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ABSTRACT 

Emotions play a crucial role in an animal’s life because they facilitate responses to 
external or internal events of significance for the organism. In social species, one of the 
main functions of emotional expression is to regulate social interactions. There has 
recently been a surge of interest in animal emotions in several disciplines, ranging from 
neuroscience to evolutionary zoology. Because measurements of subjective emotional 
experiences are not possible in animals, researchers use neurophysiological, behavioural 
and cognitive indicators. However, good indicators, particularly of positive emotions, are 
still lacking. Vocalizations are linked to the inner state of the caller. The emotional state of 
the caller causes changes in the muscular tension and action of its vocal apparatus, 
which in turn, impacts on vocal parameters of vocalizations. By considering the mode of 
production of vocalizations, we can understand and predict how vocal parameters should 
change according to the arousal (intensity) or valence (positive/negative) of emotional 
states. In this paper, I review the existing literature on vocal correlates of emotions in 
mammals. Non-human mammals could serve as ideal models to study vocal expression 
of emotions, because, contrary to human speech, animal vocalizations are assumed to 
be largely free of control and therefore direct expressions of underlying emotions. 
Furthermore, a comparative approach between humans and other animals would give us 
a better understanding of how emotion expression evolved. Additionally, these non-
invasive indicators could serve various disciplines that require animal emotions to be 
clearly identified, including psychopharmacology and animal welfare science. 

 

Introduction 

The existence of emotions in animals had already been suggested by Darwin in his book ‘The Expression 
of the Emotions in Man and Animals’ (Darwin, 1872). An emotion is not a high-level cognitive process, as 
evidence suggests that emotional states are in fact generated by lower (medial and caudal subcortical 
structures) rather than higher brain regions (neocortical structures; Panksepp, 2005). Emotions have a 
crucial function for an animal’s life as they facilitate responses to external or internal events of 
significance for the organism; positive emotions elicit approach behaviour towards stimuli that enhance 



fitness (‘rewards’), whereas negative emotions trigger avoidance behaviour when encountering stimuli 
that threaten fitness (‘punishers’; Mendl, Burman & Paul, 2010). 

In scientific terms, an emotion is an intense but short-living affective reaction to a specific event or 
stimulus. However, for most people, ‘emotion’ is a synonym of ‘feeling’ (i.e. our conscious/subjective 
experience of emotions). For example, if we happen to encounter a dangerous animal in the wild, our 
heart rate will increase and we will begin to sweat. Our subjective feeling of these physiological changes 
is what we call ‘fear’ (Davidson, Scherer & Goldsmith, 2003). This is probably why I often hear people 
asking ‘do animals really have emotions?’ or ‘is it not being anthropomorphic to infer that animals have 
emotions?’ Yes, non-human animals have emotions (at least ‘basic emotional systems’: seeking, rage, 
fear, lust, care, panic and play; Panksepp, 2011), even if subjective emotional experiences are not yet 
possible to prove in animals (de Waal, 2011). In other words, animals express signs of emotions, but their 
ability to feel these emotions is still highly controversial (Panksepp, 2005). 

Studying animal emotions can reveal the nature of basic human emotions (Panksepp, 2011). It can help 
us to understand how emotions evolved and developed, in order to acquire a full understanding of their 
nature (Adolphs, 2010). Knowing which emotions animals are experiencing could also serve several 
disciplines such as evolutionary zoology, affective neuroscience, pharmaceutics (pain research) and 
comparative psychology. Today, public concern about animal welfare is strongly based on the attribution 
of mental states to animals, and welfare assessment is now commonly linked to both physical and mental 
health (Dawkins, 2008). The problem then is how can we measure emotions in animals if they cannot tell 
us what they feel (i.e. subjective component)? A robust framework to study animal emotional states has 
recently been established by Mendl et al. (2010). This framework suggests using the other components of 
emotion as indicators; neurophysiological, behavioural and cognitive components, and the two 
dimensions of emotions; arousal (i.e. intensity or activating qualities) and valence (i.e. 
positivity/negativity). Therefore, now, animal research is on the right path towards a full understanding of 
animal emotions. However, the proposed neurophysiological, behavioural and cognitive indicators of 
emotions need to be described in detail before we are able to infer animal emotions. 

Facial expressions of emotions have been studied in several animal species (e.g. non-human primates, 
sheep Ovis ovaries, rats Rattus norvegicus; Tate et al., 2006; Langford et al., 2010). Another promising 
behavioural indicator of emotions is vocalizations. Several types of vocalizations have been shown to 
indicate positive or negative emotional valence (e.g. ultrasonic vocalizations in rats; Knutson, Burgdorf & 
Panksepp, 2002; Burgdorf, Panksepp & Moskal, 2011). Their link to specific brain circuits responsible for 
emotions has been established in some species (e.g. cats Felis catus, Siegel et al. 2010; rats, Burgdorf et 
al., 2007). However, the link between variations in vocal parameters and emotion-related physiological 
changes in the vocal apparatus has rarely been investigated. In humans, indicators of emotions in human 
voice (‘affective prosody’) have been studied in detail (e.g. Scherer, 1986; Zei Pollermann & Archinard, 
2002). Theories of speech production recently applied to animal vocal communication (‘source–filter 
theory of vocal production’; Fant, 1960; Titze, 1994; Taylor & Reby, 2010) can inform us about the 
mechanisms linking contexts of vocal production and the acoustic structure of vocalizations, and allow us 
to make predictions about how vocalizations should change according to emotional arousal and valence. 

In this paper, I review the current state of knowledge on vocal correlates of emotions in mammals. I first 
introduce techniques recently developed to study animal emotions. Then, I describe methods used to 
study animal vocalizations, which link vocal parameters to production mechanisms. In the following 
sections, I review the existing literature on vocal correlates of emotions in humans and other mammals. I 
highlight the best methods to use in studies on non-human mammals, and the lack of research in this 
area. Finally, I conclude with the best/most likely vocal indicators of emotional valence and arousal in 
non-human mammals. 



Measuring emotions in animals 

Measuring animal emotions might appear, at first glance, as a difficult goal to achieve. Fortunately, the 
interest in the field of affective biology has considerably increased recently. As a result, new frameworks 
have emerged, offering researchers convenient and accurate techniques to measure animal emotional 
states, including positive emotions and moods (i.e. long-term diffuse emotional states that are not directly 
caused by an event; e.g. Désiré, Boissy & Veissier, 2002; Paul, Harding & Mendl, 2005; Boissy et al., 
2007; Mendl et al., 2010). The basic principle behind those measures is relatively simple: an animal is 
assumed to experience a given emotion (e.g. fear) if it shows neurophysiological (e.g. changes in brain 
activity or in heart rate), behavioural (e.g. facial expression, production of calls, fleeing behaviour) and/or 
cognitive (e.g. increase in attention towards the stimulus, ‘attention bias’) signs of this emotion in a 
situation presumed to induce it. Therefore, to study a given emotion, a first step consists in placing the 
animal in a situation presumed to trigger this emotion and then measuring the corresponding pattern of 
neurophysiological, behavioural and/or cognitive changes induced. The resulting emotion-specific profile 
of responses can then be used later as evidence that the emotion is elicited in other situations. 

I will present here the framework developed by Mendl et al. (2010), one of several useful theories within 
this field to study emotions (e.g. see also appraisal theories; Désiré et al., 2002). This framework 
proposes to assess emotions using the measurable components of the organism’s emotional response 
(neurophysiological, behavioural and cognitive) through the two dimensions of emotions (valence and 
arousal; ‘dimensional approach’). As opposed to the ‘discrete emotion approach’, which suggests the 
existence of a small number of fundamental emotions associated with very specific neurophysiological 
response patterns, the ‘dimensional approach’ suggests that all types of emotions can be mapped in the 
space defined by valence and arousal (i.e. by a given combination of these two dimensions). Therefore, 
neurophysiological, behavioural and cognitive measures reliably associated with a particular location in 
this two-dimensional space can be used as indicators of the emotion defined by this location. For 
example, indicators of ‘fear’ will be components reliably associated with negative valence and high 
arousal, whereas those of ‘contentment’ will be components reliably associated with positive valence and 
low arousal (Mendl et al., 2010). This approach is useful for the study of animal emotions because it 
allows researchers to investigate differences between emotional states of low versus high arousal and of 
positive versus negative valence, without having to infer the specific emotion that the animal is 
experiencing. 

