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Abstract: This paper discusses the formulation of the non-commutative Chern-Simons

(CS) theory where the spatial slice, an infinite strip, is a manifold with boundaries. As

standard ∗-products are not correct for such manifolds, the standard non-commutative CS

theory is not also appropriate here. Instead we formulate a new finite-dimensional matrix

CS model as an approximation to the CS theory on the strip. A work which has points of

contact with ours is due to Lizzi, Vitale and Zampini where the authors obtain a description

for the fuzzy disc. The gauge fields in our approach are operators supported on a subspace

of finite dimension N +η of the Hilbert space of eigenstates of a simple harmonic oscillator

with N , η ∈ Z+ and N 6= 0. This oscillator is associated with the underlying Moyal plane.

The resultant matrix CS model has a fuzzy edge. It becomes the required sharp edge when

N and η →∞ in a suitable sense. The non-commutative CS theory on the strip is defined

by this limiting procedure. After performing the canonical constraint analysis of the matrix

theory, we find that there are edge observables in the theory generating a Lie algebra with

properties similar to that of a non-abelian Kac-Moody algebra. Our study shows that

there are (η + 1)2 abelian charges(observables) given by the matrix elements (Âi)N−1N−1

and (Âi)nm (where n orm ≥ N) of the gauge fields, that obey certain standard canonical

commutation relations. In addition, the theory contains three unique non-abelian charges,

localized near the N th level. We observe that all non-abelian edge observables except these

three can be constructed from the (η+1)2 abelian charges above. Using some of the results

of this analysis we discuss in detail the limit where this matrix model approximates the

CS theory on the infinite strip.
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1. Introduction

Recently, there has been much interest in formulating Chern-Simons theories on non-

commutative manifolds [1]. In [2] the non-commutative CS theory has been used for

the purpose of obtaining a new description of the Quantum Hall Effect (QHE). Poly-

chronakos [3] and Morariu and Polychronakos [4] have proposed finite-dimensional matrix

models of CS theory and used them to explain certain properties of the Fractional Quantum

Hall Effect (FQHE).

In this paper we report on our work on the formulation of non-commutative CS theory

where the spatial slice, an infinite strip, is a manifold with boundaries. It can serve to

describe non-commutative QHE in such a strip.

There have been previous attempts to carry out such a formulation on a disc and on a

half plane in the presence of spatial non-commutativity [5, 6]. The main obstacle faced in

these attempts can be traced to the absence of a well-defined ?-product for these types of

manifolds. We discuss this problem in the beginning of section 3 in some detail to better

explain our motivation and the need for the matrix CS model we introduce afterwards.

Recently, Pinzul and Stern [7] have studied the CS theory written on a non-commutative

plane with a ‘hole’. They have shown that in this case the algebra of observables is a

nonlinear deformation of the w∞ algebra. In another work [8], Lizzi, Vitale and Zampini

have formulated a fuzzy disc, on which the non-commutative CS theory can be formulated.

It has overlaps with our work here and has also points of contact with [5].

∗Regular Associate, The Abdus Salam ICTP, Trieste, Italy
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Our model stems from taking gauge fields as operators supported on an N + η-

dimensional subspace of the Hilbert space, where N , η ∈ Z+ and N 6= 0. It is spanned by

the eigenstates of a simple harmonic oscillator associated to the underlying Moyal plane.

The resultant matrix CS model has a fuzzy edge and it becomes the required sharp edge

when N and η → ∞ in a suitable sense. The non-commutative CS theory on the strip is

defined by this limiting procedure. In this framework we perform the canonical constraint

analysis for the finite-dimensional matrix CS model and find out that there are edge observ-

ables in the theory generating a Lie algebra with properties similar to that of a non-abelian

Kac-Moody algebra. Our study shows that there are (η + 1)2 “abelian” charges (observ-

ables) given by the matrix elements (Âi)N−1N−1 and (Âi)nm (where n orm ≥ N) of the

gauge fields, that obey certain standard canonical commutation relations. In addition, the

theory contains three unique “non-abelian” charges, localized near the N th level. We show

that all “non-abelian” edge observables, except these three can be constructed from the

(η + 1)2 “abelian” charges above. Using some of the results of this analysis we discuss in

detail the limit where this matrix model approximates the CS theory on the infinite strip.

Finally, we discuss the commutative limit of our model, where we also give a closed formula

for the central charge of the Kac-Moody-like algebra of the non-commutative CS theory in

terms of the diagonal coherent state matrix elements of operators and star products.

The organization of our paper is as follows: in section 2 we start with a brief review of

the formulation of edge currents in a commutative CS theory on an infinite strip. Here we

also demonstrate how one can formulate these edge effects while working on the full plane

and encoding the boundary structure in the test functions. The next three sections 3, 4

and 5 systematically develop the ideas outlined in the last paragraph. We conclude with

highlighting the main results of our work and their possible physical significance.

