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Abstract

Forecasting with longitudinal data has been rarely studiddst of the available
studies are for continuous response and all of them are foatigte response. In this
study, we consider forecasting multivariate longitudinialary data. Five dierent mod-
els including simple ones, univariate and multivariate giteal models, and complex
ones, marginally specified models, are studied to foreces$t data. Model forecasting
abilities are illustrated via a real life data set and a satioh study. The simulation
study includes a model independent data generation togeavifair environment for
model competitions. Independent variables are forecastelisas the dependent ones
to mimic the real life cases best. Several accuracy meaameesonsidered to compare
model forecasting abilities. Results show that complex efmdield better forecasts.

Keywords: comparative studies; dichotomous data; exponential dmmogt forecasting
competitions; marginalised models; medical statistics.

1 Introduction

Longitudinal data comprise measurements which are taksatedly over time from same
individualgfirms/unitgcasegnimals. This type of data is common in many research areas,
e.g. medical studies, clinical trials, economical studsxcial sciences, psychiatry, edu-
cational and behavioral sciences, industry, etc. Longialddata have many advantages
compared to both time series and cross sectional data @ejgall., 2002; Ik, 2008).
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Observations in longitudinal data are typically dependéntelated studies, often mul-
tiple response variables of each study subject are cofleatieich yields multivariate longi-
tudinal data. Multivariate longitudinal data consist ofe& dependence structures: within,
between and cross response dependencies and these sssttould be taken into account
to have valid statistical inferences.

As an example for multivariate longitudinal data, we willhstder the Mother’s Stress
and Children’s Morbidity (MSCM) study data set (AlexandeddaViarkowitz, 1986). In
this study, 167 mothers and their pre-school children welleved through 28 days. At
each day, mothers’ stressH@bsence, 2presence) and their children’s illness=@bsence,
1=presence) statuses were recorded, yielding a bivariapilamhnal binary data. In addition
to these response variables, some demographic and farfimiiynation, e.g. employment sta-
tus of mothers (Bunemployed, Zemployed), health status of children at baselinevily
pooypoor, Xfair, 2=good, 3=very good) and the size of their household&203 people,
1=more than 3 people) were collected.

There are three traditional models for longitudinal datalysis: marginal, transition and
random &ects models (Diggle et al., 2002). Recently, marginallycefpel (marginalised)
models (Heagerty, 1999, 2002) have become popular due itoattheantages over the tra-
ditional ones. For instance, they incorporate marginahdition and randomfkects infer-
ences at the same time (llk and Daniels, 2007; Asar et al4)2®dditionally, they secure
the robustness of the marginal mean parameters under dapmnstructure misspecification
(Heagerty and Kurland, 2001). Nonetheless, they requinemamputational time to obtain
the parameter estimates compared to the aforementiordtidnal ones.

Forecasting might be regarded as the prediction of futueatsv It might be a life-saver
andor increase quality of life, e.g. in medical and social stsdiFor instance, we can fore-
cast the mothers’ stress and their children’s iliness s&stin the MSCM study. Moreover,
we can incorporate the relationships of the response \agahkith the explanatory ones
while achieving these forecasts via the longitudinal meddlhese would help taking pre-
cautions based on subject @gmdsub-group characteristics (e.g. employed vs. unemgloye
mothers). Eventually, infants might be precluded to haveeds and mothers’ life quality
could be increased.

In forecasting, one of the key suggestions is constructinple models. The other
suggestion is forecasting data for near future, as the dstesccuracy might decrease when
forecasting data for far future. For instance, Diggle (19201L89) showed that the variance
of the forecast increases as the lag between forecast atadwaata time points increases.

Forecasting is common in time series literature, e.g. sd@dNet al. (2001) and Burkom
et al. (2007), but it is rare for longitudinal data (Baltag)08). This might be due to
the spans of these two research areas; it is well-known ltigafitst has a longer history.
Moreover, in some time series studies, e.g. in applied neaormomics and financial econo-
metrics, the main aim of data collection and model buildsprecasting Harris and Sollis
(2003, p. 10). On the other hand, in longitudinal studies, rtiain interest is mostly on
understanding the relationships between the dependenhamadependent variables god
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drawing subject-specific inferences, by measuring the gharNevertheless, forecasting
with longitudinal data might be more informative and rickempared to the one with time
series data. For example, longitudinal data models, spaltyffirandom &ects models, al-
low subject-specific forecasts in addition to the explamatf how the forecasts are related
to independent variables.

Most of the available forecasting studies for longitudidala have an econometric per-
spective; a literature survey of such studies up to 2008dcbal found in Baltagi (2008).
Moreover, most of these studies are for continuous respamdall of them are for univari-
ate response. For instance, Baadsgaard et al. (2004) eoedifbrecasting health statuses
of pig herds. Related data consisted of 15 Danish pig hertts ¥ month follow-ups.
They mainly considered the comparison of the forecastinlitiab of single moving aver-
age method and a Bayesian state space model. Related sdsuied that these methods
performed similar. Frees and Miller (2004) concentratedasacasting Wisconsin Lottery
Sales. Data were available for 40 weeks (April, 1998 - Janu&99) for 50 diferent postal
codes located in Wisconsin. They mainly considered simpte@mplex versions of ran-
dom dfects models. Results indicated that complex models did uipteoform the simpler
ones in terms of forecasting, even though they did so in texfmeodel building. Aslan
(2010) considered a simulation study on forecasting uiat@atongitudinal binary data. The
author mainly concentrated on the comparison of forecgstiilities of 21 diferent fore-
casting methods including simple methods, e.g. moving amdmoving mean, median and
mode and complex models, e.g. marginal, transition, raneféests and marginalised tran-
sition models (Heagerty, 2002). This study considered aghiodependent data simulation
scenario which permits the models to fairly compete. ItHfartconsidered forecasting the
covariates. Results showed that random intercept andticansodels performed the best
in terms of forecasting.