Commonly used neurophysiological indicators are stress measures, such as heart rate and its variability, 
respiration rate, skin temperature, electrodermal response or neuroendocrine activity. Good behavioural 
indicators include body postures, movements and vocalization types and rate (e.g. Reefmann et al., 
2009a; Reefmann, Wechsler & Gygax, 2009b). Other related techniques allow researchers to assess 
animal long-term emotional states (‘moods’) using the cognitive components of emotions, such as 
appraisal processes and attention, memory and judgment biases (Paul et al., 2005). The studies carried 
out so far show that it might be difficult to differentiate between situations of similar arousal, but different 
valence (Mendl et al., 2010). Considering multiple indicators could help to interpret emotions experienced 
by animals (Paul et al., 2005; Boissy et al., 2007). Therefore, new indicators are needed, especially to 
distinguish between positive and negative emotional valence. 

Measuring vocalizations in mammals 

Research on mammal vocal communication, and particularly studies on vocal indicators of emotions and 
welfare, often focused principally on the most obvious parameters of vocalizations, such as calling rate, 
duration, the occurrence of call types and energy distribution (e.g. Weary & Fraser, 1995a; Weary, 
Braithwaite & Fraser, 1998; Byrne & Suomi, 1999; Grandin, 2001; Marchant, Whittaker & Broom, 2001; 



Shair et al., 2003). The types of vocalizations produced can be useful indicators of emotional arousal and 
valence (Brudzynski, 2007; Scheumann, Zimmermann & Deichsel, 2007; Taylor, Reby & McComb, 2009; 
Gogoleva et al., 2010a). However, new methods, adapted from studies on human speech to nonhuman 
mammal vocalizations, could allow a far better understanding of why and to what extent calls vary 
between individuals and between contexts (Taylor & Reby, 2010). 

According to the source–filter theory of voice production (Fant, 1960; Titze, 1994), mammal vocalizations 
are generated by vibrations of the vocal folds (‘source’) and are subsequently filtered in the vocal tract 
(‘filter’). The source determines the fundamental frequency of the call (F0; vocal measures mentioned 
throughout the review are in italic and their definitions are listed in Table 1), and the filter shapes the 
source signal by selectively amplifying certain frequencies and dampening out others. This filtering 
mechanism produces spectral peaks called ‘formants’ (Fig. 1). Source-related vocal parameters depend 
on the anatomy and physiology of the larynx (vocal fold length, thickness, mass, tension and internal 
structure, i.e. collagen and elastin fibre densities and orientations), whereas filter-related vocal 
parameters are determined by the anatomy and physiology of the supralaryngeal vocal tract (e.g. shape, 
length and tension of the vocal tract; Table 2). The source–filter theory has recently been applied to 
various species and revealed interesting links between vocalizations and the caller’s anatomical or 
physiological attributes (e.g. Reby & McComb, 2003; Briefer, Vannoni & McElligott, 2010; Briefer & 
McElligott, 2011; Charlton et al., 2011). 

The source–filter framework could help in predicting and identifying parameters influenced by emotions 
because it considers the link between the structure of vocalizations and their mode of production. In 
animals as in humans, very few studies on emotions have investigated the frequency distribution in the 
spectrum or formant parameters (Scherer, 2003; Juslin & Scherer, 2005). However, several studies have 
suggested that this could be key to the vocal differentiation of emotional valence, with the other 
parameters (e.g. F0, amplitude and vocalization rate) indicating mainly physiological arousal (Scherer, 
1986; Banse & Scherer, 1996; Waaramaa et al., 2010; Patel et al., 2011). Therefore, it is crucial to 
measure a large set of parameters including formant frequencies, using the source–filter framework, in 
order to obtain emotion-specific vocal profiles. In the next sections, I will review the literature on vocal 
correlates of emotions in humans and other mammals, and explain how both F0 contour and formants 
can be influenced by the emotional state of the caller. 

Vocal correlates of emotions in humans 

Human speech communicates both linguistic and paralinguistic (i.e. non-verbal; voice quality and 
prosody) information. Because only equivalents of non-verbal cues can be found in non-human 
mammals, I focus in this review on emotion indicators in the paralinguistic domain. In humans, vocal 
correlates of emotions in this domain (‘affective prosody’) play an important role in social interactions, and 
have been extensively studied since Darwin (1872). Both the encoding (expression) and the decoding 
(impression) of discrete emotions in the voice have been studied (Banse & Scherer, 1996). Research on 
the coding process has revealed a set of acoustic characteristics that reliably indicate emotions (see next 
sections for more details; Zei Pollermann & Archinard, 2002; Scherer, 2003). The specific acoustic profile 
of several different emotions, showing similarities across languages, has been established 
(Hammerschmidt & Jürgens, 2007; Pell et al., 2008). Studies on the decoding process have shown that 
people are able to extract accurate information about discrete emotions from vocal cues, even across 
cultures and languages (Scherer, Banse & Wallbott, 2001; Sauter et al., 2010). 

 

 



Table 1. Vocal parameters listed in this review and their description. 
Code Parameter Description 

1 Vocalization/element duration Total duration of the vocalization/elements in the vocalization 
2 Vocalization/element rate Number of vocalizations/elements produced per time unit 
3 Inter-vocalization/element interval Mean silence duration between two vocalizations/elements 
4 Number of elements Number of syllable/note composing the vocalization (for complex vocalizations) 
 F0 Fundamental frequency, lowest frequency of the vocalization 

5 F0 contour Sequence of F0 values across the vocalization (includes F0 mean, start, end, 
minimum, maximum) 

6 F0 range Difference between minimum and maximum F0 
7 Time of maximum/minimum F0 Time point of the maximum/minimum F0 value relative to the total duration 
8 H1-H2 Difference in amplitude level between F0 and the second harmonic (‘hoarseness’ 

or breathiness’ in human voice) 
9 F0 slope F0 mean absolute slope (steepness) 

10 Jitter Cycle-to-cycle frequency variation of F0 
11 Shimmer Cycle-to-cycle amplitude variation of F0 

 Amplitude Level of energy in the vocalization (intensity or energy) 
12 Amplitude contour Sequence of amplitude values across the vocalization (includes mean, start, end, 

minimum, maximum amplitude) 
13 Amplitude range Difference between minimum and maximum amplitude 
14 Amplitude modulation (AM) Variation in amplitude relative to the total duration 

 Frequency spectrum Amplitude as a function of frequency 
15 Energy distribution Distribution of energy in the spectrum (e.g. energy quartiles, amount of energy in 

various part of the spectrum, ratio between harmonics and F0 
16 Peak frequency Frequency of maximum amplitude 
17 Time of peak frequency Time point of the frequency peak relative to the total duration 
18 Dominant frequency band (FBn) contour Sequences of values of high amplitude frequency bands (FB1, 2, 3, etc) across 

the vocalization (e.g. FBn mean, start, end, minimum, maximum ) 
19 Spectral slope Slope of the regression line through the spectrum 
20 Frequency range Frequency range in the spectrum (e.g. difference between energy quartiles) 
21 Frequency modulation (FM) Variability/modulation of the dominant frequency or F0 across the call 

 Formants frequencies Concentration of acoustic energy around particular frequencies in the vocalization 
 F1, 2, 3, 4, etc Frequency value of the first, second, third, fourth, etc. formant 

22 Fn contour Sequences of values of formant frequencies (F1, 2, 3, etc) across the vocalization 
(e.g. Fn mean, start, end, minimum, maximum) 

23 Formant dispersion Spacing of the formants 
 Non-linear phenomena Complex intrusions into the normal spectral structure (e.g. subharmonics, 

deterministic chaos, biphonation, frequency jumps) 
24 Spectral noise Proportion of noise in the vocalization, where the harmonic structure is not clear 

or cannot be detected (e.g. chaos) 
25 Entropy Ratio of the geometric mean to the arithmetic mean of the spectrum (0: pur tone; 

1: random noise) 
26 Harmonic-to-noise ratio Ratio of amplitude peaks of detectable harmonics to noise threshold (higher 

values indicate more tonal vocalizations) 
27 Subharmonics Proportion of the total duration with additional spectral components in the 

harmonic series (fractional multiples of F0, e.g. F0/2, F0/3, 2/3 F0, 4/3 F0, etc.) 

These parameters correspond to the most commonly measured parameters in studies on non-human mammals. Different names were 
given for the same parameters across studies, and same names were sometimes attributed to different parameters. I chose the names 
listed here because they are the most commonly attributed to each parameter listed. Names are kept constant throughout the review, 
and might differ from the names given in the references cited, but correspond closely to the description given by the authors. 

