of the compound with its bio­

logical target is the molecular initiating event. This will in tum lead to causal 

chain of events at different levels of biological organization, with effects at the 

organelle, cellular, and tissue levels. Depending on the intensity and duration 

of the exposure, these effects will affect the function( s) of the organ, which 

will initially try to adapt to the perturbation to achieve a new homeostasis. 

However, persistent stress will ultimately lead to adverse effect( s) at the organ 

level (see Figure 25.3). With time, organ level effects can spread to the whole 

organism. In epidemiology, many affected organisms will lead to population 

and ecology effects. 

Initially, AOPs were thought to be linear constructs with key events caus­

ally linked with each other and occurring at different levels of biological or­

ganization (Landesmann et al., 2013). However, biological systems are highly 

complex and interconnected, in addition to being very robust, and show adap­

tive responses to stress stimuli. Biological processes are nonlinear and highly 

wired together with feedback loops and cross regulation. Modem AOPs are 

chemically independent, modular, and connected over networks (Villeneuve 

et al., 2014a). The concept of key event relationships has been used to explain 

quantitative connections between several AOPs and more than one adverse 

/' 
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FIGURE 25.3 An AOP framework to explain multilevel effects beginning with an initial trig­
gering event ( molecular initiating event), followed by a series of intermediary 
events (key events) that lead to an adverse outcome. 
ADAPTED FROM LANDESMANN ET AL. (2013) 
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outcome (Figure 25-4). These connections help to identify gaps and uncertain­

ties in an AO P. An adverse outcome may also lead to another adverse outcome. 

For prediction, quantitative response relationships among key events within 

an AOP are required and make use of weighting and probabilistic and mecha­

nistic approaches (Becker et al., 2015; Perkins et al., 2015). It is expected that 

quantitative Ao P and quantitative Ao P networks will have quantitative key event 

relationships and this may help define anAOP score for the prediction. 

Although an AOP is a pragmatic way of organizing information of biologi­

cal relevance and facilitates causal links with multilevel information, there 

are many challenges to their wide application. An AOP should not only give 

information about the structure of the system but also provide important clues 
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MIE KE KE KE KE AO 
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MIE 
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'- KE KER
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FIGURE 25.4 Adverse outcome pathways. (A) a linear AOP showing molecular initiating 

event (MIE) as the interaction between chemical and its biological target lead­

ing to a chain of causal key events (KE) resulting in an adverse outcome (AO). 

(B) an AOP network with multiple pathways and key events (KE) leading to 

one or more adverse outcomes. The quantitative correlation between two 

key events (KER) would determine the intensity of the involvement of that 

pathway. 

ADAPTED FROM GARCIA-REYERO 2015 
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on the dynamics of the system. It is highly recommended for an AOP to have 

direct human relevancy, and an AOP based only on animal data is insufficient. 

The relationships between molecular initiating events, key events, and adverse 

outcomes should be predictable. The successful application and adaption of 

AOPs in toxicology ( especially regulatory toxicology) will depend on the ef­

fectiveness of an AOP to predict adverse outcomes. Since AOPs are considered 

living documents that will change with the progressive availability of knowl­

edge, the development of AOPs will proceed in parallel with their use; which 

will inevitably, in some cases, pose uncertainties. The more nonlinear linkages 

there are over multiple pathways, the more challenging the task of deriving 

correlations for prediction. As with other sciences, there is an urgent need for 

standardization, harmonization, and development of common language( s) to 

connect and understand different application domains. 

