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Abstract

Pheromones are chemical substances released into the environment by an individual animal, which elicit stereotyped
behaviours widely found across the animal kingdom. Inspired by the effective use of pheromones in social insects, phero-
monal communication has been adopted to swarm robotics domain using diverse approaches such as alcohol, RFID tags
and light. COS® is one of the light-based artificial pheromone systems which can emulate realistic pheromones and envi-
ronment properties through the system. This article provides a significant improvement to the state-of-the-art by pro-
posing a novel artificial pheromone system that simulates pheromones with environmental effects by adopting a model
of spatio-temporal development of pheromone derived from a flow of fluid in nature. Using the proposed system, we
investigated the collective behaviour of a robot swarm in a bio-inspired aggregation scenario, where robots aggregated
on a circular pheromone cue with different environmental factors, that is, diffusion and pheromone shift. The results
demonstrated the feasibility of the proposed pheromone system for use in swarm robotic applications.
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eliciting behavioural and developmental changes. From
yeast and small insects such as ants and bees to mam-
mals such as dogs and humans, a wide range of insects
and animals adopt pheromone as a communication
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Pheromone is one of the most effective communication
mediums widely used by animals (Camazine et al.,

mone optimises behaviour of an entire group of robots.
Researchers have implemented pheromonal communi-
cation with various methods such as chemical sub-
stances, radio-frequency identification (RFID) and
virtual environments.
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COS® is a low-cost light-based artificial pheromone
system which ensures high degree of flexibility and fide-
lity (Arvin et al., 2015). This work and its extension (Na
et al., 2019) investigated collective behaviours of a robot
swarm with environmental factors including evapora-
tion, diffusion and wind effect on artificial pheromone
as they are ever-present phenomena in nature. The work
is one of the early studies that embodied environmental
effects and investigated impact of environmental factors
on collective behaviours of robotic swarm. However,
bidirectional communication between the pheromone
system and the robots was not achieved; in other words,
the robots reacted the given pheromone without releas-
ing any additional pheromone into the system.

In this article, we proposed a novel artificial phero-
mone system for swarm robotic applications. This arti-
cle improves the state-of-the-art as (1) highly precise
pheromone release mechanism is implemented due to
the high resolution of LCD screen. (2) High flexibility
of the system is achieved since the characteristics of the
artificial pheromones can be easily modified in the soft-
ware. (3) Cost-effectiveness of the system enhances the
ease of utilisation in swarm robotics studies. (4)
Environmental effects, for example, wind effect and dif-
fusion, are implemented in the system based on the reli-
able mathematical models to make it realistic and
having high fidelity. We presented a detailed study of
impact of environment factors involving bidirectional
pheromonal communication on collective behaviour of
robots, which we called it pheromone injection. We spe-
cifically investigated influence of diffusion in diverse
settings including static and dynamic cue settings and
pheromone injection on aggregation behaviour of
robots that operate based on ®-Clust algorithm (Arvin
et al., 2018), which was a pheromone-based bio-
mimetic simulated swarm.

2. Related works

2.1. Pheromone in biology

Pheromone is defined as chemical substance secreted to
the outside of an individual and detected by conspeci-
fics triggering them to conduct stereotyped behaviour
and/or have developmental changes (Karlson &
Liischer, 1959). Pheromones are essential factors in ani-
mal communication and trigger physiological change in
a wide range of behavioural and ecological contexts in
nature (Baracchi et al., 2017; Chalissery et al., 2019;
Hostachy et al., 2019; Okosun et al., 2019; Tateishi
et al., 2020). Pheromones play important roles as com-
munication means for diverse taxonomic groups from
yeast and insects to mammals (Fields, 1990).
Pheromonal communications were found in verte-
brate animals (Brennan & Zufall, 2006). For example,
2-methylbut-2-enal, which is contained in rabbit milk,
improves nipple-search behaviour of rabbit pups

(Schaal et al., 2003). Several studies have found that
the physiological and psychological effects elicited by
chemosignals arise also in humans (Mutic et al., 2017,
Preti et al., 2003; Stern & McClintock, 1998; Wedekind
& Furi, 1997). For example, it is found that female
reproductory state is affected by male axillary extract
which mediates the hormonal change in female brain
(Preti et al., 2003). These results showed that pheromo-
nal communication is widely used across diverse taxo-
nomic groups including human beings.

Although a broad spectrum of animals use pheromo-
nal communication as their communication mechan-
ism, social insects utilise pheromone most effectively
(Holldobler & Wilson, 1990). Pheromone enables a
whole group of social insects to communicate effec-
tively as an externalised and spatialised shared memory
although the individuals have limited memory and
sensory-motor capability. Also, agents only need local
sensing ability to detect pheromone rather than global
sensing. Moreover, a collective behaviour in a group of
social insects can be optimised appropriately deploying
pheromones (Denny et al., 2001; Goss et al., 1989). For
example, the Argentine ant Iridomyrmex humilis finds
the shortest path from its colony to the food source
using pheromone and its feedback mechanisms (Goss et
al., 1989; Holldobler & Wilson, 1990).

Monomorium pharaonis, called Pharaoh’s ants,
which are usually found in human habitats, utilise mul-
tiple pheromones that are vital for food-foraging beha-
viour in dynamic and competitive environments
(Jackson & Ratnieks, 2006). They create pheromone
trails to fetch to and return from the food source using
three types of trail pheromones: non-volatile attractive
pheromone, volatile attractive pheromone and repellent
pheromone. The three different kinds of pheromones
work, respectively, as long-term memory of the trail,
attraction leading to the currently rewarding trail and a
stop-sign. The sophisticated use of the three types of
pheromones enables the ant colony to create optimal
pheromone trails from the nest to the food source in
dynamically changing environments. Bombus hortorum,
known as bumblebee, leaves chemical cue on flowers
which allows detection and avoidance of recently
depleted flowers (Eltz, 2006). Similarly, the use of
chemical cue enhances the efficiency of foraging beha-
viours of bee colonies since it prevents meaningless vis-
its of depleted flowers. Majority of social insects utilise
queen pheromones. This type of pheromones character-
ise queen and other reproductive individuals and are
extremely important to maintain the whole colony
(Holman, 2018; Princen et al., 2019). For example, a
queen pheromone of Lasius niger, known as the black
garden ant, regulates worker sterility so that the repro-
duction behaviour of the colony is controlled by the
queen (Holman et al., 2010). As another example, if the
queen of a colony fails by any reasons including viruses



Na et al.

and pesticides, the secretion of queen pheromone in the
colony decreases, and as a result the colony might col-
lapse (Steinhauer et al., 2018).