2. Edge currents revisited

Here we briefly review the derivation of Kac-Moody algebra obeyed by edge observables in

an abelian Chern-Simons theory. Results summarized in this section are well-established

and extensively discussed in [9, 10]. We consider the simplest case of an infinite strip (say

in x2 direction) in R2 ⊗ R1, where R1 stands for time. This formulation closely follows

the one given in [10] for a disc. Here we also describe another way in which we can work

on the full plane and encode the boundary structure in the domains of the test functions.

This will serve as a prototype approach we shall use for the finite-dimensional matrix CS

model.

Let x ≡ (x1, x2) denote the points of R2. The strip T is defined by

T = {(x1, x2) ∈ R2| − L ≤ x1 ≤ L} . (2.1)

The usual action for the abelian Chern-Simons theory on T is

S =
κ

4π

∫

T ⊗R1

A ∧ dA A = Aµdx
µ . (2.2)

– 2 –
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The gauge fields satisfy the equal time Poisson Brackets (P.B.’s)

{Ai(x0, x1, x2) , Aj(x0, x
′
1 , x

′
2)} = εij

2π

κ
δ2(−→x −−→x ′) , (2.3)

where i, j = 1, 2 and ε12 = −ε21 = 1.

From the variation of S under A0 we have the Gauss law constraint, which can be

written by introducing test functions Λ0 as

g(Λ0) =
κ

2π

∫

T
Λ0(x)dA(x) ≈ 0 . (2.4)

Differentiability of g(Λ0) imposes the condition Λ0|∂T = 0. Using (2.3) and (2.4) it can be

shown that g(Λ0) are first class constraints:

{g(Λ0
1) , g(Λ

0
2)} ≈ 0 , (2.5)

and generate the gauge transformations A→ A− dΛ0.

The charges of this theory are

q(Λ) =
κ

2π

∫

T
dΛ ∧A . (2.6)

Since they are first class:

{q(Λ) , g(Λ0)} ≈ 0 , (2.7)

they constitute the observables of this theory. We note that Λ are test functions associated

with q(Λ)’s and unlike Λ0 they in general do not vanish on ∂T .
Now note that for Λ1 − Λ2 = Λ0,

q(Λ1)− q(Λ2) = −g(Λ1 − Λ2) ≈ 0 . (2.8)

This means that test functions which are equal on ∂T generate charges which are equal

modulo constraints. Thus, q(Λ) are indeed edge observables. They generate the transfor-

mations A→ A− dΛ which do not necessarily vanish on ∂T .
The P.B.’s of charges can be identified to be the U(1) Kac-Moody algebra on ∂T , since

{q(Λ1), q(Λ2)} =
κ

2π

∫

T
dΛ1 ∧ dΛ2 =

κ

2π

∫

∂T
Λ1 dΛ2 . (2.9)

Choosing the basis for the test functions on ∂T as

Λ1|x1=L = ei k1 x2 , Λ2|x1=L = ei k2 x2 , Λ1|x1=−L = 0 , Λ2|x1=−L = 0 , (2.10)

(2.9) can be written as

{q(Λ1), q(Λ2)} = iκ k2δ(k1 + k2) , (2.11)

which is the usual form of the U(1) Kac-Moody algebra.

– 3 –
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An equivalent formulation of the above can be given as follows. Consider the CS theory

on R2⊗R1. However, now the spatial components of the gauge fields are supported in the

region |x1| ≤ L (i.e. in T ), whereas A0 has support in |x1| < L. Obviously, (2.3) holds now

only if x1 , x
′
1 ∈ T , otherwise its r.h.s. vanishes.

From the variation of S under A0 we still have the Gauss law constraint

G(Λ0) =
κ

2π

∫

R2

Λ0dA ≈ 0 , (2.12)

where now the integration is over R2. The condition that Λ0’s are supported in |x1| < L

follows from that of δA0 which is of course the same as that of A0. Thus we have

Λ0 = 0 for |x1| ≥ L . (2.13)

The results of the canonical analysis (given in (2.5)–(2.7)) go through where now

integrals are over all R2 and Λ0 is as given in (2.13). This establishes G(Λ0)’s as first class

constraints and

Q(Λ) =
κ

2π

∫

R2

dΛ ∧A (2.14)

as the observables. Clearly, Λ can be supported on all of R2, but if it is supported only on

R2 \ T (i.e. |x1| > L) then we immediately see from (2.14) that Q(Λ) ≡ 0.