2 Preclinical Drug Development 

From the discovery of new therapeutic entities to the marketing of the final 

product, the drug development process mainly deals with preclinical devel­

opment and clinical trials of, so-called, investigational new drugs. Preclinical 

drug development focuses on the proof of efficacy and safety of new drugs. The 

immense technological advancements of recent years have rendered the drug 

discovery and development process more expensive than ever. At the same 

time, the success rates have fallen, the regulatory requirements are becoming 

stricter, and the competition has become fierce. According to the Tufts Cen­

ter for the Study of Drug Development, in 2014, the cost of drug development 

was around us$2.6 billion, with preclinical development costs surpassing 

us$1 billion (Mullin, 2014). Only one in ten drugs entering the clinical phase 

is approved by the us Food and Drug Administration (FDA), according to a 

recent report (Hay et al., 2014). The failure of an investigational new drug in the 

clinical trials may cost billions of dollars (Horton 2004; Lang 2005). Most 

investigational new drug failures are due to lack of efficacy and/or clinical tox­

icity. Human safety issues result in about 20% of failed drugs (Kola and Landis, 

2004). In 2010, a 10-year survey showed that safety issues remained one of the 

major bottlenecks in drug development (Waring et al., 2015). The woes of the 

pharmaceutical industry can continue even after the approval and marketing 

of a drug, as there is around 5% risk of post-marketing withdrawal due to ad­

verse effects (Smith and Schmid, 2006). 

Liver and cardiac toxicity are the major issues in drug development. Liv­

er toxicity alone (until 2014) has resulted in most drug withdrawals. The 
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regulatory agencies require the testing of acute and repeated-dose toxicity in 

animals. Although, the pharmaceutical industry is, at present, using a range 

of high-throughput in vitro assays ( some accepted by regulatory bodies) in 

the initial screening of compounds, there are no accepted in vitro models for 

repeated-dose, long-term toxicity. The next part of the chapter focuses on the 

limitations of animal models and emerging new models and technology in the 

assessment of liver toxicity, followed by in silico computational methods in 

drug development. 

3 Limitations of Animal Models in Liver Toxicity Evaluations 

Although in vivo animal testing gives direct evidence of toxicity in a living "in­

tact" organism and allows experiments not possible in humans, it is limited by 

several serious drawbacks of scientific, economical, and ethical nature. A ma­

jor limitation is the poor predictive power of animal studies. This poor transla­

tion of animal results to humans is mainly due to species-specific differences 

(Martignoni, Groothuis and de Kante, 2006). Animals predict only 40% of hu­

man liver toxicities (Ewart et al., 2014; Olson et al., 2000 ). Even among differ­

ent animal species, the correlation is about 60% (Hartung and Daston, 2009 ) ,  

showing differences among test species and the limitation of prediction. The 

intrinsic differences in animals within the same species provide inconsistent 

results, especially in the case of oral-dose chronic toxicity. Testing in animals 

is usually carried out in the highest tolerable doses, which do not reflect hu­

man exposure. Equally important, even after standard animal testing, 19% of 

compounds presumably safe in animals, show toxic effects in human clinical 

trials and are not pursued further (Sacks et al., 2014). In addition, many drugs 

proved safe in animal tests and clinical trials, are withdrawn from the market 

or labeled with black box warnings due to serious side effects. In the past 60 

years, there have been more than 450 post-marketing withdrawals of drugs due 

to hepatotoxicity ( Onakpoya, Heneghan and Aronson, 2016 ) .  

Species-specific differences are mainly due to differences in the pharmaco­

kinetic parameters, namely absorption, distribution, metabolism, and elimi­

nation. Screening in animals is carried out with the assumption that similar 

reactions of biotransformation and clearance will occur in animals as in hu­

mans. However, animals differ from humans in the biotransformation of xeno­

biotics from Phase o ( uptake of compounds mainly via transporters), to Phase I 

(cYP450 metabolism), Phase I I  (conjugation reactions), and Phase I I I  (excre­

tion/eliminations of the parent compound or metabolites or their conjugates 

mainly via the transporters). It is now well known that not only are there 
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differences in the metabolism of substances between animals and humans, 

but also many molecular mechanisms of human cellular injury are different 

(Woolbright et al., 2015). 