 



Figure 1. Illustration of the source–filter theory of vocal production. Left: schema of the vocal production mechanism 
in a goat kid indicating the approximate location of the larynx and vocal tract (including nasal cavities). Right: 
spectrogram (above) and oscillogram (below) of the corresponding call showing the fundamental frequency (F0, black 
line at the bottom of the spectrogram) and the first four formants (F1–F4, black dots above). The source sound is 
produced in the larynx by vibration of the vocal folds, determining the fundamental frequency of the call (F0) and the 
harmonics. This source sound is then filtered in the vocal tract, determining the formants (F1–F4), which correspond 
to a concentration of acoustic energy around particular frequencies. The positions of the larynx and of vocal tract 
have been estimated following (Fitch, 2000b). 

 

How is speech produced? 

Speech is produced through the processes of respiration, phonation, resonance and articulation (see 
Table 2; Fant, 1960; Titze, 1994; Juslin & Scherer, 2005). The lungs generate an air flow, which then 
passes through the larynx. In the larynx, the air flow is converted into sound by vibration of the vocal 
folds. Then, this sound is filtered in the supralaryngeal vocal tract (pharynx, oral and nasal cavities), 
before radiating into the environment through the lips and nostrils. We therefore have three systems 
involved in the production of speech. The respiratory system (respiration process) includes the lungs and 
determines the duration, rate, amplitude, and the subglottal pressure, which influences F0. The phonatory 
system (phonation process) includes the larynx and all sub-laryngeal and laryngeal structures. This 
system determines the characteristics of the source signal (F0 contour; 75–300 Hz for men, 100–500 Hz 
for women). Finally, the filter system (resonance and articulation processes) includes all the air cavities 
between the larynx and the opening of the mouth and nostrils (vocal tract) and determines the energy 
distribution of the sound (frequency spectrum characteristics and formant contour). The structure of 
vocalizations therefore depends on the anatomy and physiology of each of these systems. 

The mechanism of vocal production is similar in humans and other mammals. However, in humans, the 
particular position of the larynx that rests low in the throat and is also mobile, gives us a long and flexible 
pharyngeal cavity and a nearly 90° connection between the pharyngeal and oral cavities. Consequently, 
we benefit from important articulatory possibilities. We are able to modify the size of our oral and 
pharyngeal cavity using our tongue, lips, teeth, hard and soft palate, and jaw. This ability plays a crucial 
role in human speech. For example, by constricting the vocal tract in different places, we can create 



various patterns of change in the first two formants (F1, around 500 Hz; F2, around 1500 Hz), thus 
producing different vowels. Higher formants (e.g. F3, around 2500 Hz) are fairly constant and depend on 
the vocal tract length (Fant, 1960). These morphological particularities associated with an important motor 
control are at the basis of the evolution of speech (Fitch, 2000a; Jürgens, 2009). 

Table 2. Vocal production mechanism in mammals. 
 System Location Function in vocal production Associated vocal parameters 
Source Respiration Lungs and trachea Generating and conducting the air 

flow 
Amplitude, duration, F0 (subglottal 
pressure) 

 Phonation Larynx (including vocal folds) Transforming the air flow into sound 
by oscillation of the vocal folds 

F0 

Filter Resonance Vocal tract (pharynx, vocal, 
nasal and oral cavities, lips 
and nostrils) 

Filtering the source sound by 
amplifying and attenuating certain 
frequencies 

Formants, relative energy 
distribution in the spectrum 

 Articulation 
(humans) 

Tongue, lips, hard and soft 
palate, teeth and jaw 

Transforming the incoming sound in 
language-specific speech sounds 
(unvoiced/voiced sounds) 

F1 and F2 contours, relative energy 
distribution in the spectrum 

Systems of sound production and corresponding anatomy (location), function in vocal production and vocal parameters associated. 

 

How is affective prosody studied? 

Three types of research paradigms have been used to study affective prosody in humans: natural vocal 
expression, induced emotional expression and simulated emotional expression (Murray & Arnott, 1993; 
Scherer, 2003; Juslin & Scherer, 2005). The first approach consists of analysing voices recorded in 
naturally occurring emotional situations and is of high ‘ecological validity’ (i.e. high accuracy of the 
underlying speaker state; e.g. Williams & Stevens, 1972; Roessler & Lester, 1976; Frolov et al., 1999). 
The second approach is based on artificially induced emotions in the laboratory, using psychoactive 
drugs, presentation of emotion-inducing films or images, or recall of emotional experiences (e.g. Scherer 
et al., 1985; Tolkmitt & Scherer, 1986; Zei Pollermann & Archinard, 2002). The third and most often used 
approach consists of analysing simulated emotional expression, produced by actors asked to pronounce 
a word or sentence by expressing particular emotional states (e.g. van Bezooijen, 1984; Banse & 
Scherer, 1996; Hammerschmidt & Jürgens, 2007). 

How do emotions influence speech parameters? 

Vocal cues to emotions are emitted involuntarily. To summarize, emotions induce changes in the somatic 
and autonomic nervous system (SNS and ANS), which in turn cause tension and action of muscles used 
for voice production (phonation, resonance and articulation), as well as changes in respiration and 
salivation. All these modifications to the vocal apparatus result in particular changes of voice parameters 
(Scherer, 2003). The SNS is more directly involved in motor expression, whereas the ANS mainly impacts 
on respiration and the secretion of mucus and salivation (Scherer, 1986). The impacts of the ANS on 
vocalizations will depend on the respective dominance of the sympathetic (ergotropic) and 
parasympathetic (trophotropic) branches, which differs between emotions (Zei Pollermann, 2008). High-
arousal emotions are associated with a high sympathetic tone and a low parasympathetic tone, and the 
opposite applies to low-arousal emotions. 

A change in respiration can cause changes in speech duration, amplitude and rate, as well as in F0 by 
increasing the subglottal pressure (i.e. pressure generated by the lungs beneath the larynx). An increase 
in the action and/or tension of the respiratory muscles can induce longer durations, higher amplitude and 
higher F0. Salivation acts on the resonance characteristics of the vocal tract, with a decrease in salivation 



resulting in higher formant frequencies (Scherer, 1986; Zei Pollermann & Archinard, 2002). The effects of 
the main muscles are as follows. In the larynx, an increase in the action and/or tension of the cricothyroid 
muscles stretches the vocal folds, resulting in higher F0, whereas an increase in action and/or tension of 
the thyroarytenoid muscles shorten and thicken the vocal folds, resulting in a lower F0 (Titze, 1994). The 
actions of the sternothyroid and sternohyoid muscles pull the larynx downward, resulting in an elongation 
of the vocal tract length, and therefore lower formant frequencies. Pharyngeal constriction, and tension of 
the vocal tract walls, result in an increase of the proportion of energy in the upper part of the frequency 
spectrum (above 500 Hz) in relation to the energy in the lower frequency region, i.e. a shift in energy 
distribution towards higher frequencies. By contrast, pharyngeal relaxation results in an increase of the 
proportion of energy in the lower part of the frequency spectrum (below 500 Hz; Scherer, 1986). The 
relative raising or lowering of the formants (F1, F2, F3, etc.) depends on the length of the vocal tract, the 
configuration of the pharyngeal regions and oral and nasal cavities, and the opening of the mouth. 
Increased mouth opening raises F1 closer to F2. In the case of pharyngeal constriction and mouth 
retraction, F1 should rise and F2 and F3 should fall. Finally, protrusion of the lips increases the length of 
the vocal tract, lowering all formant frequencies (Fant, 1960; Fitch & Hauser, 1995). 