For Λ1 − Λ2 = Λ0 we have

Q(Λ1)−Q(Λ2) = −G(Λ1 − Λ2) ≈ 0 . (2.15)

It follows from this and the remark after (2.14) that Q(Λ) are observables localized at

x1 = ±L. The P.B.’s of charges gives the Kac-Moody algebra:

{Q(Λ1), Q(Λ2)} =
κ

2π

∫

R2

dΛ1 ∧ dΛ2 . (2.16)

A suitable choice for Λ’s to compute this algebra at x1 = L is

Λi = θ(x1 − L) ei ki x2 , (i = 1, 2) , (2.17)

where θ(x1 − L) is the step function centered at x1 = L with θ(0) = 1. Then we have

from (2.16) that

{Q(Λ1), Q(Λ2)} = iκ k2δ(k1 + k2) , (2.18)

which is the same as (2.11). In order to get the algebra of observables at x1 = −L one has

to replace (2.17) by

Λi = (1− θ(x1 + L)) ei ki x2 . (2.19)

This way of treating edge properties is not completely new and has examples in planar

systems of condensed matter physics [11]. We now turn our attention to the treatment of

the non-commutative case.

– 4 –
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3. Non-commutative Chern-Simons theory on the infinite strip

3.1 Remarks on the non-commutative CS theory on a manifold with boundaries

As pointed out by [5, 6] the canonical formulation of Chern-Simons theory on a non-

commutative manifold with boundaries (such as a disc, an infinite strip etc.) presents

serious difficulties. In fact the problem underlying such a formulation is that the standard

?-product on the Moyal plane is no longer valid on manifolds with boundaries. To make

this point clear and supply enough mathematical basis for this assertion let us consider

first the Chern-Simons action on the Moyal plane with no boundaries:

SNCCS = − κ

4π

∫
dx0 d

2x εµνλ

(
Aµ ?M ∂νAλ +

2

3
Aµ ?M Aν ?M Aλ

)
. (3.1)

Here (µ, ν, λ = 0, 1, 2), x0 is time x1 and x2 are coordinates on the Moyal plane and

ε123 = 1.

The Moyal algebra is characterized by the ?-product

f ?M g(x1, x2) = f(x1, x2)e
iθ
2

(
←−
∂ x1

−→
∂ x2

−
←−
∂ x2

−→
∂ x1

)g(x1, x2) . (3.2)

Defining the ?-commutator of f and g by

[f, g]?M = f ?M g − g ?M f , (3.3)

the spatial non-commutativity can be expressed as

[x1 , x2]?M = iθ , (3.4)

θ being the non-commutativity parameter.

Naively, one may consider SNCCS on a manifold with boundaries, say the infinite strip

T , and write the Gauss law constraint as

g(Λ0) = − κ

2π

∫

T
d2 x εij Λ

0 (∂iAj +Ai ?M Aj) ≈ 0 , (3.5)

where (i, j = 1, 2) and Λ0|∂T = 0. However, this expression as well as the SNCCS when

written on the strip T is not well defined. This is because ?M product does not exist on

T . To prove this fact we note that the formula for the ?M product in (3.2) contains the

exponential of the differential operator −i∂x1
. With the usual definition of its domain−i∂x1

generates translations so that ei(−ic∂x1
) translates functions of x1 by c : (ei(−ic∂x1

))ψ(x1) =

ψ(x1 + c). Consequently, if ψ has support [−L,L] , ei(−ic∂x1
)ψ does not, and ?M is not

defined on functions supported in [−L,L] [12].
Alternatively, to circumvent the impossible task of obtaining a well-defined and useful

?-product on these types of manifolds we propose a finite-dimensional matrix model where

the edges are fuzzy. It becomes the CS theory on a non-commutative infinite strip in the

limit where the size of the matrices approaches infinity. In this respect, we emphasize that

our approach is completely different from the previous attempts in the literature as the

following section illustrates.

– 5 –
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3.2 The matrix model

We now describe our matrix model. Since we will be working in the operator formalism

in this subsection, we discriminate the operators from the elements of the corresponding

Moyal ? algebra of functions by putting a hat symbol on the elements of the former. Thus

the Moyal plane is described by operators x̂i (i = 1, 2) with the relation

[x̂1, x̂2] = iθ . (3.6)

To supply the mathematical basis for our arguments we think of a simple harmonic

oscillator in the x1-direction, described by the hamiltonian

Ĥ =
x̂2

2

2m
+

1

2
kx̂2

1 , (3.7)

and the oscillation frequency ω =
√

k
m . Now consider the Hilbert space H spanned by

the eigenstates of this hamiltonian. In the matrix CS model we will construct H will be

associated to the underlying Moyal plane, and its finite-dimensional subspaces will serve

as the carrier spaces of the operators that we are going to introduce in our matrix model.