In this study, we considered forecastimgltivariatelongitudinal binary data. We mainly
concentrated on comparing forecasting performances wvétiate and multivariate marginal
models and two marginally specified models. Our main matigaquestion of interest was
whether marginalised models yield better forecasts coeaptr the simpler ones. We be-
lieve that answering this question is important since nmaigged models require more time
and dtfort during both model building and forecasting, e.g. theyuree forecasting the time
varying parameters ayat the use of iterative numerical methods. MSCM data set weed
to illustrate this comparison in real life. Moreover, réswere compared via a simulation
study. Following Aslan (2010), we considered a model indelpat data generation process
and we forecast the independent variables as well.

The remainder of the paper is organised as follows. In Se&@jave provide the details
of the models, related forecasting methodologies and th@racy measures. Section 3 pro-
vides the details of the MSCM data set and the related fotiega®sults. Section 4 provides
the details of data generation and the forecasting resttteesimulation study. The paper
is closed with conclusion and discussion.



2 Methods

2.1 Models

We mainly considered five flerent models to forecast multivariate longitudinal bindaya.
Here, we briefly presented the modelling frames and someenf thstinguishing features
due to page limits. Details can be found in the related refage cited below.

2.1.1 Univariate marginal models

The modelling framework of univariate marginal models (UVislgiven by

logit P(Yiy = 1|Xit) = Xit B, (1)

whereY;, is the (univariate) response for subje¢t = 1,...,N) attimet (t = 1,...,T); Xi
are the associated set of covariafeare the regression parameters to be estimated and logit
is the log of odds. A popular approach to obtain the estimaftgsp, is the generalized esti-
mating equations (GEE; Diggle et al., 2002; Liang and Zet#86; Zeger and Liang, 1986).
In this approach, a working variance-covariance strudsitesed for the repeated observa-
tions to take the within response dependency into accoumglthe parameter estimation
process.

UMM considers building separate univariate models for dangitudinal responses one
by one, with possibly dierent set of covariates for féérent responses. In other words,
it only considers within response dependency and ignoeddtween and cross response
dependencies.

2.1.2 Multivariate marginal models with response specific arameters

Multivariate marginal models with response specific patanse(MMM1; Shelton et al.,
2004; Asar and llk, 2013) is an extension of UMM to multivégieesponse data. The related
model formulation is given by

logit P(Yit; = 1Xt) = Xit Bj, (2)

whereYj; is the jth (j = 1,...,K) response for subjeciat timet, X;; are the common set of
covariates for multiple responses giychre the response specific regression parameters.

MMM1 uses GEE for parameter estimation and takes withinwbeh and cross re-
sponse dependencies into account via working variancari@amce structure of the multiple
responses.



2.1.3 Multivariate marginal models with shared regressiormparameters

Asar and Ik (2014) proposed multivariate marginal modekh whared regression param-
eters (MMM2) by extending the MMML1 formulation in terms ofv@riate set specification
and regression parameter assumption. The modelling frankest MMMZ2 is given by

logit P(Yit; = 1Xitj) = Xitj B, 3)
whereX;;; are the response specific set of covariatessaae the regression parameters that
are shared across multiple responses. We can still allowpteutesponses to have their own
intercepts by including response type indicator variad)le(the design matrix. Similarly, we
can allow them to have their own slopes by including the axteons of these indicator vari-
ables with covariates. By this setup, we can build more pasious multivariate marginal
models compared to MMML1 as well as equivalent ones. SimildaviMM1, MMM2 uses
GEE for parameter estimation and considers the aforemesdithree dependence structures
via working variance-covariance structure of the muliia responses.

2.1.4 Marginalised multivariate random effects models

Marginalised multivariate randonffects models (MMREM) were proposed by Lee et al.
(2009) to analyse multivariate longitudinal binary datdneTframework includes two level
logistic regression models which are given by

logit P(Yi; = LXit) = Xit Bjs 4)
logit P(Yit; = UXi, bitj) = Aiij + bij. (5)

Here,by;’'s are the subject, time and response specific randfeots. The randomfiects of
subject are assumed to follow a multivariate normal distributioa,, b, = (D11, . . ., b, . . .,
bit1, ..., 01T ~ N(O,X) with T = ¥; ® X5, where® corresponds to Kronecker product.
On the one hand;; is a within response correlation matrix having an AR-1 dtite, i.e.,
structured by only one transition parameterOn the other hand;; is a variance-covariance
matrix of multiple responses structured ty( (k + 1))/2 covariance parameteray; is the
subject, time and response specific intercept that takesdhdinear relationship between
(4) and (5) into account. It is deterministic function of etimodel parameters and obtained
by solving the following convolution equation:

P(Yiy = UXi) = f P(Yitj = LXie, birj) dF (biyj). (6)
bt
The orthogonalization of the randorffects by setting; = £y/* ® £2/°C;, whereC; is a
(T x k) x 1 matrix with identical elements &f, wherez ~ N(0, 1), yields (5) to have the
following re-parametrised form:



logit P(Yiyj = 112, X)) = Aigj + r"*IC;, (7)

wherer*t-9+1 is the k(t - 1) + j)th row of V2 = 57 @ X7/,

MMREM takes the aforementioned three dependence strigcint@ account. The pa-
rameter estimates are obtained by maximum likelihood egitom (MLE). Empirical Bayesian
estimators of; can be found in Asar (2012, Chapter 2.4.3) which were notralty derived
in Lee et al. (2009).

2.1.5 Probit normal marginalised transition random efects models

Asar et al. (2014) proposed probit normal marginalisedsitaon random &ects models

(PNMTREM) by extending the work of Ilk and Daniels (2007). relewe only consid-

ered first order PNMTREM, i.e., PNMTREM(1), during our foasting studies. General
model specifications could be found in these references.mduaelling formulation of PN-

MTREM(1) fort > 2 is given by

P(Yij = 11Xitj) = ©(Xig;B), (8)
P(itj = ¥it-1.j» Xitj) = P(Aigj + arZitjVie-1.j) 9)
P(Yitj = 1yit-vj, Xitj» bit) = (A + A;bn). (10)

Here,a; is a transition parameter vector that captures the relstiiprbetweery;;; andY;;_ ;.