Physiological arousal is mainly reflected in parameters linked to respiration and phonation, such as F0, 
amplitude and timing parameters (e.g. duration and rate), while emotional valence seems to be reflected 
in intonation patterns and voice quality (i.e. pattern of energy distribution in the spectrum; Scherer, 1986). 
Emotions of high arousal, such as fear or joy, are associated with an increase in amplitude, F0, F0 range, 
F0 variability, jitter, shimmer and speech rate, as well as with fewer and shorter interruptions (inter-
vocalization interval). By contrast, emotions of low arousal, such as boredom, induce a low F0, narrow F0 
range and low speech rate (Scherer, 1986; Murray & Arnott, 1993; Bachorowski & Owren, 1995; Banse & 
Scherer, 1996; Zei Pollermann & Archinard, 2002; Juslin & Scherer, 2005; Li et al., 2007). A recent study 
showed that source-related parameters linked to phonatory effort (tension), perturbation and voicing 
frequency allowed good classification of five emotions (relief, joy, panic/fear, hot anger and sadness), but 
did not allow good differentiation of emotional valence (Patel et al., 2011). Filter-related cues (energy 
distribution, formant frequencies) have been more rarely considered in studies of emotions (Juslin & 
Scherer, 2005). However, it seems that spectrum parameters, particularly the energy distribution in the 
spectrum, F3 and F4, contrary to source-related parameters, differ between emotions of similar arousal 
but different valence (Banse & Scherer, 1996; Laukkanen et al., 1997; Zei Pollermann & Archinard, 2002; 
Waaramaa, Alku & Laukkanen, 2006; Waaramaa et al., 2010). Emotion perception studies showed that 
an increase in F3 is judged as more positive (Waaramaa et al., 2006, 2010). Valence could also be 
reflected in other voice quality- and amplitude-related parameters, with positive emotions being 
characterized by steeper spectral slopes, narrower frequency ranges, less noisy signals (spectral noise), 
lower amplitude levels and earlier positions of the maximum peak frequency than negative ones 
(Hammerschmidt & Jürgens, 2007; Goudbeek & Scherer, 2010). Furthermore, the energy is lower in 
frequency in positive compared with negative emotions in a large portion of the spectrum (Zei Pollermann 
& Archinard, 2002; Goudbeek & Scherer, 2010). 

Difficulties of studying vocal correlates of emotion in humans 

There are several difficulties associated with the study of affective prosody in humans. First, voice 
parameters do not only result from the physiological state of the speaker, but also from socio-cultural and 
linguistic conventions, and more generally from voluntary control of emotion expression. Therefore, 
psychological, social interactional and cultural determinants of voice production may counteract each 
other, and act as confounding factors in the study of affective prosody (Scherer, Ladd & Silverman, 1984; 
Scheiner & Fisher, 2011). Second, interferences can exist between linguistic and paralinguistic domains 
(i.e. between vocal emotion expression and semantic or syntactic cues). In particular, the investigation of 



the role of formants in emotional communication is rendered difficult by their linguistic importance. They 
have been suggested to be crucial for communicating emotional valence, but this hypothesis is difficult to 
test in humans (Laukkanen et al., 1997; Waaramaa et al., 2010). Third, it is very difficult to study 
emotional processes in natural situations or to experimentally induce strong emotional states in the 
laboratory (Scherer, 1986). Finally, another problem is that most studies have investigated correlates of 
discrete emotions (‘discrete emotion approach’, as opposed to the ‘dimensional approach’), despite a lack 
of qualitative description of basic emotions. Emotion terms are rather imprecise, do not systematically 
correspond to emotional states and differ between languages, which renders the overall description of 
vocal expression of emotion complex (Scherer, 1986; Murray & Arnott, 1993). Most of these problems 
might not be present in non-human animals, in which vocalizations are supposed to be under lower 
voluntary control than in human. Animal vocalizations should reflect emotions more directly, free of 
conventionalization or self-presentation constraints (Jürgens, 2009). Therefore, vocal correlates of 
emotions in animals could serve as an interesting, simplified model of human affective prosody and 
provide evidence of a phylogenetic continuity of emotion vocalizations (Scherer, 2003; Juslin & Scherer, 
2005). 

Vocal correlates of emotions in non-human mammals 

In animals as in humans, cues to emotional states (e.g. visual, vocal) regulate social interactions, 
because they inform individuals about the probable intentions of behaviours of others (Panksepp, 2009; 
Keltner & Lerner, 2010). Therefore, vocal correlates of emotions have a crucial function in social species 
(Brudzynski, 2007). Vocal production mechanisms being very similar between humans and other 
mammals, comparable changes in vocal parameters in response to emotional states are expected 
(Scherer & Kappas, 1988; Manteuffel, Puppe & Schön, 2004; Scheiner & Fisher, 2011). Unlike the 
research on humans described earlier, there has been a lack of studies on the effects of emotions on 
vocalizations in other mammals, despite these effects being mentioned already by Darwin (1872). By 
contrast, the effect of motivation on animal vocalizations has been widely studied, since the concept of 
‘motivation-structural rules’ described by Collias (1960) and Morton (1977). According to this concept, 
vocalizations produced in ‘hostile’ contexts should be structurally different from those produced in 
‘friendly’ or ‘fearful’ contexts (Morton, 1977). Motivation states differ from emotions in the sense that they 
refer to the likelihood that an animal would perform a certain behaviour (e.g. attack, retreat), and not 
directly to its emotional state (Zahavi, 1982). Vocal correlates of motivation can be defined as ‘strategic 
use of expressive displays independent of the presence of appropriate internal determinants, based on 
ritualized meanings of state-display relations’ (Scherer, 1986). Nevertheless, they imply an underlying 
emotion. For example, a call emitted in a ‘friendly’ context implies that the producer of the call is in a 
positive emotional state. Therefore, findings related to motivation-structural rules can be used to predict 
how vocal parameters should vary according to emotions. In the next part, I describe the concept of 
motivation-structural rules and findings in this area of research, before reviewing the literature on vocal 
correlates of emotions. 

Motivation-structural rules 

Motivation-structural rules emerged from the comparison between vocalizations produced by numerous 
species of birds and mammals. Morton (1977) observed that the acoustic structure of calls can often be 
predicted from the context of production. In hostile contexts, animals generally produce low-frequency 
calls. Morton suggested that because low-frequency calls mimic large-sized animals, their production 
increases the perceived size of the caller during hostile interactions. By contrast, high tonal sounds are 
produced in fearful or appeasing contexts. Because they mimic the sounds produced by infants, these 
sounds should have an appeasing effect on the receiver(s). Accordingly, intermediate stages between 
hostility and fear or appeasement are characterized by intermediate call frequencies. Since Morton 



(1977), this hypothesis has been tested in several species [e.g. African wild dog Lycaon pictus (Robbins 
& McCreery, 2003) chimpanzee Pan troglodytes (Siebert & Parr, 2003) coati Nasua narica (Compton et 
al., 2001) dog Canis familiaris (Yin & McCowan, 2004; Pongrácz, Csaba & Miklósi, 2006; Lord, Feinstein 
& Coppinger, 2009; Taylor et al., 2009) grey mouse lemur Microcebus murinus (Scheumann et al., 2007) 
North American elk Cervus elaphus (Feighny, Williamson & Clarke, 2006) white-faced capuchins Cebus 
capucinus (Gros-Louis et al., 2008) white-nosed macaques Macaca spp. (Gouzoules & Gouzoules, 
2000)]. Most of these studies showed that, in accordance with the motivation-structural rules, calls 
produced during agonistic encounters are of long durations, with low frequencies, wide frequency ranges 
and little frequency modulations. Conversely, calls produced during nonaggressive behaviour, or fearful 
situations, are often of short durations, tonals (no spectral noise), with high frequencies and frequency 
modulations. Therefore, call structure can be partially predicted by the motivation-structural rules in 
numerous species (August & Anderson, 1987).  

The variation between motivational call types could reflect different emotional valences, whereas the 
variation within motivational call types is probably due to differences in arousal states (Manser, 2010). If 
we logically assume that an individual in a hostile context is experiencing a negative emotional state of 
high arousal, whereas an individual in a friendly context is experiencing a positive emotional state of high 
arousal, then negative emotions could be characterized by low-frequency sounds and positive emotions 
by high-frequency sounds. However, the theory predicts that high-frequency sounds are also produced in 
fearful contexts, which assume a negative emotional state of high arousal. According to August & 
Anderson (1987), fearful and friendly contexts represent two very different motivation states, and could be 
distinguished by measuring more acoustic parameters than those suggested by Morton (1977). The 
relationship between emotions and call structure might not be entirely predicted from the motivation-
structural rules, but the opposite could be true (i.e. motivation-structural rules could be explained by the 
underlying emotional state of the caller in aggressive/friendly contexts). Therefore, vocal correlates of 
emotions need to be studied using experimental situations, specifically designed to trigger emotions 
characterized by a given valence and arousal. 