In addition, due to the characteristics inherent to in vivo testing, such test­

ing is excessively precautionary; and, therefore, many potential therapeutic 

compounds are screened out. One such example is aspirin, which is consid­

ered safe for human beings; it would not have been possible to market aspirin 

with current methods and criteria for safety (Hartung, 2009 ). This means that 

the current methods of screening may also possibly screen out compounds 

that could otherwise be useful in the therapy of human ailments. Other tech­

nical limitations include, low throughput of animal studies, in addition to 

prolonged study periods in some cases ( e.g., carcinogenicity study) (Bucher, 

2002) .  

Although animal testing has provided significant insights into biological 

processes and has contributed to human safety, the scientific goal of the 21st 

century should be a move towards human-based in vitro methods, with mod­

ern tools of systems biology, to bypass the species barrier and to allow better 

translation. 

4 In vitro Models of Liver Toxicity in Preclinical Drug Development 

Traditionally, in vitro models refer to cell-cultivation methods of primary cells 

and cell lines, commonly involving plastic or glass cultivation vessels with a 

cell-culture medium suitable for a given cell type. Wilhelm Roux, a German 

zoologist, established the basic principles of tissue culture in 1885, by main­

taining tissues in a warm saline solution for several days. Julius Richard Petri, a 

German microbiologist, owns the credit of inventing the Petri dish in the early 

1900s. Modern two-dimensional ( 2D) cell culture is usually carried out in poly­

mer culture flasks and dishes of multitude formats. Ross Granville Harrison, an 

American embryologist, is considered the pioneer of 3D cell culture using the 

hanging drop method (Nicholas, 1961). 

Today, 2D cultivation techniques are well established and cells ( mostly cell 

lines) of almost all tissues of human or animal origin are available. There are 

many advantages to the 2D cultivation of cells, such as simplicity; expertise 

required; low costs; high number of replicates; and, most importantly, applica­

tion in high-throughput screening in multi-well plates, with the possibility of 

miniaturization and robotic automation, minimizing human bias and error as 

well as ensuring high precision. In addition, less material ( cells and culture me­

dia as well as test substance) is required with fewer ethical concerns. A battery 
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of simple and complex 2D in vitro assays can predict up to 80% of human hep­

atotoxicity (Noor et al., 2009; Vernetti et al., 2017). 

Nevertheless, 2D cultivation of cells involves maintaining the cells in an 

unnatural and artificial environment, whereby they lose their organ- and 

tissue-specific architecture and organization. Other factors, such as medium 

change, cell density to surface ratios, lack of flow and sheer tension, and un­

physiological oxygen supply are other major limitations. Another commonly 

encountered problem is the rapid de-differentiation of primary cells, such as 

the hepatic cells, in 2D cultures, resulting in the loss of functions. 

In vivo, cell-to-cell contacts and communication across the extracellular ma­

trix are ensured within a three-dimensional (3D) arrangement. The extracellu­

lar matrix regulates cell morphology and gene expression in vivo (Bissell, 2007; 

Bissell, Hall and Parry, 1982; Le Beyec et al., 2007 ). A 3D environment influences 

the epigenetic plasticity of the cells (Spencer,Xu and Bissell, 2007; Xu, Spen­

cer and Bissell, 2007 ). Conventional 2D hepatic cultures rapidly lose liver-like 

functionality (Godoy et al., 2013; Paine and Andreakos, 2004), leading to poor 

concordance between experimental in vitro data and in vivo data, especially 

with respect to xenobiotic metabolism and transporter activities. Optimiza­

tion of the culture medium may help in the maintenance of functions for some 

time (Klein et al., 2014; Mueller et al., 2012 ). However, modem in vitro methods 

are more and more focused on the 3D cultivation of cells as organoids or mi­

cro tissues that ensure cell-to-cell contacts, cells to be surrounded completely 

by extracellular matrix, facilitating cell-to-cell communication and signaling 

(Alepee et al., 2014; Mueller, Heinzle and Noor, 2013). 