Zy; is typically a subset of covariateX;, bi's are the subject and time specific random
effects withby; ~ N(0,0?2) andb; = 0z, Aj's are the response specific parameters with
A1 = 1 for identifiability reasons and(.) is the cumulative distribution function of standard
normal. Aj; is the subject, time and response specific intercept thast#tke non-linear
relationship between (8) and (9). It is a deterministic tiorcof model parameters and can
be obtained by solving

P(Yi = 1Xe) = > PV = Ui js X PV jXico): (11)
Yit-1,j
Similarly, A takes the non-linear relationship between (9) and (10) ande obtained by
solving

P(itj = UYit-j» Xitj) = f P(Yitj = Yit-1j, Xitj, bie)dF (by). (12)

bit
Since no history data are available at hand fiedent model is assumed for baseline time
point (t = 1). It also has a marginalised modelling structure andedl&tamework is given
by



P(Yi1j = 1Xi1j) = ©(Xi1j8"), (13)
P(Yizj = 1Xi1j, bia) = @(Ajy; + 2jbi), (14)

whereg* captures the relationship between the covariates and the mesponse dt= 1,
A takes the non-linear relationship between (13) and (14betcalculated by solving a
convolution equation which can be seen by settirgl and omittingY;;_1j in (12), by, is
the subject specific randonftects withb;; ~ N(O, af) andby = 01z and/l]f is the response-
specific parameters withi = 1 for identifiability.

Parameters of PNMTREM(1) are estimated by MLE and the modgiliamework con-
siders within and between response dependencies. Howtedees not directly take the
cross response dependencies into account.zBhare estimated by Empirical Bayesian es-
timation and the details can be found in Asar (2012, AppeBdb).

2.2 Forecasting methodologies
2.2.1 Independent variables

Independent variables in longitudinal data might be timeying or time invariant. Time
invariant variables are not needed to be forecast, sinageebbservations are constant over
time. On the other hand, future values of the former type anelom variables indeed and
need to be forecast. Nonetheless, forecasting is not ndededme time varying variables
which are deterministic functions of time, e.g. age. In éasting literature, people usu-
ally assume that the independent variables are known aydaneicast the dependent ones.
However, in real life the time variant covariates are unkn@as well and should be forecast.

It might be beneficial to first consider forecasting the iretegent variables, since the
forecasting methodologies of dependent variables relyoomptete design matrices, i.&;
att = (T +1),...,(T + m) assuming we intend to do step ahead forecasting.

Methods relying on the history of independent variableshhlge the best choices to
forecast longitudinal independent variables. Alterrativethods, e.g. the ones accommo-
dating the relationship with other independent variablégghtbe considered, but there are
some dificulties while using such methods. For instance, if the eelatariables include
time varying ones, we need their future values as well. Thesthods might not be the best
choice anyway, since we expect low correlations betweemtlependent variables.

All the independent variables were time invariant in the Ni&@ata set. On the other
hand, we assumed time varying independent variables initglation study. All of the
independent variables were assumed to follow Gaussiaribdisbn and the correlations
among these variables were assumed to be low. We mainlydmresi first and second order
transition models, TM(1) and TM(2), to forecast the indegent variables in the simulation
study. Other methods that rely on the history of the indepahdariables were considered
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in Aslan (2010), e.g. moving average and randdfeas models. But the author reported
that these alternatives did not yield better forecasts evatpto TM(1) and TM(2).
The modelling formulation of TM(1) for Gaussian data is gi®y

Xitt = Bo + B1Xit-11 + €, (15)

whereey ~ N(0, o?) andl is the covariate index for any time varying covariate.
Similarly, the framework of TM(2) can be given by

Xitt = Bo + PrXit-11 + BoXit-2) + €. (16)

The forecasting methodology of TM(1) can be briefly expldias obtaining?oAand,BAl,
by using the available data € 1,...,T) and replacing them in (15) together wix,_, for
(T +2),...,(T + m). Forecasting methodologies of TM(2) is similar to the omeTM(1).

2.2.2 Dependent variables

The forecasting methodologies of UMM, MMM1 and MMM2 are dianito each other.
Therefore, here we only illustrate the one for UMM. It can bmsarised as follows: Obtain
the estimates g8, 3, based on the available data for each response, possiltiydifierent
sets of independent variables. Then the forecasts of theessrobabilitiesp;, = P(Y;; =
1/X;;), can be obtained by replacing them in (1) together Wjth

Forecasting with MMREM and PNMTREM(1) are more complex canggal to the above
models due to their complex structures. For instance, MMREM PNMTREM(1) include
time varying parameters, i.dy;; in MMREM anda, a2, Ay andAi*tj in PNMTREM(1) and
we need to forecast these parameters as well. Related $tireganethodologies are quite
different and illustrated below separately.

- MMREM

1. Obtain the estimates gf, /%, ='* andz.

2. Extendx;’” from aT x T matrix to a I + m) x (T + m) matrix, £7/2_, based on the
estimate of the transition parameter, SinceZ}? is time invariant, no extension is
needed for this matrix.

3. Obtainzy, = 12, ® ;2.

4. Obtain the forecast of;, Aitj, by solving the non-linear equation given in (6) via
40-points Gauss-Hermite Quadratures and Newton-Raphgorntam in terms ofA;;
based orXy, 3j, £3/* fort = (T + 1),..., (T + m). Note that (6) is free of (Lee et al.,
2009, p. 1287) and therefore, we do not nged C)btainﬁm.