Evidence of vocal expression of emotion 

I carried out an extensive search of the available literature with the following keywords: vocal, expression, 
communication, call, acoustic, mammal, animal, condition, context, stress, welfare, motivation, emotion, 
affect, state, arousal, valence, positive and negative. Table 3 lists 58 studies that I found on different 
orders and species of mammals, in which vocalizations were analysed in relation to either arousal/ 
valence or in relation to different contexts or situations suggesting a certain emotional arousal/valence. 
Variations in hunger, pain and stress were considered as similar to variations in emotional arousal. Table 
3 is not exhaustive and is focused on encoding of emotions in vocalizations more than decoding. It is 
intended to include different orders/species and to represent biases towards certain orders/species that 
have been studied more than others. 

Vocal correlates of arousal have been studied considerably more than correlates of valence, and most 
studies focused on negative situations (e.g. stress, pain, isolation, separation). Primates are the most 
studied order. These species often have a repertoire of several call types. Numerous studies have been 
conducted to investigate the contexts of production of these call variants, in order to categorize them and 
understand their meaning and functions (e.g. Rendall et al., 1999; Scheumann et al., 2007; Meise et al., 
2011). Some call types appear to vary gradually within and between contexts according to the caller’s 
internal state (e.g. Coss, McCowan & Ramakrishnan, 2007). Pigs Sus scrofa are the most studied 
species, with the aim of finding vocal correlates of welfare (see also Weary & Fraser, 1995b; Weary, Ross 
& Fraser, 1997, not listed in Table 3). 



Table 3. Studies of vocal correlates of valence and arousal included in this review. 
 Species         

 Common 
name 

Latin name Order Dimension Process Method Vocalization type Parameters 
studied 

Reference 

1 Bison Bison bison Artiodactyla A E O Antagonistic 
vocalizations 

12 Wyman et al. (2008) 

2 Cattle Bos taurus  A E E Calf vocalizations 1, 2, 5, 16 Thomas, Weary & 
Appleby (2001) 

3    A E E Distress vocalizations 1, 5, 6, 12, 
16 

Watts & Stookey (1999) 

4 Goat Capra hircus  A E E Contact/distress 
vocalizations 

1, 16, 20, 25 Siebert et al. (2011) 

5 Pig Sus scrofa  A E E Distress vocalizations 1, 12, 13, 
16, 17 

von Borell et al. (2009) 

6    A E E Distress vocalizations 22 Düpjan et al. (2008) 
7    A E E Distress vocalizations 1, 15, 16, 

20, 25 
Puppe et al. (2005) 

8    A E E Distress vocalizations 1, 2, 5, 12, 
15, 16, 18, 
20, 21, 22, 
24 

Schrader & Todt (1998) 

9    A E E Distress vocalizations 1, 2, 16 Weary et al. (1998) 
10    A E/D E Distress vocalizations 1, 2, 15, 16 Weary & Fraser (1995a) 
11    A E E Short/long grunts and 

squeals 
1, 2 Marchant et al. (2001) 

12 Sheep Ovis aries  A E E Contact/distress 
vocalizations 

1, 5, 12, 15, 
20 

Sèbe et al. (2012) 

13 Cat Felis catus Carnivora A/V E E Antagonistic and 
contact vocalizations 

1, 2, 5, 15, 
16, 22 

Yeon et al. (2011) 

14 Dog Canis familiaris  V E/D E Growls and barks 1, 3, 5, 21, 
23 

Taylor et al. (2009) 

15    A/V E E Barks 1, 3, 12, 13, 
16, 17, 18, 
20, 21, 26 

Yin & McCowan (2004) 

16 Mongoose Suricat suricatta  A E E/O Alarm vocalizations 1, 2, 3, 15, 
16, 17, 18, 
20, 21, 24 

Manser (2001) 

17 Silver fox Vulpes vulpes  A E E Antagonistic 
vocalizations 

1, 2, 15, 16, 
25  

Gogoleva et al. (2010b) 

18    A/V E E Antagonistic and 
contact 
vocalizations 

1, 2, 16 Gogoleva et al. (2010a) 

19 Spotted hyena Crocuta crocuta  A E O Whoops 1, 2, 3, 5 Theis et al. (2007) 
20 Weddell seal Leptonychotes 

weddellii 
 A/V E O Contact vocalizations  1, 2, 5, 15, 

21 
Collins et al. (2011) 

21 Bottlenose 
dolphin 

Tursiops truncatus Cetacea A E E Contact vocalizations 1, 2, 3, 4, 5 Esch et al. (2009) 

22 Greater false 
vampire bat 

Megaderma lyra Chiroptera A E O Antagonistic and 
Response vocalizations 

1, 2, 3, 4, 5, 
8, 16 

Bastian & Schmidt (2008) 

23 Horse Equus caballus Perissodactyla V E E Whinnies Hidden 
Markov 
Model 

Pond et al. (2010) 

24 Barbary 
macaque 

Macaca sylvanus Primates A E/D E/O Disturbance call 1, 3, 12, 16, 
17, 18, 20, 
21 

Fischer, Hammerschmidt, 
& Todt (1995) 

25 Bonnet 
macaque 

Macaca radiata  A E E Alarm vocalizations 1, 5, 6, 7, 
14, 21, 24, 
26 

Coss et al. (2007) 

26 Baboon Papio 
cynocephalus 
ursinus 

 A E O Grunts 1, 3, 5, 7, 8, 
9, 15, 16, 
17, 18, 20, 
22, 24, 26 

Meise et al. (2011) 

27    A E O Contact and alarm 
vocalizations 

1, 2, 5, 15, 
16, 17,18, 
19, 21, 22, 
23, 24 

Fischer et al. (2001) 

28    A E O Grunts 1, 2, 3, 5, 8, 
10, 12, 19, 
22 

Rendall (2003) 

29    A E O Grunts 1, 5, 15, 19, 
22 

Owren et al. (1997) 

30 Chimpanzee Pan troglodytes  A E O Antagonistic 
vocalizations 

1, 3, 18, 21 Siebert & Parr (2003) 



Table 3 Continued. 
 Species         

 Common 
name 

Latin name Order Dimension Process Method Vocalization type Parameters 
studied 

Reference 

31    A E O Antagonistic 
vocalizations 

1, 2, 5, 16, 
17, 22 

Slocombe & Zuberbühler 
(2007) 

32 Common 
marmoset 

Callithrix jacchus  A E E Contact vocalizations 1, 4, 5, 6, 
12, 21, 24 

Schrader & Todt (1993) 

33    A E E Contact/distress 
vocalizations 

2 Norcross & Newman 
(1999) 

34    A E E Contact/distress 
vocalizations 

1, 3, 5, 6, 7 Norcross et al. (1999) 

35    A E E Contact/distress 
vocalizations 

1, 2, 3, 5, 7, 
12, 16, 17 

Yamaguchi et al. (2010) 

36 Gray mouse 
lemur 

Microcebus 
murinus 

 A/V E E Whistle, tsak and purr 1, 3, 5, 16, 
20 

Scheumann et al. (2007) 

37 Japanese 
macaque 

Macaca fuscata  A E O Coo calls 1, 3, 5, 6, 7, 
17 

Sugiura (2007) 

38 Pigtail 
macaque 

Macaca 
nemestrina 

 A E O Antagonistic 
vocalizations 

1, 5, 16, 17, 
18, 20, 21, 
24 

Gouzoules & Gouzoules 
(1989) 

39 Redfronted 
lemur 

Eulemur fulvus 
rufus 

 A E/D E/O Alarm vocalizations 12, 15, 16, 
18, 20, 22 

Fichtel & Hammerschmidt 
(2002) 

40 Squirrel 
monkey 

Saimiri sciureus  A D E Alarm vocalizations 12, 15, 16 Fichtel & Hammerschmidt 
(2003) 

41    A/V E E Eight different 
aversive/rewarding call 
types 

1, 5, 15, 16, 
18, 20, 24 

Fichtel et al. (2001) 

42 Thomas’s 
langur 

Presbytis thomasi  A E/D O Loud calls 1, 3, 4, 5 Wich et al. (2009) 

43 Tufted 
capuchin 

Cebus apella  A E E Distress vocalizations 2 Byrne & Suomi (1999) 

44 Rhesus 
monkey 

Macaca mulatta  A/V E O Infant vocalizations 2 Jovanovic & Gouzoules 
(2001) 

45 Rhesus 
monkey/African 
elephant 

Macaca 
mulatta/Loxodonta 
africana 

Primates/ 
Proboscidea 

A E O Rumbles/infant 
vocalizations 

10, 11 Li et al. (2007) 

46 African 
elephant 

Loxodonta 
africana 

Proboscidea A E O Rumbles 1, 5, 6, 7, 
10, 15, 22 

Soltis, Leong & Savage 
(2005) 