2.2. Pheromone in robotics

Swarm robotics is the study of how large number of
simple agents for a collective behaviour achieved by
local interactions among the agents and/or between the
agents and the environment (Sahin, 2005). The effec-
tiveness of pheromonal communication is significantly
aligned with the needs of swarm robotics. First of all,
pheromonal communication requires a simple capabil-
ity for individual robot since it only needs local sensing
(Khaliq & Saffiotti, 2015). Second, regardless of the size
of the environment, the individuals only need to have a
limited memory since the environment contains infor-
mation about the state and actions via released phero-
mone (Jackson et al., 2006). Third, its potential to
optimise the performance of a group task via use of
combination of multiple types of pheromone and feed-
back mechanisms is highly desirable for robot swarms
(Denny et al., 2001). Finally, no external control is
needed with pheromone-based self-organisation; there-
fore, a fully decentralised swarm system can be achieved
(Jackson et al., 2011). Several researchers have noticed
the potential of pheromonal communication in swarm
robotics; thus, they adopted pheromonal communica-
tion in the simulation and physical robot systems. One
of the early works inspired by pheromone communica-
tion was introduced by Russell (1999). This work
employed Cinnamomum camphora, known as Camphor,
as implementation of trail pheromone for trail follow-
ing behaviours for the robotic systems which embodied
odour releasing and sensing functionality. The results
of this work demonstrated feasibility of using phero-
mone in robotic systems as a communication medium.
Similar to the work introduced above, Fujisawa et al.
(2014) used ethanol as a pheromone for the robotic sys-
tem. The work proved that a complete autonomous
robotic system that conducts cooperative behaviours
with trail following can be achieved using pheromone
communication. Despite the successful implementation
of chemical-based pheromone communication for
robotic systems introduced above, practical difficulties
in sensors and actuators are incurred such as cost and
resolution of chemical detecting sensors (Purnamadjaja
& Russell, 2010).

A number of studies proposed robotic systems using
RFID tags as a medium for pheromonal communica-
tion (Herianto & Kurabayashi, 2009; Khalig &
Saffiotti, 2015). In these studies, RFID tags were dis-
tributed on the floor in the environment where the
robots operate. The tags store data transmitted by
robots passing above and eclicited the corresponding
behaviour depending on the data transmitted previ-
ously, which works like pheromones in nature. One of

the recent works using RFID tags (Alfeo et al., 2019)
show its usability in real-world application. This work
utilised RFID tag-based pheromone communication
for autonomous waste management in urban environ-
ment. The work demonstrated pheromone-based commu-
nication robotic system outperformed the conventional
communication method. Although the approach that uses
RFID tags is reliable and usable, it requires appropriately
equipped environments with RFID tags, which might
challenge users when preparing the environments are not
feasible.

Recent studies involved virtual environments to
implement artificial pheromone into swarm robotic sys-
tems. Campo et al. (2010) proposed a mechanism for
path selection by a foraging robot swarm using virtual
ants. In this mechanism, robots locally transmitted and
received messages. The messages were referred to as vir-
tual ants and they deposited the virtual pheromone on
the robots, thereby indicating path. While this work
implemented virtual pheromone only within robots, the
other works created virtual map to mark deposited
pheromone accessible to all the robots. As an example,
Reina et al. (2017) introduced the augmented reality for
Kilobots (ARK) system that creates a virtual environ-
ment where Kilobots swarm (Rubenstein et al., 2012),
which has been designed for large-scale robotics experi-
ments, transmits and senses information in real-time.
Through the system, the robots equipped the virtual
sensors and actors and they accessed to the virtual
environments shared by all robots integrating overhead
tracking and control. In the virtual environments, the
robots could release and detect the virtual pheromones.
One of the following works utilised this system to inves-
tigate quality-based foraging of robots (Font Llenas et
al., 2018). Similar to ARK system, Kilogrid (Valentini
et al., 2018) was proposed as a virtualisation environ-
ment system that primarily uses bidirectional infra-red
(IR) communication between Kilobots and the grids
mounted under the arena. It also created virtual phero-
mones in the virtual environments accessible to the
robots and the remote PC in real-time. Although the
two virtualisation systems covered large-scale swarm
and are flexible to utilise than other methods, the sys-
tems have technical limitations. It is stated that both
ARK and Kilogrid implicitly involves low communica-
tion frequency that leads to considerable delay in the
communication.

Besides the works that are grouped with similar
works, several researchers have implemented phero-
mone communication system with diverse means.
Garnier et al. (2007) projected light from a video pro-
jector mounted on the ceiling to realise artificial phero-
mone trail. This was the first work utilising light as
artificial pheromone. Although this work is one of the
early works using light, it did not replicate pheromone
in real-life as it implemented evaporation in every 5 s.
In another work, Mayet et al. (2010) wused
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phosphorescent paint that was only observable by pro-
jecting ultra violet (UV) light. This work demonstrated
that use of phosphorescent paint and the robot that
embodied appropriate sensors can be alternative of
existing methods like chemical substances. However, its
use with multiple robots was not investigated as this
work only experimented with a single robot rather than
swarm robots.

COS® is the state-of-the-art artificial pheromone
system for swarm robotics that used light-based phero-
mone trails (Arvin et al., 2015). It used LCD screen as
the arena for robots to interact with the pheromones
which are the light spots displayed on the screen. With
the tracking system via a USB camera mounted above
the arena, the system updates the position, orientation
and ID of the robots and generates virtual pheromone
accordingly. Several advantages of COS® as an experi-
mental platform were reported. First of all, this system
has a significantly high resolution for implementing
pheromone compared to the other works. Unlike the
systems using fixed size grids, it offers high-resolution
field on which the artificial pheromone can be injected
with high precision. Second, diverse environments can
be implemented since it is a highly flexible system.
From thickness of pheromone trails to evaporation rate
of pheromone, all characteristics can be easily modified
as needed. Third, it uses a low-cost configuration with
a basic digital camera (Krajnik et al., 2013, 2014) and a
flat LCD screen, which makes it accessible to be uti-
lised by many researcher.