5. Obtain the forecast of the success probabimy,:ﬁ(Yitj = 12, X;;) by using (7).



We considered dlierent methodologies while calculating;.” Whereas the first one
(MMREML1) relied on using the columns 1 t@ (+ m) of =72 the second (MMREM2)
relied on using columngl(+ 1) to (T + m) of it. Alternative models were also considered by
using diferent estimation methods fafs. For instance, the third model (MMREM3) relied
on generating;’s from independent standard normal distributithimes, and calculating
K differentpy;’s for each subjects and taking median of these quantitiespkferred me-
dian, since empirical investigations of success prolaslifor randomly selected subjects
suggested highly right-skewed distributions for the MSCMadset. We suggested study-
ing percentage ¢lierences in the accuracy measures for successivalues, e.g.K = 30
vs. K = 50,K =50 vs.K = 80 and so on, and selecting the one for which the percentage
changes were reasonable, i.e., causing little change$wigice not worth increasing. The
last method with MMREM (MMREMA4) relied on only usirﬁgtj while calculatingpy;’s, i.e.,
takingz = 0. This simplified the calculations at a cost of rather unséalassumption that
all subjects are average.

- PNMTREM(1)

1. Obtain the estimates gf ay, o, Z.
2. Obtain forecasts af; ando fort = (T + 1),...,(T + m) by exponential smoothing
methods (Hyndman and Khandakar, 2008) for the MSCM dataBsktng points for
model building) and simple moving averages method for teikdted datasets (4 time
points for model building).
Obtain the forecast dfj;, A;j, as givenin (12).
Obtain the forecast gf;; by using (10).
5. Dichotomisepi_y j by considering a classification rule such tﬁ(@tl,j =1if Pipaj >

¢; and O otherwise for = (T + 2),..., (T + m) wherec; is a cutdf value.

H w

The dichotomization in step 5 was only necessary in PNMTREMs§ince we need
history data in (9). Eight dierent forecasting methodologies were considered for PN-
MTREM(1). These methodologies were produced by mainly damf estimation ofz
while calculating thep;;; and handlingy;;_q j in (9) atday = 26, 27 and 28. Whereas the for-
mer included two options, using the Empirical Bayes est®afz, 2z, and assigning = 0,
the latter included four options, settieg= 0.5 to dichotomisep;;_1 j, using the true values
of Yii_1; instead of dichotomizingp;;_1 j, using empirical proportions of the responses as
the c; and simulating the responses from independent Bernouslifidutions with success
probabilities,pi;_1 ;. For instance, combining the two options of estimatiog aihd the first
option of handlingY;;_, j yielded the following two forecasting methodologies: gstnand
settingc; = 0.5 and assuming = 0 and setting; = 0.5. We specifically call these method-
ologies as PNMTREM1 and PNMTREMZ2, respectively. Remaiingnethodologies were
produced by following similar strategies. We preferred twogive specific names to them
to avoid unnecessary abbreviations, since we reportedtbalyesults of PNMTREM1 and

9



PNMTREMZ2 in the third section. Nonetheless, all the reswitsbe discussed in the same
section.

2.3 Accuracy measures

We considered several accuracy measures to compare thé peoidemances. Specifically,
two different accuracy measures were considered for dependeny baréables, and two
different accuracy measures were considered for independainiwous variables. Below
we discuss these measures.

2.3.1 Binary data accuracy measures

The first accuracy measure we considered for binary data lveasxpected proportion of
correct prediction (ePCP) which was proposed by Herron§L3$PCP considers the calcu-
lation of average probability of estimating the actual aagons, i.e., it considers (& fy;)
whenY;; = 0 andp;; whenY;; = 1, wherepy; is the estimated success probability. The
calculation of ePCP is given by

N
ePCR; = %le (Vi By + (1= yig) (1= Py)). (17)
The interval in which the possible values of ePCP lie jd]J@nd larger values indicate better
performance.

The second binary accuracy measure we considered was therater the receiver oper-
ating characteristics (AUROC) curve. AUROC considerstadl possible; (between 0 and
1) and dichotomises the estimated success probabiliti@sas with respect to these values.
Then, the area under the curve which is drawn by placing fads#tive rate (FPR) on the
x-axis and true positive rate (TPR) on the y-axis is congidas the corresponding accuracy
measure. Here, while TPR is calculated by the ratio of theberrof cases which is assigned
as positive (1, here) and is actually observed to be 1 to tiaériamber of actual positives,
FPR is calculated by the ratio of the number of cases whichssigned as positive (1, here)
and is actually observed to be O to the total number of actegatives. AUROC can take
values between 0 and 1 and larger values indicate bettesrpsahce.

2.3.2 Continuous data accuracy measures

We preferred one scale dependent and one scale indeperdard@ measures for contin-
uous data, following Hyndman (2006) and Hyndman and KogRI@d6). The scale depen-
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dent measure is mean absolute error (MAE) which can be edéaliby

1N
MAE; = N Z €l (18)

i=1

~

whereeg; is the forecast error and calculated &y= Xi; — Xi;. MAE has some advantages
over the other scale dependent measures, e.g. mean sqMEBEY &nd root mean squared
(RMSE) errors. For instance, MAE is in the same scale of datdike MSE) and is not
heavily afected from outliers (unlike MSE and RMSE; Hyndman and Koel2@06).

The scale independent accuracy measure is mean absole ecar (MASE) proposed
by Hyndman and Koehler (2006). Related calculation is glwen

1 &
MASE, = — . (19)
N ; L 3o [ Xin = Xipal

1
T-1

Lower values of MAE and MASE indicate better model perforocean

3 Forecasting mother’s stress and children’s morbidity

3.1 Data

In MSCM study, 167 mothers and their pre-school childrere¢agetween 18 months-5
years) were enrolled mainly to understand the relationbbigveen mother’'s employment
status and the pediatric care usage. In a baseline inters@we demographic and family
information were collected through the following variatlléhe marriage status, education
level and employment status of mothers, the health stato®tfers and children at baseline
and the size of the household (Table 1). After the baseliteeview, mothers were asked to
keep the records of their stress and their children’s iBretatuses with a 28-day health di-
ary. These variables were dichotomised later as stresssiatnothers (stress:=absence,
1=presence) and illness status of children (illnessaltsence, 2presence).