47    A E O Distress vocalizations 1, 5, 16, 24, 
26, 27 

Stoeger et al. (2011) 

48    A/V E O Rumbles 1, 5, 6, 8, 
12, 13, 22 

Soltis et al. (2011) 

49    A E O Rumbles 1, 5, 6, 10, 
11, 12, 22, 
23, 26 

Soltis et al. (2009) 

50 Alpine marmot Marmota marmota Rodentia A E/D E/O Alarm vocalizations 1, 2, 3, 4, 5, 
16, 20 

Blumstein & Arnold 
(1995) 

51 Guinea pig Cavia porcellus  A E E Distress vocalizations 1, 3, 5, 16, 
21 

Monticelli et al. (2004) 

52 Rat Rattus norvegicus  V E E Ultrasonic vocalizations 1, 16, 20 Brudzynski (2007) 
53    V D E Ultrasonic vocalizations 16 Burman et al. (2007) 
54 Yellow-bellied 

marmot 
Marmota 
flaviventris 

 A D E Alarm vocalizations  
 

24 Blumstein & Récapet 
(2009) 

55    A E/D E/O Alarm vocalizations  1, 2, 3, 5, 6, 
12, 16 

Blumstein & Armitage 
(1997) 

56    A E E/O Alarm vocalizations  1, 25 Blumstein & Chi (2011) 
57 Tree shrew Tupaia belangeri Scandentia A E E Antagonistic 

vocalizations 
1, 3, 4, 5, 16 Schehka, Esser & 

Zimmermann (2007) 
58    A E E Disturbance calls 1, 3, 4, 5, 

12, 16, 22 
 

Vocalization type: category of vocalization studied (when the vocalization(s) studied could be emitted in various contexts, the original name is given instead of the category). 
Parameter studied: vocal parameters or categories of parameters measured (the numbers correspond to the codes given in Table 1). Only the parameters listed in Table 1 
(i.e. commonly used across studies) are listed. Parameter names differed across studies. The names listed in Table 1 might not correspond to the exact name used in the 
reference cited, but correspond to the description given by the authors. 

Dimension: A, arousal; V, valence. Process: E, encoding; D, decoding. Method: E, experimental; O, observation. 

 

 



Table 4. Changes in vocal parameters according to arousal and valence. 
Category Parameter Arousal 

(low  
to  

high) 

Evidence Valence 
(negative 

to 
positive) 

Evidence 

Time 
parameters 

Vocalization/element 
duration 

<> <:5,7,9,10,11,12,15,20,22,24,26,28,31,32,35,37,38,41,47,48,49 
>:8,16,27,30,34,51,56,58 

> >:14,41,52 

 Vocalization/element 
rate 

<> <:2,9,10,11,13,16,17,18,19,20,21,22,33,35,43,44,55 
>:31 

-- -- 

 Inter-
vocalization/element 
interval 

<> >:15,16,19,22,24,26,28,30,35,55,57,58 
<:34 

> >:14 

 Number of elements <> <21,22,42,58 
>:32,50 

-- -- 

F0 F0 contour < <:2,3,8,12,13,19,20,21,22,28,31,32,34,37,41,48,49,51,55,57,58 <> >:41,48 
<:14 

 F0 range < <:3,32,34,37,48,55 > >:48 
 Time of 

maximum/minimum 
F0 

< <:35 -- -- 

 H1–H2 < <:28,48 > >:48 
 F0 slope -- -- -- -- 
 Jitter < <:45,46,49 -- -- 
 Shimmer < <:45 -- -- 
Amplitude Amplitude contour < <:1,3,5,8,12,32,35,39,40,48,49,55 --  
 Amplitude range <> <:48 

>:15 
< <:15 

 AM -- -- -- -- 
Frequency 
spectrum 

Energy distribution <> <13,17,20,39,40,41 
>:12,26 

<> <:13 
>:41 

 Peak frequency < <:7,8,13,17,27,31,35,38,40,41,58 <> <13,52,53 
>:18,41 

 Time of peak 
frequency 

< <:26,27,31,35 -- -- 

 Dominant frequency 
band contour 

<> <:24,27,41 
>:15,26 

> >:41 

 Spectral slope -- -- -- -- 
 Frequency range <> <:8,26,38,41 

>:4,7,12,15 
<> <:52 

>:41 
 FM <> <:8,24,38 

>:27,30,32 
> >:14 

Formants 
(F1, F2, F3, 
etc.) 

Fn contour <> <:6,27,29,31,48,58 
>:26,28 

< <:13 

 Formant dispersion -- -- -- -- 
Non-linear 
phenomena 

Spectral noise <> <:16,27,41,54 
>:38 

> >:41 

 Entropy <> <:16,27,41,54 
>:38 

-- -- 

 Harmonic-to-noise 
ratio 

> >:15,25,26,47 -- -- 

 Subharmonics -- -- -- -- 
Arousal: ‘<’ indicates an increase in parameter value with an increase in arousal; ‘>’ indicates a decrease in parameter value with an 
increase in arousal. Valence: ‘<’ indicates that parameter value is higher in the positive than negative situation; ‘>’ indicates that parameter 
value is lower in the positive than negative situation; ‘-’ indicates that no study has found a significant shift for this parameter. For F0 slope, 
‘<’ indicates a steeper slope. For energy distribution, ‘<’ indicates a shift in energy distribution towards higher frequencies. The Evidence 
column lists which studies found an increase or decrease in parameters. The numbers for the references corresponds to the codes given in 
Table 3. This table only includes studies that reported either a) a significant within-call type difference in parameters between situations or 
b) a significant difference in the proportion of call types produced in various situations associated with a significant difference in parameters 
between the call types considered. 
AM, amplitude modulation; FM, frequency modulation. 



How are vocal correlates of emotion studied? 

Most studies conducted in the wild or in captivity consist in recording one or several types of vocalizations 
produced during naturally occurring situations characterized by different levels of arousal or variance 
(method = ‘Observation’ in Table 3). For example, Soltis, Blowers & Savage (2011) studied African 
elephant Loxodonta africana vocalizations produced during three naturally occurring social contexts; one 
low-arousal neutral context characterized by minimal social activity, one high-arousal negative context 
(dominance interaction), and one high-arousal positive context (affiliative interaction). Vocal parameters 
that differ between the low-arousal context (neutral) and the two high-arousal contexts (negative and 
positive) can be considered as indicators of arousal, whereas those that differ between the high-arousal 
positive and negative situations reflect the emotional valence of the caller. Other observational studies 
focussed on behaviours such as dyadic agonistic interactions with low and high intensity levels in bats 
Megaderma lyra (Bastian & Schmidt, 2008), mother–pup interactions characterized by different levels of 
valence and arousal (reunion, separation, nursing) in Weddell seals Leptonychotes weddellii (Collins et 
al., 2011) or infant restraint by female rhesus monkeys Macaca mulatta characterized by different threat 
severity levels (Jovanovic & Gouzoules, 2001). Several studies also recorded naturally occurring or 
experimentally elicited alarm calls, which have often been shown to simultaneously communicate the type 
of predator and the level of urgency (i.e. both referential and emotional information, see Manser, Seyfarth 
& Cheney, 2002; Seyfarth & Cheney, 2003 for a review). 

Studies conducted in laboratories or on farms usually consist in placing the animals in various situations 
characterized by different levels of arousal or valence (method = ‘Experimental’ in Table 3). Most 
commonly, one or several types of vocalizations are recorded during complete or partial isolation or 
separation from conspecifics (e.g. Schrader & Todt, 1993; Byrne & Suomi, 1999; Norcross & Newman, 
1999; Norcross, Newman & Cofrancesco, 1999; Yamaguchi, Izumi & Nakamura, 2010; Siebert et al., 
2011; Sèbe et al., 2012), during human approach tests (e.g. Marchant et al., 2001; Gogoleva et al., 
2010a,b) or during routine farm and industrywide procedures (e.g. castration, branding; Weary et al., 
1998; Watts & Stookey, 1999; von Borell et al., 2009). Few studies examined the relationship between 
vocal parameters and physiological indicators of stress (i.e. cortisol or adrenaline levels, cardiac activity; 
Byrne & Suomi, 1999; Norcross & Newman, 1999; Marchant et al., 2001; Sèbe et al., 2012). Positive 
vocalizations in studies investigating valence were elicited by the following situations; grooming by an 
experimenter (Scheumann et al., 2007), friendly approach by a caretaker (Yeon et al., 2011), playing (Yin 
& McCowan, 2004; Taylor et al., 2009), feeding time (Pond et al., 2010) and finally in response to a 
familiar companion or by activating the ascending dopaminergic system (Brudzynski, 2007). 