While the only basic leader-follower scenario was
demonstrated in the first work using COS® system to
test its validity, following studies have extended the sys-
tem and investigated collective behaviour of robots.
Sun et al. (2019) utilised multiple colours to implement
multiple types of pheromone based on the COS® sys-
tem and investigated food-foraging and aggregation
behaviours applying both attractive and repellent pher-
omones. Moreover, this system extended COS® system
to realise the diffusion effect. The use of multi-colour
artificial pheromone and adding diffusion highly
improved the system; however, the movement of phero-
mone was not implemented. The movement of phero-
mone is essential for the pheromone system to be
reliable since it realises wind and other causes of phero-
mone shift. Na et al. (2019) extended the system to
include diffusion and wind effect, which are the phe-
nomena almost ever-present in nature. The work
demonstrated the performance of collective behaviour
of robot swarm with different diffusion and wind rates
affected considerably. It is found that when the robots
aggregate on the pheromone cue, diffusion helped the
robots approach the centre of the cue closer than with-
out it. Also, wind affected the robots’ individual beha-
viour to stay longer on the cue than without wind. To
the best of our knowledge, it was the first work that
investigated direct impacts of both diffusion and wind

effect on collective behaviours of robot swarms.
However, this work did not accomplish replicating
pheromone communication in real world since phero-
mone injection was not implemented during the experi-
ments. In other words, the communication between the
pheromones and robots was only uni-directional. Since
complex swarm behaviours are more likely to emerge
from bidirectional interplay between robots and phero-
mones, the work presented here aims to demonstrate
the ability of the proposed artificial pheromone system
to emulate realistic swarm-pheromone interactions
under natural conditions of variable diffusion and
advection.

3. Artificial pheromone system

The whole set of the artificial pheromone system pro-
posed in this work consists of two components: (1)
pheromone system that computes pheromone and dis-
plays on the horizontally placed flat LCD screen, repre-
senting the scenario arena and (2) tracking system that
tracks robots and sends their data to the pheromone
system. The two components enable the system to
implement real-time localisation and pheromone injec-
tion on the precise locations.

3.1. Pheromone system

The pheromone system simulates the several types of
artificial pheromone and their interaction simultane-
ously. The resultant pheromone is displayed on an
LCD screen, and it triggers predefined responsive beha-
viours of the employed robots. The system displays the
resultant pheromone and the rest part of the arena as a
grey-scale image with the size of the screen. The bright-
ness of grey-scale image is represented as I, which is a
two-dimensional matrix with the size of resolution of
the LCD screen. It is determined by @, which is a two-
dimensional matrix representing the intensity of phero-
mone having same size with I. Each element of I is
equivalent to brightness of the corresponding pixel.
The brightness of the image at position (x, y), I(x,y), is
defined as

I(X»J/) = Zciq)i(xvy) (1)

i=1

where ®;(x, y) represents the intensity of the ith phero-
mone at position (x,y) and ¢; denotes the influence of
the ith pheromone on the screen. I(x,y) is determined
by the summation of multiplication of ®;(x,y) and c;,
describing that » number of pheromones can be over-
lapped. As an example of how the model works, the
combination of three different pheromones having dif-
ferent influence to the screen can be displayed on a sin-
gle pixel after the calculation of I(x, y) by equation (1).
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While the system is running, the intensity of phero-
mone released on the screen is constantly updated with
discrete time steps. The intensity of updated pheromone
is given by

In(2) -,
&T‘I’f (x,) 5

+ Kivgradq)f'((xay) + Li(xvy)

O " (x,y) = — uF Pl (x, y) —

where <I)f<C *1(x,y) is the intensity of ith pheromone at
the discrete time &k + 1; CDf‘(x,y) is the intensity of ith
pheromone at the discrete time £; g"’dcbf(x, y) is a two-
dimensional vector quantity that characterises the gra-
dient of pheromone intensity at a given position (x,y),
where it is mathematically defined by equation (3); u
represents the velocity vector which linearly shifts the
pheromone on the arena; e;p determines the evapora-
tion rate of ith pheromone which is characterised by
half-life; «; is the diffusion constant of ith pheromone;
and ;(x, y) corresponds to newly injected pheromone at
the position (x,y) on the screen. The model of spatio-
temporal development of pheromone intensity was
derived from the simplified version of Navier—Stokes
equation, which characterises the model of fluid flow
(Ferziger et al., 2020; Stam, 1999)

k C ® (v
_ Pix + 1Ly) — Pi(x 1,y)i+

2 (3)
D (xv,y + 1) — P,y — 1)j

2

D (x, y)

Recomputing equation (2) for every values of x,y
allows to calculate new intensities of pheromones from
their previous state, which, in turn, determines the new
pixel values of the grey-scale image displayed on the
screen.

The parameters shown in the right-hand side of
equation (2) can be divided into two categories: (1)
environmental effects and (2) pheromone injection.
Environmental effects include evaporation rate, eg, dif-
fusion constant, k, and velocity vector, u, where i is
omitted to generalise. They influence in the pheromone
released on the arena unconditionally and constantly
while the system is running. Their effects are described
in the next subsection. While the environmental effects
have constant influences in the arena, the injection of
pheromone, u(x,y), affects the intensity of pheromone
in the arena only when the pheromone is injected by
the predefined conditions, for example, injecting phero-
mone only when robots stop. Under the conditions, the
pheromone is injected with a circular shape with a given
intensity. The injection of pheromone, ¢;(x, y), is defined
as

L(x,y) = {Sq;, if \/(x —x) + (v 7y,,)2 <Ip/2 (4)

0, otherwise

where (x,,y,), respectively, represent the x and y coor-
dinates of a robot in the arena; sq¢ is the intensity of
injected pheromone at a time; and /g is the diameter of
injected pheromone. Within a circle with the diameter,
lp, where the centre of the circle is the position of
the robot, (x,,y,), the pheromone is uniformly injected
with sg.

3.2. Environmental effects on pheromone

The environmental effects contribute to the versatility
of the system in emulating realistic conditions that
affect the distribution of the pheromones in the envi-
ronment over time.