More precisely, we will define these operators in terms of their action on the elements of a

finite-dimensional subspace of H and its orthogonal complement.

The number of energy eigenstates of this hamiltonian below the energy E = 1
2kL

2 with

L being the maximum classical amplitude (given by the location of the edges) is finite and

given by

M =

[
kL2 + θω

2θω

]
, (3.8)

where [kL
2+θω
2θω ] is the largest integer smaller than kL2+θω

2θω . These M states span a subspace

HM of the harmonic oscillator Hilbert space H and they can be taken as an orthonormal

basis in HM .1 From (3.8) it is easy to see that keeping both oscillation frequency ω and the

maximum oscillation amplitude L fixed while increasing k (i.e. steepening the potential)

results in larger number of states with energy E ≤ 1
2kL

2. Hereafter we keep ω fixed unless

otherwise stated. Let us consider a levelK withK ≤M . Then the largeK ≈M levels with

energy E ≈ 1
2kL

2 get localized near the edges x1 = ±L, since their probability amplitudes

are maximum there. On the contrary, those levels with E ¿ 1
2kL

2 are localized well inside

−L ≤ x1 ≤ L for largeM . We also note that all levels decay exponentially outside |x1| ≤ L.
Linear operators on HM which are zero on the orthogonal complement H⊥M behave also

in a similar fashion. Later we will show that diagonal coherent state matrix elements of

operators, say like |K >< K| with K ≈M will peak near ±L for all |x2| < M for large M ,

while those with K much less than M acquire maxima within |x1| < L. The characteristic

width of the peaks at ±L, which gets narrower as M gets larger, gives us a natural scale

to which we will relate the thickness ∆` of the “fuzzy edge” of our matrix model.

1To avoid any confusion that our notation might create later on we note that the Fock basis we are using

for H is the usual one where states are labeled starting with quantum number 0, therefore the top state in

HM has the quantum number M − 1.

– 6 –
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For the finite-dimensional matrix CS theory we have in mind, we treat spatial compo-

nents of the gauge fields as operators supported on this M -dimensional subspace HM of

H. This and the physical picture described above for the underlying Moyal plane imply

two immediate consequences:

• It is those states contained within the thickness ∆` of the edges that will be respon-

sible for the edge observables in our finite-dimensional matrix CS model;

• The M → ∞ limit of this matrix CS theory can be taken to define the non-

commutative CS theory on the infinite strip with boundaries at x1 = ±L.

After writing the matrix CS model and performing the constraint analysis for it, we will

find these observables, and we will have the necessary information to explain and elaborate

on the properties of the large M limit and how it is realized.

We now splitM as M = N+η where N , η ∈ Z+ and N 6= 0, and use this separation of

the total dimension to define the domains and the ranges of our operators. In our formalism

the gauge fields Âµ , (µ = 0, i where i = 1, 2) are anti-hermitean operators that we choose

to take in the way given below:

ÂiHN+η ⊆ HN+η , ÂiH⊥N+η = {0} ,
Â0HN−1 ⊆ HN−1 , Â0H⊥N−1 = {0} . (3.9)

Here for any K ∈ Z+,H⊥K denotes the orthogonal complement of HK . The fact that Â0 is

nonzero only onHN−1 and not onHN+η should be noted. The reason behind this condition

will be explained later in connection with the canonical analysis of the model.

If |n > denotes the nth normalized energy level and P̂nm is the operator given by

P̂nm = |n >< m|, then we can write,

Âi =

(N−1+η)∑

n,m=0

i(Âi)nm P̂nm , (Âi)nm = 0 for n or m > N − 1 + η . (3.10)

For Â0, the same equation is valid if we replace N − 1+ η with N − 2. It also follows from

Â†µ = −Âµ that

(Âµ)
∗
nm = −(Âµ)mn . (3.11)

There is another way to express (3.9). For this let us introduce the orthogonal projector

1̂K by

1̂K =

K−1∑

n ,m=0

(1̂K)nmP̂nm :=

K−1∑

n ,m=0

(δ)nmP̂nm =

K−1∑

n=0

P̂nn ,

(1̂K)nm = (δ)nm = 0 for n or m > K − 1 . (3.12)

Then (3.9) is equivalent to

Âi = 1̂N+η Âi 1̂N+η , Â0 = 1̂N−1 Â0 1̂N−1 . (3.13)

– 7 –
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The Chern-Simons lagrangian for the model reads (up to a total space derivative)

LNCCS = −κθ
2
εij Tr (− Âi

ˆ̇Aj + 2Â0(∂iÂj + ÂiÂj)) , (3.14)

where ˆ̇Aj = ∂0Âj , trace is over the Hilbert space H, and derivations are given by

∂i(.) =
i

θ
εij [x̂j , (.)] . (3.15)

Several remarks about properties of LNCCS are in order. First, LNCCS changes by total

derivatives under infinitesimal gauge transformations of the form

Âµ → Âµ + (∂µλ̂+ i[Âµ , λ̂]) , (3.16)

where λ̂ is a matrix with infinitesimal elements. Next, as in Chern-Simons theory on a

commutative manifold, the conjugate momenta Π̂0 to Â0 are weakly equal to zero and first

class, thus Â0 is not an observable and can be eliminated from the rest of our discussion.