3D cultures of primary human hepatocytes and human-cell lines, such 

as HepRG and HepG2, retain long-term viability and maintain liver-specific 

functions in vitro (Mueller, Koetemann and Noor, 2011a; Mueller et al., 2011b; 

Gunness et al., 2013; Mueller et al., 2014; van Grunsven, 2017 ). 3D cultures ( also 

called 3D micro tissues, organoids, and organotypic cultures) in microfluidic 

devices, are termed biochips (Baudoin et al., 2007), organs on a chip (Bhatia 

and Ingber, 2014) or body on a chip, where several tissues or organ systems are 

represented (Marx et al., 2012; Mateme et al., 2015a; Mateme et al., 2015b; Sung 

et al., 2014). These emerging technologies allow the study of human physiol­

ogy and adverse effects in vitro, as they enable analysis of the biochemical 

and metabolic activities of living cells in functional tissue and organ contexts, 

while allowing high-resolution, real-time imaging (Bhatia and Ingber, 2014). 

Although, such advanced 3D culture techniques demand expertise, and usu­

ally special equipment/setups, in addition to comparatively higher costs and 

lower throughputs, they seem to be indispensable for meaningful human­

biology based science in future. 
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Much development effort is underway for a high-throughput generation of 

the 3D cultures as aggregates ( Gevaert et al., 2014 ), micro-patterned co-cultures 

(Khetani and Bhatia, 2008) and 3D printing (Billiet et al., 2014). High-content 

platforms are already used in drug development for the screening of com­

pounds (Bale et al., 2014; Tolosa et al., 2014). At the same time, highly-advanced 

imaging and other techniques (including automated methods for assessing 

multiple readouts, such as cell viability, shape of the nuclei, cell area, mito­

chondrial membrane potential, phospholipids accumulation, cytoskeleton 

integrity, and apoptosis) are playing an important role in the study of biologi­

cal pathways (Ramaiahgari et al., 2014; Sirenko et al., 2014). Such high-content 

and high-throughput platforms are changing the toxicity screening paradigm 

(Patlewicz et al., 2013), paving the way towards pathway-based, in vitro only, 

safety assessment (Adeleye et al., 2014; Kleensang et al., 2014). 

5 Computational in silico Tools 

In silico methods such as quantitative structure activity relationships ( QSARs) 

in predictive toxicology are not new. More than 150 years ago, Cros ( 1863) linked 

the toxicity of primary alcohols to their water solubility. Crum-Brown and Fra­

ser (1869) advanced the idea that the biological activity of a compound was 

linked to its chemical structure. In the 1980s, when pharmaceutical companies 

were creating libraries of thousands of compounds, methods of QSARs were 

refined, automatized, and extensively applied. The idea was that the toxicity 

of a chemical is dependent on specific features of the structure of that chemi­

cal. Therefore, similar chemical features are expected to share similar mecha­

nisms of action and could be used for the prediction of activity. Basically, a set 

of compounds of known activities are used to train computer algorithms to 

differentiate between active and inactive compounds (Johnson and Maggiora, 

1990 ). QSARs provide a mathematical relationship between a biological activ­

ity and one or more molecular descriptors able to predict the activity. These 

molecular descriptors are quantifiable and, therefore, give a quantitative rela­

tion to the toxicity. Modem QSARs are multidimensional (mQSAR) and include 

multiple representations of the ligand or protein (Tseng et al., 2012; Vedani, 

Dobler and Lill, 2006). 

QSARs are often used in combination with other methods, such as read-across 

and weight-of-evidence assessments. Read-across is defined by the European 

Chemicals Agency (2017, p. 6) as "a technique for predicting endpoint informa­

tion for one substance (target substance), by using data from the same end­

point from (an)other substance(s), (source substance(s))". A range of in silico 
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tools are available for grouping the chemicals and read-across (Enoch, Cronin 

and Ellison, 2011). Publicly available software include, toxicity estimation soft­

ware tool (TEST), the 0ECD QSAR toolbox, high-throughput virtual molecule 

docking (HTVMD ), MetaCore, and the T0PKAt model. QSAR methods are in­

creasingly predictive in hazard identification for acute toxicity, genotoxicity, 

mutagenicity, and bioaccumulation. Nevertheless, QSARs and read-across are 

limited in the prediction of the pharmacokinetic properties of compounds. 