3.2.1. Evaporation. Evaporation is the process by which
the surface of a liquid turns into the gas phase. As vola-
tile chemical substances, evaporation occurs in secreted
pheromone. In several works on kinetic properties of
pheromones, half-life of pheromones, which is the time
required for pheromones to decay by half, are investi-
gated as a metric (Vogt et al., 1985). Conforming this
practice, the half-life of the pheromone is adopted, that
is, e;p represents the half-life of the pheromone, see
equation (2).

3.2.2. Diffusion. Diffusion is a movement of molecules
from a region of higher concentration to a region of
lower concentration. Implementing diffusion in the
pheromone system is indispensable to be a realistic sys-
tem since diffused pheromone from the source has a
great impact on swarm behaviour (Wyatt, 2003). In this
work, diffusion is implemented using Gaussian blur
instead of directly using the term, k;V>®;(x, y), which is
a mathematical definition of diffusion. The advantage
of Gaussian blur over the original definition is that it
can emulate faster diffusion with lower computational
costs. The intensity of pheromone at the position (x,y)
after application of the Gaussian blur is given by

D (x,y) = (0% P)(x,y) =
a b (5)

Z Z (s, t)‘I):‘(x —s5,y—1)

s=-—at=—b

where <I>f.‘ *1(x,y) is the intensity of ith pheromone at
the discrete time £ + 1, (IJf.‘(x,y) is the intensity of ith
pheromone at the discrete time & and w is a two-

dimensional kernel matrix with the size of
(2a + 1) X (2b + 1) defined as
w(xy): 1 —Xzz% W€R2a+l><2b+l (6)
’ 2mo? ’

where o is a standard deviation of the Gaussian distri-
bution of the kernel matrix. Equation (6) shows that
the elements of w are determined by the Gaussian
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distribution. Apart from the computational efficiency,
the Gaussian blur allows more intuitive control of the
diffusion rate and area. Adopting Gaussian blur into
the pheromone system does not principally violate
properties of diffusion for two reasons: (1) the higher
intensity of pheromone decreases and the lower inten-
sity of pheromone increases after computation of
Gaussian blur and (2) the total amount of pheromone
is preserved after every computation.

3.2.3. Pheromone shift. In real and dynamic environ-
ments, the position of the released pheromone can be
shifted. A natural cause of the shift in nature is advec-
tion, which is the flow of any fluid, for example, air,
that transfers pheromone from one position to another.
The movement of released pheromone in the same
direction is modelled as u-V®(x,y). The two-
dimensional velocity vector is defined as

0Pixy) o 0P y)

u- V®;(x,y) = u, o ) o

(7)
where u,,u,, respectively, represents the speed along
x-axis and y-axis.

3.3. Tracking system

The fast and precise open-source localisation system
(Krajnik et al., 2014) is used to track the position,
orientation and ID of the robots, thereby precisely
injecting pheromone at the position of the robots on
the LCD screen in real-time. The system captures
images using a digital camera mounted above the
screen, searches for black-and-white roundel patterns
and converts their image coordinates into the real-
world coordinates in the Cartesian plane. By attaching
unique patterns on the individual robots, each robot
can have unique ID. Krajnik et al. (2014) claimed that
the localisation precision can achieve millimetres scales
and hundreds of patterns can be tracked simultane-
ously in real-time.

By transforming the captured images into the coordi-
nates of the tracked patterns in the defined area and
sending the data to the pheromone system, the tracking
system allows the pheromone system to release the pher-
omone at precise positions of the robots in real-time.
Precise localisation of the patterns can be achieved
through auto-calibration of the system that makes the
pheromone system robust under any circumstances, for
example, external disturbance during experiments. The
system defines the area of the arena in the coordinate
system from the image by setting the four corner tags
attached on the corners of the frame placed on the
screen, and determine the coordinates of patterns inside
of the defined area. Since the system requires less than
50 s to calculate one robot position, the difference
between the pheromone injection position and the actual

Figure |. Experimental setup used for the pheromone system,
including a PC for tracking robots and generating pheromone, a
digital camera for tracking robots position, a horizontally placed
42" LCD screen, aluminium frame around the arena and Colias
mobile robots.

robot position is determined by the time required to
transfer the image via the USB interface and the delay
caused by the graphic interface driver. Nevertheless, the
difference between the expected pheromone positions
and the actual positions is negligible.

4. Experimental setup
4.1. System configuration

4.1.1. Arena. To implement the artificial pheromone
system, a high-definition (HD) 42” LCD screen with
the size of 92 X 50 cm? was used as an arena on which
the pheromones were displayed and robots operated.
The light sensors of the robots were faced to the screen;
hence, the sensors allowed the robot to read the illumi-
nance at the current position of the robot. On the top
of the screen, the aluminium arena frame was set on the
edge. The frame allowed the robots to detect the bound-
ary of the arena; therefore, they can turn to another
direction when they are close to the boundary. The four
corner tags were attached on the frame that allowed the
tracking system to define the arena. A low-cost digital
camera was mounted on the frame above the centre of the
arena. By receiving the images from the arena in real-time,
the tracking system determined the robots’ positions and
status if the robots are randomly moving or waiting.
Figure 1 shows the arena setup with a PC which controls
the pheromone system, connected to the LCD screen.

4.1.2. Robotic platform. Colias micro-robot (Arvin et al.,
2014) which was developed for swarm robotic applica-
tions was used as a robotic platform. The front and bot-
tom view of the robot is shown in Figure 2. It is a small
robot with a diameter of 4 cm having simple functional-
ities. The robot is a differential wheeled robot which
movement is determined by two micro DC gear-head
motors directly connected to wheel with the diameter of



Na et al.

l]l e E B ETE
3 b s R
in UK. 20 “ES: FKRL"PL (]

12

Figure 2. (left) Colias micro-robot, swarm robotic platform and (right) bottom board of Colias with pheromone sensing ability.
Different modules of Colias are (a) main processor, (b) IR proximity sensors, (c) digital camera, (d) micro-motors with gearhead,
(e) 22-mm wheels, (f) pheromone detectors (light intensity sensors), (g) battery recharging unit, (h) main switch and (i) ISP

programming port.
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Figure 3. State machine of the implemented swarm scenario.