Vocal correlates of arousal 

Fifty-four of the 58 studies included in Table 3 investigated the effect of arousal on vocal parameters, 
making the shifts for arousal presented in Table 4 reliable. Several parameter changes were supported by 
more than five studies; an increase in arousal level is associated with an increase in vocalization/element 
duration and rate, F0 contour, F0 range, amplitude contour, energy distribution (towards higher 
frequencies), peak frequency, formant contour, and a decrease in intervocalization/element interval. 
There could also be an increase in the number of elements in complex vocalizations, in H1–H2 
(‘hoarseness’ or ‘breathiness’ in human voice), in jitter, in the time of peak frequency and possibly of 
noise (harmonic-tonoise ratio and spectral noise, but see entropy). Therefore, with an increase in arousal, 
vocalizations typically become longer, louder and harsher, with higher and more variable frequencies, and 
they are produced at faster rates. These changes correspond closely to those described for humans 
(Scherer, 1986; Murray & Arnott, 1993; Bachorowski & Owren, 1995; Banse & Scherer, 1996; Zei 
Pollermann & Archinard, 2002; Juslin & Scherer, 2005; Li et al., 2007). Furthermore, they correspond 
closely to the effects of the physiological changes linked to an increase in arousal on the acoustic 



structure of vocalizations, which have been described in humans (Scherer, 1986); increase in the action 
and/or tension of the respiratory muscles (longer duration, higher amplitude and higher F0), decrease in 
salivation (higher formant frequencies), increase in the action and/or tension of the cricothyroid muscles 
that stretch the vocal folds (higher F0), and increase in pharyngeal constriction and tension of the vocal 
tract walls (increase of the proportion of energy in the upper part of the frequency spectrum). The other 
parameter changes listed in Table 4 are supported by only one study or are not clear (i.e. both increases 
and decreases have been reported). 

There is strong evidence for the increase in arousal level associated with the increase in 
vocalization/element rate, F0 contour, F0 range, amplitude contour, energy distribution (towards higher 
frequencies), frequency peak and formant contour and the decrease in inter-vocalization interval (5–21 
studies, maximum two studies with opposite shift). These parameters appear therefore as ideal indicators 
of arousal. By contrast, the increase in vocalization/element duration is challenged by eight studies. For 
example, the increase in duration was not found for some alarm calls (Manser, 2001; Blumstein & Chi, 
2011). In meerkats Suricata suricatta, for a given class of predator, high-urgency situations seem to elicit 
longer calls than low-urgency situations. However, shorter alarm calls are given in response to more 
dangerous predators compared with distant predators or non-dangerous animals (Manser, 2001). 
Similarly, Blumstein & Arnold (1995) found that Alpine marmots Marmota marmo produce alarm calls with 
fewer elements in higher-urgency situations. Shorter alarm calls may reduce conspicuousness to 
predators and allow a faster response. Duration also decreased in guinea pigs Cavia porcellus with 
presumed higher arousal levels during periods of isolation (Monticelli, Tokumaru & Ades, 2004). In the 
same way, in piglets, the initial increase in duration and in most of the vocal parameters during the first 2 
min of isolation was followed by a decrease (Weary & Fraser, 1995a). These changes are most likely 
linked to a decrease in motivation, independently of stress (Monticelli et al., 2004). Therefore, motivation 
levels should be taken into account in the interpretation of context-related changes in vocal parameters. 

In the case of non-linear phenomena, the results are not consistent. According to Table 4, harmonic-to-
noise ratio decreases, spectral noise increases (more noise), but entropy decreases (more pure tone 
vocalizations) with arousal. The increase in spectral noise (Table 4) is contradicted by Gouzoules & 
Gouzoules (1989), which showed that pigtail macaques Macaca nemestrina produced less noisy and 
more tonal screams during contact aggression (high presumed arousal) than during non-contact 
aggression. Similarly, Blumstein & Chi (2011) showed that yellow-bellied marmots Marmota flaviventris 
with more faecal glucocorticoid metabolites, indicating higher stress levels, produced less noisy calls 
(measured as entropy). Therefore, it seems that non-linear phenomena might increase or decrease with 
arousal depending on species or particular contexts and are not good indicators of arousal. 

Vocal correlates of valence 

Vocal correlates of valence have been considerably less studied than arousal (Table 4). There are only a 
few studies in which authors compared vocalizations produced in negative and positive situations. There 
are two main reasons for this lack of research. One is the difficulty to find calls that are produced in 
positive situations (but see exceptions of positive vocalizations later). Because vocal correlates of 
negative states signal urgency (e.g. alarm calls) and need (e.g. infant begging calls), these vocalizations 
are far more common than positive vocalizations, and probably emerged earlier during evolution. The 
evolution of positive vocalizations could have been facilitated later by the increased importance of 
communication within social groups (Brudzynski, 2007). Expression of arousal can be studied by 
comparing vocalizations produced in negative situations that are characterized by varying degrees of 
arousal. By contrast, research on expression of valence must compare vocalizations produced in positive 
and negative situations that are characterized by a similar degree of arousal. This leads to the second 
reason for a lack of research on vocal correlates of valence; it is difficult to find situations of opposite 



valence, but similar arousal. Expressions of negative emotions (e.g. physiological, visual, vocal) are 
easier to study, because they are often more intense than expressions of positive emotions (Boissy et al., 
2007). Therefore, it is difficult to find situations triggering positive emotions as intense as negative 
emotions. 

Because of this lack of research, knowledge on vocal correlates of valence listed in Table 4 is sparse. 
Some studies show a shift towards higher frequencies during positive situations. In dogs, barks emitted 
during positive situations (play) are characterized by wider amplitude ranges, shorter inter-call intervals, 
shorter durations, higher F0 and smaller frequency modulations compared with barks emitted in negative 
situations of probably similar arousal (Yin & McCowan, 2004; Taylor et al., 2009). Yeon et al. (2011) 
showed that feral cats Felis catus produce vocalizations with higher energy distributions, F1 and peak 
frequencies in affiliative compared with agonistic situations. However, the ‘affiliative’ situation in this case 
was an approach by a familiar caretaker, and it is not clear how positive or intense this experience was 
for feral cats. Pond et al. (2010) found spectral differences between vocalizations produced in two 
situations of similar arousal and different valence using Hidden Markov Models, but the shifts in individual 
vocal parameters are not detailed in this study. 

There is also evidence for a shift towards low frequencies during positive situations. Jovanovic & 
Gouzoules (2001) and Scheumann et al. (2007) showed that infant Rhesus monkeys and gray mouse 
lemurs produce different kinds of calls during positive contexts (‘coos’ and ‘purr’ respectively) compared 
with negative contexts. ‘Coos’ and ‘purr’ are both characterized by low frequencies. Fichtel, 
Hammerschmidt & Jürgens (2001) found that in squirrel monkeys Saimiri sciureus, call level of ‘negativity’ 
(aversion) is generally correlated with longer duration, higher F0 contour, energy distribution, peak 
frequency, dominant frequency band contour, wider frequency range, and more noise. However, it is not 
clear how much of this variance is explained by arousal or valence. Tame and aggressive silver foxes 
Vulpes vulpes differ in their reactions to humans; tame foxes show a decrease and aggressive foxes an 
increase in peak frequency during approach (Gogoleva et al., 2010a), suggesting that low-peak 
frequencies reflects positive emotions. Soltis et al. (2011) found that African elephant rumbles produced 
in a positive situation have lower F0, H1–H2 and narrower F0 range than those produced in a negative 
situation. However, because the shifts in these parameters occurring between the neutral and positive 
contexts were similar (i.e. same direction), yet less intense, than the shifts exhibited between the neutral 
and negative contexts, the authors suggested that their results were more consistent with an effect of 
emotional arousal than valence. Similarly, the variations between contexts in vocal parameters found by 
Collins et al. (2011) in Weddell seals were more consistent with the expression of emotional arousal. 
Therefore, the only parameter shift that is supported by three studies, without any opposite shift, is 
duration, with positive situations characterized by shorter vocalizations (Table 4). 