The equal time P.B.s of (Âi)nm can be written as

{(Âi)nm , (Âj)rs} =
1

κθ
εij(1̂N+η)ns(1̂N+η)mr =

1

κθ
εijδnsδmr , n,m, r, s ∈ [0, N−1+η] ,

(3.17)

which in the operator formalism is the statement that (Â1)nm and (Â2)rs are canonically

conjugate. In terms of the operators Âi in (3.10), this is

{Âi , Âj} = −
1

κθ
(N + η) εij

N−1+η∑

n=0

P̂nn = − 1

κθ
(N + η)εij 1̂N+η . (3.18)

We now turn our attention to the canonical constraint analysis of this model.

3.3 Canonical analysis of the matrix model

From the variation of LNCCS with respect to Â0, we have the Gauss law constraint

−κ θ εij Tr (δÂ0(∂iÂj + ÂiÂj)) ≈ 0 . (3.19)

As δÂ0 is not zero only in HN−1, we find

g(Λ̂0) = κ θ εij Tr (Λ̂
0(∂iÂj + ÂiÂj)) ≈ 0 , (3.20)

where Λ̂0 is of the same form as δÂ0:

Λ̂0HN−1 ⊆ HN−1 , Λ̂0H⊥N−1 = {0} (3.21)

and where we have changed the sign of (3.20) compared to (3.19) for future convenience.

In terms of the orthogonal projectors introduced in (3.12),

Λ̂0 = 1̂N−1 Λ̂
0 1̂N−1 . (3.22)

– 8 –
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In the basis spanned by {iP̂nm} we have

Λ̂0 =

N−2∑

n,m=0

i(Λ̂0)nm P̂nm , (Λ̂0)nm = 0 for n or m > N − 2 . (3.23)

Anti-hermiticity requires that (Λ̂0)∗nm = −(Λ̂0)mn.

Equation (3.20) is the statement of Gauss law in our matrix model and Λ̂0’s are non-

commutative analogues of the test functions of the commutative CS theory.

“Integrating” by parts g(Λ̂0) can be written as

g(Λ̂0) = κ θ εij Tr (∂i(Λ̂
0Âj)− ∂iΛ̂0Âj + Λ̂0ÂiÂj) ≈ 0 . (3.24)

Here the first term is the trace of a “total derivative” on a finite-dimensional Hilbert space

and it vanishes. Note that ∂i(Λ̂
0Âj) is identically zero in {H⊥N+η+1}. Hence, in our matrix

model we can write the Gauss law as

g(Λ̂0) = κ θ εij Tr (− ∂iΛ̂0Âj + Λ̂0ÂiÂj) ≈ 0 . (3.25)

The conditions on Λ̂0 translate to those on ∂i Λ̂
0 as

(∂i Λ̂
0)HN ⊆ HN , (∂i Λ̂

0)H⊥N = {0} , (3.26)

or

(∂iΛ̂
0) = 1̂N (∂iΛ̂0) 1̂N . (3.27)

Consider now the quantity

q(Σ̂) = κ θ εij Tr(−∂iΣ̂Âj + Σ̂ÂiÂj) , (3.28)

for an arbitrary operator Σ̂. A straightforward calculation shows that

{q(Σ̂1) , q(Σ̂2)} = −q([Σ̂1 , Σ̂2])− κ θ εij Tr 1̂N+η (∂iΣ̂1) 1̂N+η (∂jΣ̂2) . (3.29)

For Σ̂i = Λ̂0
i (i = 1, 2) we have

q(Λ̂0
i ) = g(Λ̂0

i ) . (3.30)

Also with this substitution the central term in (3.29) becomes

−κ θ εij Tr 1̂N+η (∂iΛ̂
0
1) 1̂N+η (∂jΛ̂

0
2) = −κ θ εij Tr(∂iΛ̂0

1) (∂jΛ̂
0
2)

= −κ θ εij Tr ∂i(Λ̂0
1 ∂jΛ̂

0
2) = 0 , (3.31)

where we have once more made use of the fact that the trace of a total derivative term

vanishes on a finite-dimensional Hilbert space. Thus for the P.B.’s of g(Λ̂0) we find