2.2 cm. The speed of the robot in the forward motion is
maximum 35 cm/s. The rotational speed of each motor
is controlled by pulse-width modulation (PWM). Each
motor is driven by the embedded H-bridge DC motor
driver which draws an average current of 35 = 5 mA
when there is no-load and 150 = 20 mA at maximum
in stall conditions. For its sensing, the robot has three
IR proximity sensors which include pairs of IR emitter
and receiver in front of the robot. It is used to detect
objects, obstacles or other robots, within a distance of
approximately 2 = 0.5 cm. In addition, the robot has
two light (illuminance) sensors at the bottom next to the
wheels. The light sensors are used to read light intensity
on the ground where the robot is located, that is, read
the intensity of the pheromone in this work. The robot’s
power consumption is approximately 800 mW.

In this work, the behaviour of the robot was deter-
mined for achieving pheromone-based aggregation
adopted from one of the previous studies (Arvin et al.,
2018). The state machine of the scenario is described in
Figure 3. The robot begins to move forward after it is
switched on. The rotational speed of the left and right
wheels, N; and N,, are defined as

Sy — Sy

N; = +8

o
o sos (5)

B

o
where « is the velocity sensitivity coefficient; B is the
biasing speed; and s; and s, are the sensor reading from
the left and right light sensors. B is defined as
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Figure 4. The collection of six randomly selected screenshots during experiments. The first row shows the screenshots from an
experiment with no diffusion and fast cue speed without pheromone injection and the second row shows the screenshots from an
experiment with medium diffusion and fast cue speed with pheromone injection takenatt = 0s,t = 100 s, t = 200 s from left to right.

K Y

B =100 — 9)
B is modelled in order for the robot to have slower speed
where the average intensity detected by both the sensors
is higher so that the robot stops where the robot reaches
the area with the considerably high intensity of phero-
mone. As depicted in Figure 3, the robot has two differ-
ent states transited after it detects an object. If the object
is an obstacle, it rotates to the opposite direction at
which the obstacle is. The robot distinguishes whether
the object is an obstacle or another robot by checking if
IR read by a sensor is emitted from other robots, not
from ones embodied in the robot itself. If the object is
another robot, it transits to the waiting state and starts
to inject pheromone at the position of the robot. The
waiting time ¢,, is defined as

S, avg

(10)

tw - twma)cEavgi_._25
where f,,, 1S the maximum waiting time, 20 s, which
happens at the highest pheromone intensity; Su, is the
averaged value of s; and s,. Depending on the illumi-
nance on the bottom of the robot, the robot can wait
between 0 and 20 s. While the robot is waiting, phero-
mone of a circular shape with a diameter of 2.5 cm is
injected to the environment. The rate of pheromone injec-
tion is approximately 20% /s, which suggests that it takes
approximately 5 s to reach the maximum intensity.

4.2. Experiments

We designed an experiment plan to systematically
investigate the proposed pheromone system. The set of
experiments adopted the pheromone-based aggregation
scenario. The experiments were implemented with two
configurations: (1) without pheromone injection and (2)
with pheromone injection by the robots — called as
without ® and with ®, respectively, for simplicity in the
following sections. Each configuration of the

experiments has different cue conditions — static and
dynamic. In every set of experiments, the identical ini-
tial setting was provided. A circular cue with the dia-
meter of 25 cm was generated at the beginning of the
experiments at the position (x., y.) = (70,25) cm of the
arena, where the coordinates (0, 0) refers to the bottom
left corner of the arena. On the left-half of the screen,
the position and orientation of the robots were deter-
mined in a stochastic manner with markers appearing
at random positions on the screen. Before the experi-
ment began, the robots were placed on the markers,
and when the experiments started, the markers disap-
peared, the robots then started to move and the main
circular cue was generated on the specified position on
the right-half of the arena simultaneously. The duration
of an experiment was 7 = 300s. Note that, in the
experiments in the configuration without ®, pheromone
was not injected while the robot was waiting after col-
liding with another robot. The purpose of the experi-
ments was to investigate the impact of pheromone
injection on collective behaviour of the swarm. The
screenshots from experiments with different configura-
tion is shown in Figure 4. The parameters and their val-
ues are listed in Table 1.

4.2.1. Static cue configuration. In static cue configura-
tion, the position of the cue (x.,y.) remained the same
during the experiments. In other words, the cue did not
move (u = 0 cm/s). In this configuration, three differ-
ent diffusion coefficients, « € {0%,50%,75%}/T,
which are named as ‘No Diffusion’, ‘Slow Diffusion’
and ‘Fast Diffusion’, respectively, with two swarm sizes
of N € {4,6} robot were investigated. To show the
effect of diffusion intuitively, how much pheromone at
the centre of the cue is diffused over the duration of
experiment, 7', is given as a constant «. Each diffusion
coefficient k € {0%,50%, 75%}/T, described in equa-
tion (2) is equivalent to o € {0,6,20}, a,b = 7 for the
Gaussian blur kernel matrix, which is characterised in
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equations (5) and (6). For each different diffusion set-
ting in this configuration, five independent runs of
experiment for 7 were carried out.

4.2.2. Dynamic cue configuration. In dynamic cue config-
uration, the position of the cue (x., y.) was moved hori-
zontally with a constant speed. Moreover, injected
pheromone during the experiments also moved with
the same speed with the cue. In this configuration, two
different cue speeds were applied: (1) the medium speed
(the centre of the cue moves with speed of u = 0.1 cm/s
on the arena) and (2) the fast speed (the centre of the
cue moves with speed of u = 0.2 cm/s). Similar to the
static cue configuration, five independent runs of
experiments  with  three  different  diffusion,
k € {0%,50%,75%}/T, and two swarm sizes,
N € {4,6}, for duration of T were conducted.

4.2.3. Metrics. To evaluate the aggregating behaviour
of swarm, two parameters were defined: (1) size of
aggregate, n,, and (2) cohesiveness, d.,;. The size of
aggregate determines how many robots are aggregated,
which is equivalent to the number of the robots are
waiting on the circular cue. The robots that are waiting
on the outside of the cue because of the injected phero-
mone are not counted. Cohesiveness determines the
quality of the aggregation behaviour of the swarm.
Cohesiveness is the reciprocal of the averaged value of
the distances of the robots from the centre of the cue.
The cohesiveness is defined as

1

1 N
N § || (xiayi)o (xcoyC) ||
i=1

dcoh = (11)

where (x;,y;) is the Cartesian coordinates of the ith
robot of N robots.