Table 1 is about here.

Empirical investigations of the within-subject asso@atstructures of both responses
suggested extremely weak within-response dependencid®iperiod of days 1 to 16.
Therefore, we only considered the period of days 17 to 28. eilmless, we calculated
the averages of responses for the period of days 1 to 16, amideved these as two new
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independent variables (bstress and billness, respectiv8lable 1), to capture the individ-
ual characteristics of mothers and their children. Statded time (week in Table 1) and
the interactions between time and some independent vasiatére included as additional
covariates.

We partitioned the MSCM data set (days 17 to 28) into two: 1@ehbdouilding (days
17 to 24), and 2) forecast validation (days 25 to 28) parteQhe aforementioned models
were built for the former time period, forecastings wereelbased on the systems indicated
by these models.

3.2 Results

We checked the existence of multicollinearity problems lbyiance inflation factor, via
pooled (over time points) logistic regression models. Regnot shown here) showed that
none of the related values were greater than 1.394 whichateti no multicollinearity prob-
lems.

We built several models to explain the MSCM data set in théopeof days 17 to 24.
Due to page limits, we could not include the modelling resh#re, but provide some details
below. There is poverty in model selection with GEE, sinc®#s not define a genuine likeli-
hood function. Therefore, we built several UMM’s and MMM Wh different independent
variable sets and working variance-covariance structaseiraptions. We did forecasting
with each of these models and best results were reported Geréhe other hand, we built
a model with MMM2 based on the results of MMM1. This MMM2 pettad estimating
five less parameters compared to its mother MMM1. We were tablise well established
model selection methods, e.g. likelihood ratio test for MEANRand PNMTREM(1), since
the parameters of these models were estimated via MLE. &stiags were done by these
best models.

We reported some features of the models in Table 2, incluti@games and availability
of the related R (R Core Development Team, 2013) packagesanputational details. The
model building processes of UMM, MMM1 and MMM2 took very shoomputing times.
On the other hand, MMREM and PNMTREM(1) took more computaidimes for the
same data set (MSCM). All of these models were fitted on a paistomputer with 4.00
GB RAM and 2.53 GHz processor.

Table 2 is about here.

As it was mentioned earlier, we considered generatjisgirom independent standard
normal distributionK times while forecasting with MMREM and call this method as MM
REMS3. We considered = 30,50, 80, 100 120,150, 180, 200 250,300,400, 500, 750, 1000
and calculated percentagdfdrences in accuracy measures for successive replicationrds)
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e.g. K = 30 vsK = 50. Related percentagefidrences (not shown here) directed us to
chooseK = 150 for responsestress andK = 250 for responssiliness. The reason for
greaterK for responseiliness might be due to the fact that the response has a greate
ance. For instance, the variance parameter estimatesstsind illness were found to be
2.07 and 4.56 by MMREM, respectively.

We observed that the choice of how to handgle, j in (9) atday = 26,27 and 28 while
forecasting with PNMTREM(1) is decisive rather than theichoof usingz or assigning
z. As expected using the observed responses in place of didohgY;;_, ; yielded the
best results. However, we preferred not to report thesdtsdsere since this approach does
not reflect the real life cases in which we do not observe thesponses for these time
points. The second best results were attained by the usge-610.5 to dichotomiseY;_y |
and the results of this approach were reported here, ie.rebults of PNMTREM1 and
PNMTREMZ2. Simulating the responses from Bernoulli digitibns followed this approach.
Empiricalc; yielded very poor results, especially in terms of ePCP.

Based on several accuracy measures, e.g. RMSE and MAE, aechlsmodel selec-
tion criterion, e.g. Akaike Information Criterion and Baya&n Information Criterion, we
used exponential smoothing with additive error, no treraseasonality to forecaat and
exponential smoothing with additive error, additive trend seasonality to forecast.

Model building (days 17 to 24) and forecasting (days 25 tor28llts of mother’s stress
and children’s illness are presented in Tables 3 and 4, cdgply. For model building pe-
riod, the marginalised models, namely, MMREM and PMTREMdgmed to perform better
compared to UMM, MMM1 and MMM2. For instance, for respoastess MMREMS3 and
MMREM4 outperformed these marginal models; the correspaePCP values were 0.844
and 0.842 for MMREM'’s versus 0.799 and 0.800 for the margmatiels. Moreover, the
AUROC values of MMREM1 and MMREM2 were found to be 0.82 as gggabto 0.72 for
marginal models. Note that MMREM1 and MMREM2 were identinaddels at days 17
to 24 indeed. PNMTREML1 followed these models with an AUROQ@eaf 0.804. Sim-
ilar model ranking was observed for respoadleess. For instance, in terms of ePCP all
the MMREM'’s and PNMTREML1 seemed to outperform the otherstetms of AUROC,
MMREM1, MMREM2 and PNMTREM1 seemed to be the best models.

For forecasting time period, marginally specified modeds autperformed the marginal
models for both of the responses. In terms of ePCP, MMREMsn&el to be the best per-
forming models. For instance, the ePCP values of MMREM4 vedirbigher than 0.860
and for responsséliness at day 28 it was found to be 0.917. PNMTREM'’s seemeleto
the worst performing ones in terms of this accuracy measuréhe forecasting time peri-
ods. This worst performance of PNMTREM's is less apparentdsponsestress, which
is the response with lower variance. In terms of AUROC, PNMMRS, especially PN-
MTREMZ2, outperformed the other models. For instance, th&&Q value of this method
for responsestress at day 27 was found to be 0.843. On the other hand, tRO&Values
for other methods were lower; the lowest was found to be Ob&®nging to MMREMA4.
UMM and MMM'’s were among the worst performing methods in terof both ePCP and
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AUROC in most cases and these models had similar forecgstirigrmances.

Table 3 is about here.

Table 4 is about here.