{g(Λ̂0
1), g(Λ̂

0
2)} = −g([Λ̂0

1 , Λ̂
0
2]) ≈ 0 , (3.32)

assuring that g(Λ̂0) are first class constraints.
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Consider now Σ̂ = Λ̂ = Λ̂′ + Λ̂0 for some Λ̂0 fulfilling (3.21) or equivalently (3.22) and

Λ̂′ such that
Λ̂′HN−1 = 0 , Λ̂′H⊥N−1 ⊆ H⊥N−1 ,

(∂iΛ̂
′)HN−2 = 0 , (∂iΛ̂

′)H⊥N−2 ⊆ H⊥N−2 , (3.33)

or

0 = 1̂N−1 Λ̂
′ 1̂N−1 . (3.34)

In the basis spanned by {iP̂nm} we have

Λ̂′ =
∞∑

n,m=N−1

iΛ̂′nm P̂nm , Λ̂′nm = 0 for n or m < N − 1 . (3.35)

Anti-hermiticity gives (Λ̂′)∗nm = −(Λ̂′)mn.

Now note that

q(Λ̂) = q(Λ̂′ + Λ̂0) = q(Λ̂′) + g(Λ̂0) ≈ q(Λ̂′) . (3.36)

Next, from (3.21) and (3.33) we observe that

[Λ̂′ , Λ̂0] = 0 . (3.37)

Hence, we have

[Λ̂ , Λ̂0
2] = [Λ̂′ + Λ̂0

1 , Λ̂
0
2] = [Λ̂0

1 , Λ̂
0
2] (3.38)

which is of the form fulfilling (3.21).

It now follows at once that the P.B.s of q(Λ̂) with the Gauss law is

{q(Λ̂) , q(Λ̂0
2)} = {q(Λ̂) , g(Λ̂0

2)}
= −q([Λ̂ , Λ̂0

2])− κ θ εij Tr 1̂N+η (∂iΛ̂) 1̂N+η (∂jΛ̂
0
2)

= −q([Λ̂′ , Λ̂0
2])− q([Λ̂0

1 , Λ̂
0
2])− κ θ εij Tr 1̂N+η (∂iΛ̂

′) 1̂N+η (∂jΛ̂
0
2)

= −g([Λ̂0
1 , Λ̂

0
2]) ≈ 0 , (3.39)

where the “central term” vanishes. This is because ∂iΛ̂
′ is projected to HN+η, and due to

antisymmetry of the indices it becomes

−κ θ εij Tr ∂j(1̂N+η ∂iΛ̂
′ 1̂N+ηΛ̂

0
2) (3.40)

which is zero on a finite-dimensional Hilbert space.

In fact one can take the vanishing of the central term as a requirement on Λ̂0’s and find

out that the maximally large subspace of H where Λ̂0 is supported and for which (3.37)

holds is HN−1. This explains how we arrive at the particular form of the operators for Â0

and Λ̂0 given in (3.9) and (3.21) respectively.

As a consequence of (3.39), q(Λ̂)’s with Λ̂ = Λ̂′+Λ̂0 are first class, and they constitute

a set of non-abelian observables of our matrix model.

Furthermore, for

Λ̂1 = Λ̂′ + Λ̂0
1 , Λ̂2 = Λ̂′ + Λ̂0

2 , (3.41)

– 10 –



J
H
E
P
0
9
(
2
0
0
3
)
0
0
7

we have

q(Λ̂1)− q(Λ̂2) = g(Λ̂1 − Λ̂2) ≈ 0 , (3.42)

implying that the actions of q(Λ̂1) and q(Λ̂2) on physical states give the same result. Finally,

we compute the P.B.s of q(Λ)’s and find that

{q(Λ̂1) , q(Λ̂2)} = −q([Λ̂1 , Λ̂2])− κ θ εij Tr 1̂N+η (∂iΛ̂1) 1̂N+η (∂jΛ̂2) . (3.43)

In order to discuss implication of these results we need one more ingredient, this is

contributed by the P.B.

{(Âl)nm , g(Λ̂
0)} = (∂lΛ̂

0)nm − i[Λ̂0 , Âl]nm ≈ 0 , (3.44)

for n orm ≥ N and for n = m = N − 1. Thus (Âl)nm for n orm ≥ N and (Âi)N−1N−1

are observables of our matrix theory. The algebra of these observables is standard and

given by (3.17) together with the same restrictions on indices r and s as on n and m.

It is easy to see that for fixed N and η there are (η + 1)2 of these observables. For

instance, for η = 0 we have (Âi)N−1N−1 as an observable, for η = 1, we have (Âi)N−1N−1,

(Âi)NN , (Âi)N N−1 , (Âi)N−1N as observables.