Other in silico methods include computational methods for modeling 

the pharmacokinetics of compounds and linking this to the biological re­

sponse. Pharmacokinetics deals with the quantification of drug absorption, 

distribution, and elimination for the investigation and prediction of blood 

concentration-time profiles. Pharmacokinetic models can be simple to com­

plex, depending on the level and the quality of information available. Simple 

models are empirical and can be used for the estimation of clearance and 

half-life, allowing dosage-regimen calculations (Jones, Mayawala and Poulin, 

2013; Klein et al., 201s; Wetmore et al., 2012 ). Models that are more complex are 

Physiologically Based Pharmaco-Kinetic (PBPK) models, which are compart­

ment models. These compartments represent tissues and organ spaces and 

their volumes. AB early as 1937, Toerell, one of the pioneers of pharmacokinet­

ics, described the basic principles of a PBPK approach (Teorell, 1937). However, 

its mathematical complexity and the lack of physiological data needed for the 

model were significant challenges to its widespread application for many years. 

At present, PBPK models are mechanism based and allow extrapolation 

from high doses to lower doses, from one species to another, and between dose 

routes. Traditionally, data is generated from in vivo animal and in vitro animal 

and human studies (see Figure 25.5), in an approach originally described by 

Sobels for anticancer drugs (Sobels, 1977). 

Since PBPK models are based on physiological parameters, it is possible to 

use them to predict in vivo absorption, distribution, metabolism, and excre­

tion. PBPK modeling is still heavily dependent on animal studies, and very few 

clinical applications of PBPK models have appeared. The major reason is the 

lack of human data for validation. However, in vitro systems can be used, to 

some extent, for the prediction of distribution, metabolism, and elimination 

(Poulin, 2013; Poulin et al., 2013a, b; Poulin and Haddad, 2013). Using a PBPK 

model, in vitro tests can also provide parameters that allow the prediction of 

dose-response in vivo. PBPK modeling not only allows simulation of human 

pharmacokinetics, it also enables in vitro to in vivo extrapolation. For this 

purpose, quantitative in vitro data, such as data on tissue distribution, rates 

of metabolism, rates of interactions with biological macromolecules such 
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Model organism (in vivo) Human (in vivo) 
Interspecies 

extrapolation 

Model organism (in vitro) -------------- Human (in vitro) 
Interspecies 

extrapolation 

FIGURE 25.5 Traditional approach for risk assessment using animal data. 

ADAPTED FROM SOBELS (19 77) 

as receptors, changes in cell function and viability, is needed. PBPK model­

ing combined with other in silico ( chemical-related) and in vitro (biology­

related) parameter estimations allows for prediction of in vivo exposure 

equivalent to the in vitro assay concentrations producing an adverse effect. For 

reliable predictions using such methods, a thorough experimental design with 

the characterization of the biological system, including the cell model and 

its characteristics, is essential. Recently, simple PBPK models were combined 

with acute and long-term dose-response data to calculate oral equivalent dos­

es ( Chang et al., 2015; Hamon et al., 2015; Klein et al., 201s; Rotroff et al., 2010; 

Wetmore et al., 2012; Yoon et al., 2014). 

Models based on a systems biology approach are also being developed (Ide­

ker et al., 2001) to allow firm anchorage of PBPK/pharmacodynamic models 

on a mechanistic basis. This new developing area, currently also referred to as 

quantitative systems pharmacology, focuses on the drugability of targets in bio­

logical systems. Quantitative systems pharmacology, in fact, follows a systems 

biology approach to drug discovery, aimed at the underlying mechanisms of 

drug actions on multiscale systems, using iterative computational modeling 

(Knight-Schrijver et al., 2016; Vernetti et al., 2017). 