4 A simulation assessment

Forecasting results of MSCM data set suggested that mésgidanodels yielded improved
forecasts. Additionally, the results of UMM seemed to bestor general, yet these results
were close to the ones for MMM’s. This results was our exgemtaHowever empirical in-
vestigations of dependence between responses suggestad @@pendence between stress
and illness at the period of days 17 to 28, e.g. Spearman r@am&lation was found to be
0.13. Based on these, we needed to investigate the fonegasiformances of the models
under dfferent scenarios and conducted a simulation study.

4.1 Data generation

In the simulation study, we assumed that there were 500 &shfje= 1, . ..,500) who were
followed repeatedly over 8 time points£ 1,...,8). At each follow up, six dferent vari-
ables were assumed to be collected. Among them, two werenassto be the responses
(k = 1, 2) and four were assumed to be the covariates. Among theiatesrwhile two X,
andX3) were assumed to be time invariant, other tg &nd X;) were assumed to be time
varying. We mainly considered that all of the variables|udag the responses, were con-
tinuous and generated them from a multivariate normalilligion with a specified mean
and variance-covariance combination. Specifically, adl\thriables were assumed to have
mean 0. Moreover, we assumed that while the continuousores sif the response variables,
Y; andY;, had variances of 1.5 and 2.5, the explanatory variatdes{,, Xs and X,, had
variances of 8, 2.5, 15 and 25, respectively. We furtherrassiuhigh autocorrelations for
responses; as well as high correlations between respondegariates; mild correlations
between responses; and low correlations between cowaliaable 5). Although the cor-
relations in Table 5 seemed quite high, eapr(Y{,Y; ,) = 0.9, they decreased after data
generation and dichotomization to obtain the responsahi@s. The continuous versions of
the response variables were dichotomised according tootimeving rule: classifyY;;; as 1

if Yi; > 0, and O otherwise.

Table 5 is about here.
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4.2 Results
4.2.1 Independent variables

As it was stated earlier, we first forecast the independemdabies. Results foK, are pre-

sented in Table 6. These results were calculated over 10g@di@ations and obtaining all
of the them took 26.3 minutes. Mean and standard error (SEP®&00 MAE and MASE

values were calculated and reported in this table.

Table 6 is about here.

MAE values indicated that TM(1) and TM(2) performed very ganin terms of fore-
castingX,. While the mean values were very close to each other, stdmaeairs were same
for forecasting period. For instance, wheread fer6 the mean MAE was found to be 0.917
for TM(1), it was found to be 0.914 for TM(2). Moreover, thetandard errors were found
to be 0.031. Note that although the standard errors of MAENSfI)) and TM(2) for model
building periods seemed to be slightlyffédrent, they were not directly comparable, since
while the former considers 2nd, 3rd and 4th time points inrtteglel building period, i.e.,
1,500 observations, the latter considers only 3rd and dté goints, i.e., 1,000 observations.
MASE values indicated that TM(1) performed better in terrhfoecastingX, compared to
TM(2) (Table 6).

Recall that whileX, was assumed to have a variance of 2.5 during the simulatomeps,
X4 had a variance of 25. However, increase in the variance ahttependent variables did
not seem to #ect the performances of TM(1) and TM(2). Similan{g while MASE results
of X, indicated that TM(1) performed better in terms of foreaasgX, compared to TM(2),
MAE results indicated similar performance (results arestawn here).

Notice that we estimated one more parameter in TM(2) conap@ard M(1) and the es-
timation of this extra parameter seemed to be redundang sirdid not contribute to the
forecasting accuracy. Therefore, TM(1) was preferred ims$eof forecasting the indepen-
dent variables during our simulation studies. These resudte in agreement with the ones
reported in Aslan (2010) in which the results were based onlynean squared error (MSE).

4.2.2 Dependent variables

After forecasting the independent variables, we cons@léweecasting the bivariate longi-
tudinal binary response¥; andY,. Based on the forecasting performances of the models
on MSCM data set, we selected UMM, MMM1, MMREM2, MMREM4, PNRREM1 and
PNMTREM2. We did not consider MMM2 for the simulation studyforecasting, since the
results of MMM1 and MMM2 seemed to be very similar for the MS@ita set. Moreover,
model fitting of MMM2 requires more computational time comgzhto MMM (Table 2).
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Simulation results on forecasting are presented in Table 7. We preferred not to show
the results ofY, here due to page limits. Indeed, these results seemed tigbéysbetter
than the ones foY;, but indicated same model rankings. The simulation study wepli-
cated 100 times and one replication (the last one) took 1inhidtes. Mean and standard error
(SE) of the ePCP and AUROC values of these 100 simulatioicegjmins were reported.

Table 7 is about here.

In the model building period, times 1 to 4, MMREMZ2 and PNMTREgeemed to be
the best methods in terms both ePCP and AUROC. For instaace; fwhile the ePCP
and AUROC values of the former model were found to be 0.811(af@4, these values
for the latter model were found to be 0.766 and 0.905 (Table These results seemed
to be even better foX,, especially for MMREMZ2; the corresponding ePCP and AUROC
values for MMREM2 were found to be 0.872 and 0.966. For faséng time periods, ePCP
and AUROC indicated dlierent best models similar to the forecasting with MSCM data
set. Specifically, ePCP indicated that MMREM2 & MMREM4 wele tbest performed
methods. For instance, fof at time 6, while the ePCP values of MMREM2 & MMREM4
were found to be 0.708 and 0.670, respectively, these valees found to be 0.605 for
both UMM & MMM1, and 0.566 and 0.555 for PNMTREM1 & PNMTREM2n kerms of
AUROC, MMREM2 and PNMTREM1 seemed to be the best models.istance, foiy; at
time 8, the AUROC values of these models were found to be 0arn840.755, respectively.
On the other hand, while the AUROC values of UMM, MMM1 & MMREM#dere found
to be 0.683, it was found to be 0.706 for PNMTREM2. The stash@arors of ePCP and
AUROC values for all of the models seemed to be similar.