From (3.43) we see that the observables q(Λ̂) generate a finite-dimensional Lie algebra

with properties similar to a non-abelian Kac-Moody algebra. The differences are that this

Lie algebra is finite-dimensional and its central charge is modified, due to the appearance

of the projectors 1̂N+η in the expression.

Independently of the value of η, q(Λ̂) is nonzero for nonzero entries of Λ̂N−1N−1,

Λ̂N−1N and Λ̂N N−1 in a given Λ̂. Thus we have three unique non-abelian Kac-Moody-like

observables. For fixed N and η the rest of such non-abelian observables are (η+2)2−1−3 =

η(η+4) in number and they can be constructed from the (η+1)2 observables (Âi)nm given

above.

We now investigate the limit M →∞.

4. The large M limit

First we introduce the coherent state |z〉 by

|z〉 = e−
1
2θ
|z|2

∞∑

r=0

zr√
θrr!
|r〉 , (4.1)

where â|z〉 = z|z〉, 〈z|z〉 = 1 and [â , â†] = θ.

The diagonal coherent state element of the operator P̂M−1M−1 = |M−1〉〈M−1| reads

PM−1(z, z̄) =
1

πθ
〈z|M − 1〉〈M − 1|z〉 = e

−|z|2

θ
|z|2(M−1)

πθM(M − 1)!
, (4.2)

where we have included the normalization factor 1/πθ so that
∫
d2zP(z, z̄) = 1. From the

definitions

x̂1 =
L

2
√

(M − 1/2) θ
(â+ â†) , x̂2 = − i

√
(M − 1/2) θ

L
(â− â†) , (4.3)
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Figure 1: Sample plot of QM−1(x1 , x2) for

M = 100. Here the axes are labeled by

y := x1

L
and ω := L

2θ
x2. The geometry ap-

proximates an infinite strip along w axis with

peaks localized at y = ±1 as M →∞.

Figure 2: Blow up of QM−1(x1 , x2) for

M = 100 and |ω| ≤ 65.

we can deduce the relation between z = (z1 , z2) and x = (x1 , x2) to be

x1 = 〈z|x̂1|z〉 =
L√

(M − 1/2)θ
z1 , x2 = 〈z|x̂2|z〉 =

2
√

(M − 1/2)θ

L
z2 , (4.4)

or

|z|2 = z2
1 + z2

2 =

(
M − 1

2

)
θ
x2

1

L2
+

L2

4θ(M − 1/2)
x2

2 . (4.5)

Substituting (4.5) into (4.2) we define the l.h.s. of the resulting expression by

QM−1(x1 , x2) ≡ PM−1(z, z̄) . (4.6)

From eqn. (65) we see PM−1 has maxima 2 at the value z = z0 given by |z0|2 = θ(M − 1).

This implies that the function QM−1(x1 , x2) has maxima on an ellipse given by

x2
1(

M−1
M−1/2

)
L2

+
x2

2
4θ2

L2 (M − 1)(M − 1/2)
= 1 , (4.7)

the axes of the ellipse being given by
√

M−1
M−1/2L and 2

Lθ
√

(M − 1)(M − 1/2) respectively.

Now holding θ constant and taking M large we see from figure 1 that the maxima of

2We thank Fedele Lizzi for his private communications to us regarding the nature of the maxima. His

comments together with the discussion in the paper by Lizzi, Vitale and Zampini [8] have led us to a better

understanding of this issue.
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QM−1(x1 , x2) have the geometry of an ellipse which is extended along the x2 direction.

For large M and fixed θ and L this conclusion is also seen from the ratio of semimajor axis

of the ellipse to its semiminor axis, which is approximately 2
L θM : L. From this reasoning

and from figure 1 and figure 2 we conclude that the extended elliptical geometry in the

limit M →∞ converges to an infinite strip along the x2 axis with peaks at x1 = ±L. This
proves our assertion in section 3.2 about the behavior of diagonal coherent state matrix

elements of operators on HM for large M .

In order to get a measure of the sharpness of the maxima of QM−1, we now com-

pute the width of the function QM−1 at (x1 =
√

M−1
M−1/2L , x2 = 0), the computation for

(x1 = −
√

M−1
M−1/2L , x2 = 0) being similar. It may also be noted that although we do the

computation at x2 = 0 our result is valid for all |x2| independent of M in the large M

limit, where the geometry is that of an infinite strip. Let the width of the maxima of the

function QM−1 by denoted by ∆x1. We estimate ∆x1 by imposing the requirement that

QM−1(x1 +
1
2∆x1 , x2 = 0) = 1

eQM−1(x1 , x2 = 0). For large values of M , the width ∆x1

can be obtained (using Maple) as

∆x1|M→∞ →
√

2

M
L+O

(
1

M

)
. (4.8)

Thus the width ∆x1 gets narrower asM gets larger. It is however, important to remark the

following: The value of the maxima of QM−1 for large M is proportional to 1
θ
√
M−1

. This

implies that for fixed θ, the height of the peaks decreases as M gets larger. Nevertheless,

the normalization integral
∫
QM−1(x1 , x2)d

2x = 1 is preserved. A rough estimate of the

volume under the graph of QM−1 would be enough to see that this is the case. For large

values of M , the width ∆x1 ≈ 1/
√
M , the height h ≈ 1/

√
M and x2 extends to order M .