4.2.4. Statistical analysis. To statistically analyse the
observed results from experiments, analysis of variance
(ANOVA) test was conducted. ANOVA test is a test
used to analyse the difference among groups caused by
difference in factors (Scheaffer et al., 2010). F-statistic
(F) in ANOVA indicates how the factor makes differ-
ence between the means of the samples of different
groups. If F-statistic is high, the factor is regarded as a
significant factor for sample means. Typically, /> 1 is
considered as high F-statistic. In addition, p-value,
which is the smallest significance level at which the
hypothesis that the factor does not significantly impact
on samples is rejected. When p<0.05, it is regarded that
the impact of the factor is significant. In this work, F
and p are calculated for the factors: (1) population, (2)
diffusion and (3) time to analyse their impacts on the
swarm behaviour and determine the strongest factor

Table |. List of parameters and their values.

Parameter Description Value/range
N Population {4, 6} robots
T Duration of experiments 300 s
u Cue speed {0,0.1,0.2} cm/s
K Diffusion coefficient {0%, 50%, 75%} /T
ep Pheromone half-life 1000 s
t Time {0 —300} s
re Radius of the cue 12.5 cm
twmax Maximum waiting time 20 s
of robot
t, Waiting time of robot {0 —20}s

that affects the swarm behaviour in a more statistical
manner.

5. Results

The results of experiments are presented in this section.
The results are depicted with line plots. The plots show
the aggregation performance, both size of aggregate
and cohesiveness with different factors: population, dif-
fusion rate and with different configurations: cue con-
figurations and pheromone injection. In the line plots,
a line represents the median of the observed data from
five repetition and the shaded region surrounding the
line represents the inter-quartile range of the data.

5.1. Static cue configuration

Here, we depict how the aggregation performance of
robots varies with different diffusion rates in static cue
configuration (# = 0 cm/s). In each plot, the observed
data from experiments with no diffusion, medium diffu-
sion and fast diffusion are represented as red, blue and
green lines, respectively. Figures 5 to 8 show the size of
aggregate and cohesiveness with N € {4, 6} robot.

5.1.1. Diffusion. First, we investigated the impact of dif-
fusion on swarm behaviour. Figures 5 and 6 show the
size of aggregate with three different diffusion rates
k €{0,50,75}% /T in two different population sizes
N € {4, 6} both without ® and with ®. In both figures,
a decrease in the size of aggregate was observed when
medium and fast diffusion was applied without ®. In
Figure 5(a), the size of aggregate with medium and fast
diffusion began to decrease after certain time (¢ = 70 s)
while the size of aggregate with no diffusion stably
stayed in the range from 2 to 4 throughout the experi-
ment. Moreover, the decrease in the size of aggregate
with fast diffusion was rapid than the decrease with
medium diffusion. In Figure 5(a), the size of aggregate
with fast diffusion decreased at about = 50 s and it
reached zero at + = 105 s whereas the size of aggregate
with medium diffusion started to decrease clearly at
t = 225 s. These phenomena are also shown in Figure 6
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Figure 5. The size of aggregate in experiments with static cue configuration (u = 0 cm/s), different diffusion rates
(x € {0,50,75}%/T) and (a) without and (b) with pheromone @ injection in N = 4 robots.
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Figure 6. The size of aggregate in experiments with static cue configuration (u = 0 cm/s), different diffusion rates
(k € {0,50,75}%/T) and (a) without and (b) with pheromone @ injection in N = 6 robots.

with N = 6 robots. The size of aggregate with medium
and fast diffusion decayed after a certain time whereas
the size of aggregate with no diffusion stayed in a range
from 3 to 5 quite stably. Fast diffusion caused a radical
decrease in the size of aggregate from ¢ = 30 s while
medium diffusion led less steep decrease than fast
diffusion.

Different diffusion rates led different cohesiveness in
the robots. In Figure 7(a), cohesiveness with fast diffu-
sion before ¢+ = 50 s was considerably higher than with
the two other diffusion rates. Similar phenomenon was
observed in Figure 8(a), where cohesiveness with fast
diffusion was the highest among with three different
diffusion before # = 30 s.

As it was expected, diffusion led the gradual decay
in pheromone intensity in the system; therefore, robots
less decreased their speed when the cue was diffused
than when there was no diffusion. The degree of decay

in intensity was higher in the outer parts of the cue than
in the inner parts. When the robots reached the edge of
the diffused cue, they kept moving forward while they
stayed on the edge of the cue that was not diffused. As
a result, the robots approached closer to the centre of
the cue in experiments with diffusion than experiment
without diffusion. Therefore, diffusion led high cohe-
siveness of the swarm while the intensity of pheromone
was sufficient for robots to stay on the cue.

5.1.2. Pheromone. Comparing Figures 5(a) and (b), it is
shown that robots aggregated in higher probability on
the cue throughout the experiments regardless of diffu-
sion rates with & than without ®. Moreover, the
decrease in size of aggregate in experiments with N = 4
robots in case of fast diffusion with ® was considerably
delayed. This difference caused by pheromone injection
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Figure 7. The cohesiveness in experiments with static cue configuration (u = 0 cm/s), different diffusion rates
(x € {0,50,75}%/T) and (a) without and (b) with pheromone ® injection in N = 4 robots.
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Figure 8. The cohesiveness in experiments with static cue configuration (u = 0 cm/s), different diffusion rates
(x € {0,50,75}%/T) and (a) without and (b) with pheromone @ injection in N = 6 robots.

was also observed in experiments with N = 6 robots. In
Figure 6, it is shown that the decay in the size of aggre-
gate with medium and fast diffusion was slower with ®
than without ®. The impact of diffusion that increases
the cohesiveness of robots was amplified by pheromone
injection. In Figure 7, it is observed that the range of
cohesiveness was remarkably higher with @ than with-
out ®. For the cases without being subjected by amount
of diffusion — no diffusion and medium diffusion — the
cohesiveness was above 6 with ® while most of the time
it ranged from 2 to 4 without ®. The increase in cohe-
siveness with @ in N = 6 is also shown in Figure 8§,
although it seems not as influential as in N = 4.