In general, the advantages of in silico methods are low costs, standardiza­

tion, equipment needs, throughput, and the tremendous possibility of virtual 

expansion in terms of chemical space, numbers, and biological response sce­

narios. However, these methods have their own limitations, such as reliability 
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and robustness. These limitations are mainly based on data quality (and in 

some cases quantity) and the complexity of biological systems. Gene expres­

sion and metabolic network models, along with integrated, large multiscale 

models, are computationally demanding, data intensive, and time consuming. 

6 Toxicology in the Coming Years: Challenges and Perspectives 

Systems biology-with next generation technologies, such as integrated omics 

techniques, advanced cell-culture methods, and assays, along with better and 

faster computational in silica methods-is playing a key role in changing the 

global mindset towards toxicology. This shift in paradigm will allow for the in­

tegration of a human knowledgebase, including network information and in 

vitro assays providing critical key event parameter values, with less emphasis 

on in vivo animal data (Edwards and Preston, 2008). For optimal application of 

systems biology tools, the fundamental construct is to develop adequate and 

fit-for-purpose in vitro assays to characterize pathway perturbations and pre­

dict adverse outcomes due to these perturbations. Future in vitro assays will be 

based on human cells derived from pluripotent stem cells and human reporter 

cell lines. 

The two most important comer stones of risk assessment are exposure and 

concentration response. Systems biology provides the framework for bridging 

exposure to a compound and its causal adverse outcome (Sheldon and Cohen 

Hubal, 2009). It is essential that in vitro data provide relevant information on 

the concentration response over time. The perturbations and the concentra­

tion in which they occur should reflect human in vivo exposure and effects. 

However, extrapolation of in vitro results to humans in vivo is sometimes 

limited due to the fact that nominal concentrations in the in vitro assays are 

used without consideration of the exposure magnitude, timing, and duration 

(Coecke et al., 2013). Other factors such as in vivo bioavailability and metabolic 

clearance are not taken into account, in addition to other in vitro specific pa­

rameters, such as plastic binding, cell-surface binding, compound degradation 

and evaporation (Groothuis et al., 2015). 

Furthermore, better tools for the characterization of the biological pertur­

bations leading to adverse effects are needed for a mechanistic understanding 

of the perturbed pathways. This will require a recapitulation of the toxicity 

pathway( s) by in vitro assays. In this context, the systems biology approach 

provides molecular information and key event networks for the comparison 

of MOA-based pathways. Systems biology measurements will also provide in­

formation on overlapping events across multiple pathways. Given that there 

is often a temporal shift in various omics readouts, it is imperative to conduct 
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Human ( in vitro cells) 

Human Omics 
specific Biomarkers 

effects Mol. pathways 
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Prediction 

In silica tools 
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PK/PD 

Mechanisms 

Targets 

FIGURE 25. 6 An ideal shift in paradigm where human-relevant, advanced mechanism­

based in vitro cells, such as primary human hepatocytes, hiPscs, derived 

functional hepatocytes, or cardiomyocytes will provide high-quality data for 

in vitro to in vivo extrapolation ( IVIVE) of human pharmacokinetics (PK)/ 

pharmacodynamics (PD), identification of targets, and mechanisms that will 

ultimately lead to the prediction of adverse effects in humans in vivo. 

kinetic studies, so that time resolved data could be obtained. Careful design 

and control of the system is necessary to obtain high-quality data and to reduce 

uncertainties inherent to in vitro systems. A fully integrated systems approach 

would reduce many uncertainties associated with current risk assessment ap­

proaches. The aim is to obtain human-specific, high-quality data at different 

molecular levels and integrate these with in silico tools for the extrapolation 

and prediction of human adverse effects (see Figure 25.6). 