For one-step forecasts, i.e., tigele PNMTREM'’s seemed to perform similar to UMM
and MMML1 in terms of ePCP. Moreover, at this time point, PNMENRs seemed to be better
than MMREM'’s in terms of AUROC. For instance, fgr, the AUROC values of PNTREM1
and MMREM2 were 0.891 and 0.812, respectively.

To sum up, complex models, especially MMREM2 and PNMTREMitperformed in
model building process. It was observed that MMREM2 was dribeleading methods in
both modelling and forecasting procedure, and was conipaotily eficient as well. How-
ever, PNMTREM’s, especially PNMTREM1, seemed to be promgish terms of one-step
ahead forecasts.

5 Conclusion and discussion

In this study, we considered forecasting multivariate lamdjnal binary data. We mainly
considered the comparison of fivdigrent models in terms of forecasting such data. Among
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them whereas two (MMREM and PNMTREM(1)) are complex modeis,others (UMM,
MMM1 and MMMZ2) are relatively simpler ones. The forecastatdglities of these models
were assessed via a real life data (MSCM) and a simulatialysilhe simulation datasets
were generated under a model independent scenario to pravidir model competition.
To best mimic the real life forecasting problems, we congddorecasting the independent
variables as well as the dependent ones. The forecastttodbpendent and independent
variables, were checked via several accuracy measures.

Both real life and simulation examples showed that complexets outperformed dur-
ing the model building process in terms of all the accuracysuees. For the forecasting
period, the complex models again outperformed the simptetats. We observed that while
AUROC suggests PNMTREM(1), ePCP suggests MMREM as the bestdsting method.
This is most probably due to fierent characteristics of these accuracy measures. In other
words, these measures considdéfatent aspects of forecasts. To illustrate, while ePCP con-
siders the averaged probability with respect to actual masens, AUROC considers clas-
sification of the forecast probabilities according to sel/dreshold values. Based on these,
it can be said that the latter is more robust to thresholdegltience, we can conclude that
while the forecast results of PNMTREM(1) are more robust, REEM results are better on
the average. UMM and MMM'’s were among the worst performingirads in terms of both
ePCP and AUROC. Surprisingly, UMM and MMM'’s performed siamniin terms of both
model building and forecasting. Moreover, these compledei®are now available to the
practitioners via R packages or codes.

The computationalféiciencies of models in terms of parameter estimation andéste
ing procedures are also important in real life. We obserliatlwhile the marginal models
took a few seconds for parameter estimation, the margetlisodels took longer compu-
tational times. Moreover, the forecasting procedures effthmer models are quite simpler
compared to the latter ones. For instance, we do not needdodst extra time varying pa-
rameters for the former ones, i.e., they avoid the use of nicalenethods and exponential
smoothing. Nevertheless, the gains in the forecasts dulact to prefer the complex models
for forecasting purposes.

The use of the forecast values of the independent variabkgsad of using supposedly
the observed ones, yielded decreases in the accuracy ragasiawever, this did not change
the model rankings (Aslan, 2010). We observed that the respweariance wadi@cting the
forecasting results, but it did not change the model rarkin§pecifically, we observed
higher accuracy measures for the responses with highemeas, i.e., children’s illness in
the MSCM data set and, in the simulation study. Nevertheless, they indicated saroéel
rankings with the mother’s stress a¥vid

In this study, we mainly considered forecasting bivariasponse. A natural extension
of it might be forecasting more than two responses.
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Table 1: List of the variables in the MSCM study and the relaeplanations.

Variable Explanation
stress mother’s stress status:asence, 2presence
illness child’s illness status:#absence, Zpresence
married marriage status of the mothetddher, Emarried
education mother’s education levekl@ss than high school,
1=at least high school graduate
employed mother’'s employment status:ulemployed, £employed
chlth child’s health status at baseline:\@ry pooypoor,
1=fair, 2=good, 3=very good
mhlth mother’s health status at baselinevery pooypoor,
1=fair, 2=good, 3=very good
housize size of the household=2-3 people, Emore than 3 people
bstress baseline stress: average value of the mothess stre
status for the first 16 days
billness baseline illness: average value of the child'sesls
status for the first 16 days
week a time variable calculated as (day7Z2)
mhlth*week interaction between mother’s health statusaaebne and time
housize*week interaction between size of the householdiarel
billness*week interaction between baseline illness ame ti

Table 2: Model building with MSCM data set.

Model Package Function Reference Computational Time foEMS
UMM gee gee Carey (2012) <1sec

MMM1 mmm mmm Asar and llk (2013) < 1 sec

MMM2 mmm?2 mmm?2 Asar and llk (2014) < 1 sec

MMREM From author findmle-r FORTRAN dll's Lee etal. (2009) =~ 7-8 mins

PNMTREM(1) pnmtrem pnmtrem1 Asar et al. (2014) ~ 30-40 mins
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Table 3: Forecast results for mothers’ stress.

Model Day ePCP AUROC Day ePCP AURO
UMM (Exch) 0.799 0.726 0.858 0.790
MMML1 (Exch) 0.799 0.726 0.855 0.747
MMM2 (Exch) 0.800 0.722 0.861 0.780
MMREM1 0.828 0.821 0.851 0.757
MMREM2 17t024 0.828 0.821 27 0.884 0.754
MMREM3 0.844 0.712 0.903 0.735
MMREM4 0.842 0.721 0.900 0.719
PNMTREM1 0.824 0.804 0.662 0.764
PNMTREM2 0.829 0.712 0.754 0.843
UMM (Exch) 0.823 0.678 0.846 0.709
MMMZ1 (Exch) 0.821 0.641 0.842 0.670
MMM2 (Exch) 0.823 0.657 0.845 0.690
MMREM1 0.831 0.775 0.830 0.585
MMREM2 25 0.866 0.759 28 0.859 0.595
MMREM3 0.868 0.675 0.899 0.661
MMREM4 0.867 0.695 0.886 0.651
PNMTREM1 0.688 0.761 0.625 0.608
PNMTREM2 0.723 0.743 0.732 0.735
UMM (Exch) 0.829 0.704 0.839 0.718
MMML1 (Exch) 0.828 0.704 0.841 0.687
MMM2 (Exch) 0.829 0.715 0.840 0.708
MMREM1 0.836 0.811 0.837 0.729
MMREM2 26 0.865 0.803 25t028 0.868 0.711
MMREM3 0.871 0.728 0.883 0.699
MMREM4 0.869 0.725 0.880 0.698
PNMTREM1 0.685 0.819 0.665 0.736
PNMTREM2 0.711 0.731 0.730 0.759

Note: MMREM1 and MMREM?2 are identical for model building peas.
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Table 4: Forecast results for children’s illness.