The results suggested that the pheromone injection
offsets the impact of diffusion on the size of aggregate.
Since the intensity of the cue increases when phero-
mone is injected, the robots are likely to stay on the
cue. Hence, the size of aggregate is higher with & than
without ®. Due to the higher size of aggregate, the
cohesiveness also increases. In experiments with diffu-
sion, robots are more likely to inject pheromone while

they are waiting close to the centre; therefore, the cohe-
siveness is higher.

5.1.3. Statistical analysis. To statistically analyse the
results, a fully nested ANOVA test with factors of pop-
ulation, diffusion and time was carried out to find sig-
nificance of the factors. Also, the most effective factor
on the size of aggregate and cohesiveness in both con-
figurations: (1) with @ and (2) without ® was deter-
mined. Tables 2 and 3 show the results of ANOVA
tests on the size of aggregate and the cohesiveness with
different cue configuration, respectively. For the size of
aggregate, diffusion and time were the significant fac-
tors while population had no effects on the size of
aggregate in both configurations (p > 0.05). Diffusion
had the most significant influence in both configura-
tions. The significance of time suggests that the size of
aggregate was time-variant. In accordance with the
results of ANOVA test on the size of aggregate, diffu-
sion and time were the significant factors on the
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Table 2. Results of ANOVA test for size of aggregate with
different cue speeds, u.

Table 3. Results of ANOVA test for cohesiveness with
different cue speeds, u.

Factor With ® Without & Factor With & Without ®
F p F p F p F p
Static, u = 0 cm/s Static, u = 0 cm/s
Population (N) 0.46 .54 0.00 .96 Population (N) 0.42 .55 1.37 31
Diffusion (k) 17.00 .00 6481 .00 Diffusion (k) 12.66 .00 30.58 .00
Time (t) 3.14 .00 6.41 .00 Time (t) 3.23 .00 3.28 .00
Medium, u = 0.1 cm/s Medium, u = 0.1 cm/s
Population (N) 0.20 .68 0.0l .95 Population (N) 0.30 .61 4.80 .10
Diffusion (k) 39.98 .00 43.05 .00 Diffusion (k) 13.60 .00 13.00 .00
Time (t) 2.76 .00 4.64 .00 Time (t) 2.84 .00 3.28 .00
Fast,u = 0.2 cm/s Fast,u = 0.2 cm/s
Population (N) 0.06 .82 0.07 8l Population (N) 0.14 73 222 21
Diffusion (k) 32.88 .00 50.31 .00 Diffusion (k) 31.90 .00 29.56 .00
Time (t) 3.55 .00 3.65 .00 Time (t) 3.30 .00 3.38 .00
ANOVA: analysis of variance. ANOVA: analysis of variance.
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Figure 9. The size of aggregate in experiments with medium cue speed (u = 0.1 cm/s), different diffusion rates
(x € {0,50,75}%/T) and (a) without and (b) with pheromone @ injection in N = 4 robots.

cohesiveness. The most influential factor for the cohe-
siveness is also diffusion in both configurations
(F = 12.66 for with ® and F = 30.58 for without ®).
Population size did not have a significant impact on
the cohesiveness, and time had a weaker impact than
diffusion as identical as the results in the ANOVA test
on the size of aggregate.

5.2. Dynamic cue configuration

In this section, the aggregation performance of the
robots  with  three different diffusion rates
(k €{0,50,75}%/T) and different cue speeds
(u € {0.1,0.2} cm/s) is presented in the dynamic cue
configuration. The dynamic cue configuration with two

different speeds: (1) medium speed and (2) fast speed.
Figures 9 to 12 show the size of aggregate and cohesive-
ness with N € {4,6} robot with medium cue speed,
respectively. The subsequent four figures, Figures 13 to
16, show the size of aggregate and cohesiveness with
N € {4, 6} robot with fast cue speed, respectively.

5.2.1. Diffusion. The results shown in Figures 9(a),
11(a), 13(a) and 15(a) display the impact of diffusion
on the size of aggregate in dynamic cue configuration
with two population sizes (N € {4,6} robot) and two
cue speeds (u € {0.1,0.2} cm/s). The decrease in the
size of aggregate appeared in fast diffusion in all the
four figures regardless of the cue speed and population.
Moreover, this effect only arose in fast diffusion. The
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Figure 10. The cohesiveness in experiments with medium cue sp

eed (u = 0.1 cm/s), different diffusion rates (x € {0,50,75}%/T)

and (a) without and (b) with pheromone ® injection in N = 4 robots.
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Figure I 1. The size of aggregate in experiments with medium cue speed (u = 0.1 cm/s), different diffusion rates
(x € {0,50,75}%/T) and (a) without and (b) with pheromone @ injection in N = 6 robots.

size of aggregate with medium diffusion with different
population size and cue speed which is displayed in
Figures 9(a), 11(a), 13(a) and 15(a) did not have nota-
ble different trends compared to the size of aggregate
with no diffusion in both cue speed.

The results shown in Figures 10(a), 12(a), 14(a) and
16(a) demonstrated the impact of diffusion on the
cohesiveness in dynamic cue configuration with two
population (N € {4,6} robot) and two cue speed
(# € {0.1,0.2} cm/s). In Figure 10(a), it is shown that
with medium speed, the cohesiveness with diffusion
was higher than with no diffusion. The cohesiveness
with medium diffusion was higher than with no diffu-
sion throughout the experiment. Although the median
of the cohesiveness with fast diffusion was lower than
with no diffusion after = 80 s, the inter-quartile range
suggests that the cohesiveness with fast diffusion was
higher than with no diffusion in two sets of experi-
ments. Especially, it was high with fast diffusion when

the cue still remained. Likewise, with population N = 6
robots, the cohesiveness was higher with diffusion than
no diffusion (see Figure 12(a)). When the cue was still
not diffused over a certain amount, the cohesiveness
with fast diffusion surpassed other two diffusion rates.
With medium diffusion, the cohesiveness was higher
than other two diffusion rates in the end of the experi-
ments. The increase in the cohesiveness resulted from
increasing diffusion rate does not clearly appear in
experiments with fast speed. In Figure 14, the differ-
ence of the cohesiveness between experiments with no
diffusion and medium and fast diffusion is not as clear
as seen in medium speed cases.