Thus, a systems biology approach could help define M OA, species extrapo­

lation, in vitro to in vivo extrapolation and provide a mechanistic basis for de­

scribing the susceptibility of certain subpopulations. An integrated approach 

of human in vitro and in silico methods for in vivo exposure is expected to pro­

vide a reliable prediction of toxicity. An in vitro system that is designed and 

characterized to provide human in vivo relevant information will be the key to 

successful prediction. Combined with qualitative and quantitative knowledge 

on perturbations in biological pathways over time, this integrated approach 

could be a powerful tool for in vivo relevant toxicity assessment. Finally, the 

concept of AOP remains to be developed beyond its limitations and deficiencies 

to be successful and to gain acceptance by the regulatory agencies in human­

risk assessment. 

Microfluidic systems, using 3D organotypic cultures for compound screen­

ing, is another area with great promise. In the case of liver, it will additionally 

allow measurements of pharmacokinetic and pharmacodynamic parameters 

in vitro. A challenge will be to include more than one organ on such a plat­

form. Although some systems (see Figure 25.7) are already reported, they are 

still limited in their wide application. A pragmatic solution will be to combine 

organ-type cells, according to the scientific need and the data needed. 

The establishment of complex cellular models based on co-cultures is an­

other active research area with promise in the quantitative understanding of 

mechanisms in human health and disease. Organs are complex structures and 
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FIGURE 25. 7 Body on a chip. 

IMAGE COURTESY OF THE WYSS INSTITUTE, HARVARD UNIVERSITY 

their response (manifested as adverse effects or disease) is a joint response of 

many cell types in communication. Combining different cell types is no trivial 

task, due to the complex environmental needs of each cell type. The in vivo 

relevance of these systems will have to be validated. Advanced microfluidic 

systems, in future, will include liver zonation (Vernetti et al., 2017) .  

The application of hiPsc-derived models in human disease research, in 

future, will move in vitro systems from mostly proliferating cell lines towards 

patient-specific cells and will, thus, facilitate personalized systems medicine. 

Human-induced pluripotent stem cells have great potential in toxicologi­

cal screening, since they provide patient-specific pharmacological responses. 

Hepatocyte-like cells, derived from hiPSCs  cultured on a micropatterned co­

culture system are reported to predict the hepatotoxicity of test compounds 

with 65% sensitivity and 100% specificity (Ware et al., 2015). In addition, 

CRISPER/Casg technology provides a range of modified induced pluripotent 

stem cells (iP sc s  ), which will allow discovery of novel targets and biomarkers. 

A whole range of modified iPSCs, after differentiation, could serve not only in 

regenerative therapy but could be applied in mechanistic research and in the 

screening of therapeutics ( see Figure 25.8) . 

It is hoped that this shift in paradigm will progress towards evidence-based 

science and personalized medicine, where clinical observations will be used to 

design advanced in vitro methods based on 3D models, with patient-specific 

primary or iPsc-derived cellular models (see Figure 25.9) .  The omics data from 

these models is expected to allow biological target identification and valida­

tion. This information will facilitate personalized therapy for a specific patient 

depending on the patient's genetic background. 
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FIGURE 25 .8  Modem cell reprogramming and gene editing tools, allowing modifications of 
patient-specific iPSCs for use in disease research, toxicology, and screening, in 
addition to the possibility of cell therapy. 
IMAGE TAKEN FROM SEAH ET AL. (2015) 

Clinical 
observation 
/ monitoring 

Evidence 

based 
personalized 

therapy 

in vitro 
patient 
specific 

mechanistic 
investigations 

Target 
identification 

& validation 

FIGURE 25 .9  The paradigm shift towards clinical, observations-based, mechanistic investi­
gations in vitro, using advanced tools of cell culture and omics. These should 
provide potential biomarkers and targets for exploitation in evidence-based 
personalized therapy and follow-up. 
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Clinical observations combined with the omics information, mechanisms, 

and biomarkers will iterate the whole process in modern systems toxicology. 

The impact of this approach is, no doubt, beyond toxicology in other fields of 

health, medicine, drug development, and basic sciences. 
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