Model Day ePCP AUROC Day ePCP AURO
UMM (AR-1) 0.815 0.719 0.793 0.560
MMML1 (Exch) 0.815 0.720 0.800 0.562
MMM2 (Exch) 0.815 0.719 0.800 0.575
MMREM1 0.868 0.878 0.759 0.656
MMREM2 17to24 0.868 0.878 27 0.873 0.677
MMREM3 0.881 0.697 0.907 0.662
MMREM4 0.882 0.705 0.908 0.665
PNMTREM1 0.855 0.814 0.526 0.686
PNMTREM2 0.851 0.691 0.605 0.741
UMM (AR-1) 0.779 0.640 0.799 0.687
MMMZ1 (Exch) 0.782 0.632 0.807 0.685
MMM2 (Exch) 0.781 0.608 0.805 0.674
MMREM1 0.785 0.736 o8 0.761 0.622
MMREM2 25 0.856 0.674 0.853 0.647
MMREM3 0.857 0.570 0.911 0.683
MMREM4 0.860 0.582 0.917 0.686
PNMTREM1 0.629 0.798 0.514 0.638
PNMTREM2 0.652 0.783 0.605 0.772
UMM (AR-1) 0.797 0.623 0.792 0.617
MMML1 (Exch) 0.802 0.627 0.798 0.616
MMM2 (Exch) 0.801 0.614 0.800 0.608
MMREM1 0.764 0.677 0.767 0.675
MMREM2 26 0.875 0.725 25t028 0.864 0.657
MMREM3 0.893 0.670 0.892 0.636
MMREM4 0.895 0.688 0.895 0.645
PNMTREM1 0.555 0.713 0.556 0.701
PNMTREM2 0.624 0.791 0.621 0.765

Note: MMREM1 and MMREM?2 are identical for model building peas.
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Table 5: A summary of the assumed correlation structure.

Timelag Y7, Yy XoXe Y&, X Yo Yo Xo Xe
0 1.00 1.00 0.80 0.60 0.20
1 0.90 0.88 0.70 0.55 0.18
2 0.80 0.76 0.60 0.45 0.16
3 0.70 0.64 0.50 0.40 0.14
4 0.60 052 0.40 0.35 0.12
5 0.50 040 0.30 0.30 0.10
6 0.40 0.28 0.20 0.25 0.08
7 0.30 0.16 0.10 0.20 0.06
Table 6: Forecasting results &§.
TM(1) TM(2)
MAE MASE MAE MASE
Time Mean SE Mean SE Time Mean SE Mean S
2to4 0.671 0.013 0.993 0.012 3to4 0.668 0.016 1.046 O.
5 0.671 0.023 1.242 0.068 5 0.670 0.023 1.531 0.]
6 0.917 0.031 1.692 0.092 6 0.914 0.031 2.086 0.3
7 1.084 0.037 1.996 0.111 7 1.079 0.037 2.457 0.3
8 1.208 0.041 2.223 0.123 8 1.201 0.041 2.728 0.3
5to8 0.970 0.025 1.788 0.085 5to8 0.966 0.025 2.200 O.

057
L 75
326
317
335
P62

Note: X, had variance of 2.5. Results were calculated over 10,00@za¢ipns.
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Table 7: Forecasting results ¥f over 100 replications.

ePCP AUROC ePCP AUROC

Model Time Mean SE Mean SE Time Mean SE Mean SE

UMM (Uns) 0.648 0.011 0.810 0.013 0.585 0.012 0.713 0.02%

MMML1 (Uns) 0.649 0.011 0.810 0.014 0.585 0.012 0.713 0.025
MMREM2 lto4 0.811 0.011 0.924 0.008 7 0.683 0.018 0.768 0.023
MMREM4 0.721 0.013 0.810 0.014 0.644 0.019 0.712 0.024
PNMTREM1 0.766 0.009 0.905 0.008 0.552 0.021 0.764 0.023
PNMTREM2 0.740 0.010 0.870 0.009 0.544 0.020 0.714 0.025
UMM (Uns) 0.625 0.012 0.778 0.019 0.569 0.012 0.683 0.027

MMML1 (Uns) 0.626 0.012 0.778 0.019 0.569 0.012 0.683 0.027
MMREM2 5 0.720 0.016 0.812 0.017 8 0.658 0.019 0.734 0.026
MMREM4 0.694 0.017 0.778 0.019 0.622 0.020 0.683 0.027
PNMTREM1 0.639 0.016 0.891 0.015 0.547 0.021 0.755 0.029
PNMTREM2 0.622 0.016 0.884 0.016 0.539 0.020 0.706 0.029
UMM (Uns) 0.605 0.011 0.747 0.020 0.596 0.011 0.732 0.019

MMM1 (Uns) 0.605 0.011 0.747 0.020 0.596 0.010 0.732 0.019
MMREM2 6 0.708 0.016 0.800 0.0185 08 0.692 0.013 0.779 0.016
MMREM4 0.670 0.016 0.747 0.020 0.658 0.015 0.732 0.018
PNMTREM1 0.566 0.020 0.802 0.019 0.573 0.016 0.801 0.016
PNMTREM2 0.555 0.020 0.748 0.021 0.563 0.016 0.761 0.017

Note: Uns denotes unstructured working variance-coveeatructure assumption.
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