Thus for large values of M , the volume under the graph is independent of M .

It is natural to take the thickness ∆` of the ‘fuzzy edge”’s in our matrix model to be

given by the characteristic width ∆x1 of QM−1. As M →∞ we have ∆x1 = L/
√
M → 0,

and consequently we get sharp boundaries (i.e. thin edges) at ±L. Thus this limit defines

the non-commutative CS theory on the infinite strip.

We end this section by estimating the spacing between the edge states of our model.

First recall that for a given η ∈ Z+, the number of edge states in our matrix model is√
(η + 2)2 − 1 ≈ η + 2. Let α(M) be the spacing of these edge states. As argued before,

the thickness ∆` of the “fuzzy edge” is given by ∆x1. We therefore have

α(M)(η + 2) = ∆x1 . (4.9)

However, we note that by construction of our model we have 0 ≤ η < M . This enables

us to extract both an upper bound and a lower bound for the spacing of the edge states

α(M). Thus in the large M limit, using (71) and (72), we find that

2α(M) ≤ ∆` =

√
2

M
L < Mα(M) ⇒

√
2L

M
3
2

< α(M) ≤ L√
2M1/2

. (4.10)
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5. Commutative limit

In this section, we would like to comment on the commutative limit of our matrix model

defined byM →∞ and θ → 0. First, we define F (z , z̄) := 〈z|F̂ |z〉 for an arbitrary operator

F̂ . The standard star product is then given by

F ? G(z) = 〈z|F̂ Ĝ|z〉 . (5.1)

Making use of the formula ∫
d2z F (z , z̄) = 2π θTr F̂ , (5.2)

we can express (3.43) in the diagonal coherent state representation as

{q(Λ1) , q(Λ2)} = −q([Λ1 ,Λ2]?)−
κ

2π
εij

∫
d2z 1M ? (∂iΛ1) ? 1M ? (∂jΛ2) . (5.3)

The first term in r.h.s. of the above expression vanishes as θ → 0 since the ?-product

becomes the ordinary product and the commutator of functions Λi under ordinary product

is zero. Also in this limit, we see from (3.12) that 1̂M → 1. Using these in (5.3) we recover

the standard U(1) Kac-Moody algebra of the edge observables of commutative CS theory:

{q(Λ1) , q(Λ2)} = −
κ

4π
εij

∫
d2x (̃∂iΛ1) (̃∂jΛ2) . (5.4)

In getting this final result we have made use of the identity [13]

∫
d2z F (z, z̄) =

1

2

∫
d2x F̃ (x1, x2) , (5.5)

where F̃ (x1, x2) denotes the Moyal representation of the operator F̂ , and the fact that the

?M is removed under integration over the Moyal plane.

Finally it may be noted that the parameter θ may tend to zero in different fashions

resulting to different geometries in the commutative limit. For example, taking θ ≈ 1/
√
M

still gives a strip geometry in the large M limit. In this case the height of the maxima of

the function QM−1(x1 , x2) at x1 = ±L is constant, x2 extends to ±
√
M and ∆x1 varies

as 1/
√
M . To be more precise for all θM →∞ as M →∞ results in a strip geometry. On

the other hand, as discussed by Lizzi, Vitale and Zampini in [8], the θ → 0 limit keeping

the product θM fixed gives the geometry of a disc.

6. Concluding remarks

In this work we have formulated the Chern-Simons theory on an infinite strip on the

Moyal plane. Our formulation involved the construction of a new matrix CS model whose

features are associated with the underlying Moyal plane. Performing canonical analysis

revealed that this matrix model has “fuzzy” edges whose thickness ∆`, we found out to be

inversely proportional to
√
M in the large M limit. Thus in this limit our matrix model

approximated the non-commutative CS theory on the infinite strip. Our results show that

– 14 –
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the edge observables on the boundaries of the non-commutative infinite strip are given

by a finite-dimensional Lie algebra with properties similar to that of a non-abelian Kac-

Moody algebra. Our findings generalize the well-known results of the usual CS theory

to non-commutative manifolds with boundaries, thereby opening new possibilities for the

treatment of non-commutative Quantum Hall Effect and for other applications in such

domains.
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