There are some good examples in the literature of vocal expression of positive emotions: purr, laughter 
and rat ultrasonic 50-Hz vocalizations. Felid purrs are low pitched vocalizations (mean F0 = 26.3 Hz), 
characterized by a pulse-train structure and low amplitude, and produced more or less continuously for up 
to several minutes (Peters, 2002). They can be mixed with other tonal vocalizations (e.g. meow in cats) 
produced at the same time (McComb et al., 2009). Vocalizations that are structurally similar to purring 
have also been reported in several Carnivora families and other mammals, including primates (e.g. ring-
tailed lemur Lemur catta, Macedonia, 1993; tree shrew Tupaia belangeri; Benson, Binz & Zimmermann, 
1976). Purring is produced mostly by juveniles, but also by adults, in positive contexts (relaxed, friendly) 
such as nursing/suckling, mutual grooming, courtship or friendly approach (Peters, 2002). The wide 
distribution of purring-like vocalizations among mammals shows that vocalizations produced in ‘friendly’ 
contexts do not always comply with the predicted motivation-structural rules (i.e. expecting high, pure 
tone-like sounds in friendly contexts; Morton, 1977). 



Human laughter is another well-known positive vocalization. Laughter consists of a repetition of vowel-like 
bursts (fricative, i.e. aspired ‘h’ sound, followed by a vowel). It is characterized by a high F0, on average 
twice higher than in modal speech (282 Hz vs. 120 Hz for men, and 421 Hz vs. 220 Hz for women; 
Bachorowski, Smoski & Owren, 2001). Other characteristics of laughter include a salient F0 modulation, 
high F1 compared with normal speech vowels because of wide jaw opening and pharyngeal constriction, 
and the presence of non-linear phenomena (e.g. subharmonics and biphonation; Bachorowski et al., 
2001; Szameitat et al., 2011). Young orangutans Pongo pygmaeus, gorillas Gorilla gorilla, chimpanzees, 
bonobos P. paniscus and siamang Symphalangus syndactylus produce very similar vocalizations, mostly 
noisy, that can be elicited by tickling, suggesting that ‘laughter’ is a cross-species phenomenon (Ross, 
Owren & Zimmermann, 2009). 

Rats produce two types of ultrasonic vocalizations, 22- and 50-kHz vocalizations. There is substantial 
evidence from ethological, pharmacological, and brain stimulation studies that these two types of calls 
reflect the emotional valence of the caller, either negative (22 kHz alarm calls) or positive (50 kHz social 
calls, e.g. Knutson et al., 2002; Burgdorf & Moskal, 2009). Vocalizations of 22 kHz are typically produced 
during anticipation of punishment or avoidance behaviour, whereas 50 kHz vocalizations occur during 
anticipation of reward or approach behaviour. Vocalizations of 50 kHz are emitted particularly during play, 
and can also be produced in response to manual tickling by an experimenter (Panksepp & Burgdorf, 
2000). Therefore, they have been suggested to be a primal form of laughter (Panksepp & Burgdorf, 2003; 
Panksepp, 2009). Rat ultrasonic vocalizations have been linked to neural substrates responsible for 
negative and positive states (ascending cholinergic and dopaminergic systems; Brudzynski, 2007). 
Negative vocalizations are characterized by longer durations, lower-peak frequencies and narrower 
frequency ranges (bandwidth) than positive ones (Brudzynski, 2007). These structural differences 
between these two call types are perceived by receivers and induce different behaviours suggesting 
negative (22 kHz) or positive (50 kHz) internal states (Burman et al., 2007). 

To summarize, vocalizations produced in positive situations could be shorter in duration, but seem to vary 
in F0, from very low ‘purr’ in felids to high-frequency 50-kHz vocalizations in rats and laughter in humans. 
More parameters need to be investigated to find vocal correlates of valence in animals. For example, in 
humans, positive emotions are characterized by a lower amplitude, shifts in the energy distribution 
towards low frequencies, an earlier position of the maximum peak frequency, narrower frequency ranges, 
steeper spectral slope, higher formants and less spectral noise (Zei Pollermann & Archinard, 2002; 
Waaramaa et al., 2006, 2010; Hammerschmidt & Jürgens, 2007; Goudbeek & Scherer, 2010). These 
parameters might also express valence in other mammals. 

Summary of evidence 

Vocal expression of arousal has been extensively studied. The best indicators of arousal are 
vocalization/element rate, F0 contour, F0 range, amplitude contour, energy distribution, frequency peak 
and formant contour (increase with arousal) and inter-vocalization interval (decreases with arousal). 
Because of a lack of research on the topic, no clear indicator of valence has been found yet. Likely 
candidates include indicators of valence found in humans, such as amplitude level, energy distribution, 
maximum peak frequency, frequency range, spectral slope, formants and spectral noise. In particular, 
formant parameters are rarely measured in humans and in other animals (Scherer, 2003; Juslin & 
Scherer, 2005). Several studies suggested that this could be the key to the vocal differentiation of 
emotional valence (Scherer, 1986; Banse & Scherer, 1996; Waaramaa et al., 2010; Patel et al., 2011). 
Humans benefit from enhanced motor control and flexibility of the vocal articulators (tongue, lips, velum, 
jaw, etc.), allowing us to create different patterns of changes in F1 and F2 (Fant, 1960). Other species of 
mammals have a smaller degree of flexibility in vocal tract length and shape, and therefore less possibility 
to alter formant frequencies. However, variation in vocal tract length can be achieved by various 



mechanisms including lips extension, modification of the level of nasalization, and most commonly, 
retraction of the larynx into the throat (Owren, Seyfarth & Cheney, 1997; Fitch, 2000b; Fitch & Reby, 
2001; Harris et al., 2006; McElligott, Birrer & Vannoni, 2006). Indicators of emotional valence would be 
particularly useful for assessing animal welfare (Manteuffel et al., 2004). For example, vocal cues to 
positive emotions could enhance positive welfare, i.e. promote positive experiences in captive animals 
(Boissy et al., 2007). 

Research on vocal correlates of emotions needs to make clearer assumptions regarding the emotion 
triggered by the observed or experimental situation. The emotional valence and arousal elicited by the 
situation could be verified using other components of emotions, like physiological indicators (e.g. cortisol 
or adrenaline levels, cardiac activity; Byrne & Suomi, 1999; Norcross & Newman, 1999; Marchant et al., 
2001; Sèbe et al., 2012). In natural settings, several behavioural indicators of emotions can be used (see 
Schehka & Zimmermann, 2009; Zimmermann, 2009; Stoeger et al., 2011). Studies on vocal correlates of 
arousal should focus on vocalizations recorded during situations characterized by different levels of 
arousal and a similar valence, whereas studies on vocal expression of valence should investigate 
vocalizations recorded during situations characterized by opposite valences (positive and negative) and a 
similar arousal level. When possible, studies should focus on one given type of vocalization and measure 
its variation between contexts, instead of investigating differences between call types produced in various 
contexts. Finally, calls vary according to states other than emotions, such as motivation (e.g. aversion, 
attraction; Morton, 1977; August & Anderson, 1987; Ehret, 2006), which could be taken into account 
when interpreting context-related vocal variation, in the same way as the potency dimension (i.e. level of 
control of the situation) used in studies on affective prosody (Juslin & Scherer, 2005). 

Conclusions 

This review shows that the increase in vocalization/element rate, F0 contour, F0 range, amplitude 
contour, energy distribution, frequency peak and formant contour and the decrease in inter-vocalization 
interval are particularly good indicators of arousal. By contrast, indicators of valence still need to be 
investigated. In humans, as in other mammals, expression and perception of emotion is crucial to 
regulate social interactions. A deficit in either expression or perception can result in profound deficits in 
social relationships (Bachorowski, 1999). The general interest in the field of animal emotion is growing 
quickly, and is relevant to several disciplines such as evolutionary zoology, affective neuroscience, 
comparative psychology, animal welfare science and psychopharmacology (Mendl et al., 2010). Because 
the subjective component of emotional experiences are not yet possible to prove or measure in animals, 
other indicators are needed to infer emotional states (e.g. neurophysiological, behavioural and/or 
cognitive). In particular, indicators of positive emotions are lacking (Boissy et al., 2007). Vocal indicators 
of emotions in animals could represent convenient and non-invasive indicators, which would be 
particularly useful to assess and improve welfare (Weary & Fraser, 1995b; Watts & Stookey, 2000; 
Manteuffel et al., 2004; Schön, Puppe & Manteuffel, 2004). Findings on vocal correlates of emotions in 
mammals could also serve as a useful model for studies on humans, in which a greater motor control 
results in confounding factors influencing affective prosody (Scherer et al., 1984; Scheiner & Fisher, 
2011). 
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