The results showed that the effect of diffusion led in
decay in the size of aggregate and increase in the cohe-
siveness as seen in static cue configuration; however,
the degree of the effect was smaller in dynamic cue con-
figuration than in static cue configuration. As the cue
speed increased, the diffusion effect became less
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Figure 12. The cohesiveness in experiments with medium cue speed (u = 0.1 cm/s), different diffusion rates (k € {0,50,75}%/T)
and (a) without and (b) with pheromone ® injection in N = 6 robots.
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Figure 13. The size of aggregate in experiments with fast cue speed (u = 0.2 cm/s), different diffusion rates (x € {0,50,75}%/T)
and (a) without and (b) with pheromone ® injection in N = 4 robots.

influential. It is because the moving cue dragged the
robots with the same direction with the cue and it ham-
pered robots staying closer to the centre of the cue.

5.2.2. Pheromone. The impact of pheromone injection
on the size of aggregate is displayed in Figures 9, 11, 13
and 15. In the three Figures 9, 11 and 15, the size of
aggregate in experiments with fast diffusion slowly
decreased later with ® than without ®. This effect of
pheromone injection seemed greater in experiments
with N = 6 robots than N = 4 robots. Figures 10, 12,
14 and 16 depict the difference in the cohesiveness in
experiments with three diffusion rates (k € {0,50,75}
%/T) between with ® and without ®. Pheromone
injection had a greater impact on the cohesiveness with
N = 4 than N = 6 regardless of cue speed. The impact
of pheromone injection seemed stronger in experiments
with N =4 robots than N = 6 robots with smaller

difference in different cue speeds. The reason that the
effect of pheromone injection that cancelled the effect
of diffusion is greater in experiments with N = 6 robots
than N = 4 robots is that the probability of collision
rose as the population increased. Similarly, the impact
of pheromone injection on the cohesiveness in N = 4
can be explained that rather than they collided with
each other outside of cue, they collided with higher
probability when they are close to the centre of the cue;
therefore, the cohesiveness was higher with &.
However, with N = 6 robots, the robots collided with
each other more frequently in the outer part of the cue
than with N = 4 robots; thus, there was no remarkable
increase in the cohesiveness.

5.2.3. Cue speed. The impact of cue speed was also
investigated comparing Figures 9 to 12 with Figures 13
to 16, respectively. The first four figures show the size
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Figure 14. The cohesiveness in experiments with fast cue speed (u = 0.2 cm/s), different diffusion rates (x € {0,50,75}%/T) and

(2) without and (b) with pheromone @ injection in N = 4 robots.

)
1

—— No Diffusion
—— Medium Diffusion
—— Fast Diffusion

) w IN o
1 1 1 1

Size of Aggregate [robots]
1

T T T
150 200 250

Time [s]

(a)

T
50 100

300 0

T T T
150 200 250

Time [s]

(b)

T
50 100 300

Figure 15. The size of aggregate in experiments with fast cue speed (u = 0.2 cm/s), different diffusion rates (x € {0,50,75}%/T)
and (a) without and (b) with pheromone ® injection in N = 6 robots.

of aggregate and the cohesiveness in experiments with
N € {4,6} robots with medium cue speed and the last
four figures show the size of aggregate and the cohe-
siveness in experiments with N € {4, 6} robots with fast
cue speed. We can observe that the increase in the cue
speed caused the decreased effect of pheromone injec-
tion on the size of aggregate. Comparing Figures 9(b)
and 13(b), the decay of the size of aggregate with fast
diffusion occurred faster with fast cue speed than
medium cue speed. Similarly, the smaller impact of
pheromone injection on the size of aggregate with fast
cue speed than medium cue speed was observed in
experiments with N = 6 robots comparing Figures 11
and 15. Whereas the pheromone injection with medium
speed seemed to have an impact only with fast diffu-
sion, the pheromone injection with fast speed affected
the size of aggregate with no diffusion. We can also see
the increase in the cue speed causes the decrease in the
cohesiveness. This observation is not clearly shown in

N = 4. Comparing Figures 10 and 14, the cohesiveness
rather increased as the cue speed increased with @,
whereas the cohesiveness slightly decreased without @
for all diffusion rates. However, the cohesiveness con-
siderably decreased in experiments with N = 6 robots
(see Figures 12 and 16). The difference was notably fea-
tured the cohesiveness with fast diffusion, and the dif-
ference was not as remarkable in experiments with no
diffusion and medium diffusion.

The difference observed between the experiments
with two different cue speeds was likely to occur
because the cue moved away from the robots which
were in the waiting phase more quickly with the faster
cue speed. The position at which the pheromone was
injected was always where the robot was waiting.
Therefore, the position of injected pheromone and the
cue moved away further from each other in experi-
ments with fast cue speed than medium cue speed. As a
result, the greater number of robots tended to stay on
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Figure 16. The cohesiveness in experiments with fast cue speed (u = 0.2 cm/s), different diffusion rates (x € {0, 50,75}%/T) and

(a) without and (b) with pheromone ® injection in N = 6 robots.

the injected pheromone outside the cue with fast cue
speed, thereby the decrease in the size of aggregate.
The decrease in the cohesiveness by increasing the cue
speed was also caused by the same reason why the
impact of pheromone injection decreased. Since the cue
passed the robots too fast while they were waiting after
collision at the centre of the cue, the cohesiveness rap-
idly decreased especially when it was high. This obser-
vation also supports why there was no considerable
difference of the cohesiveness between experiments with
medium speed and fast speed, where in both cases of
no diffusion and medium diffusion was applied.

5.2.4. Statistical andalysis. The results from the experi-
ments in the dynamic cue configuration with two differ-
ent cue speeds were also analysed using ANOVA test
(see Tables 2 and 3). The statistical analysis revealed
that diffusion and time were two significant factors
(p<0.05) for both experiments with and without ®.
Diffusion was the most significant factor on both the
size of aggregate and cohesiveness, both with and with-
out @ regardless of the cue speed. It is also shown that
this system was time-variant (p<0.05). Although both
size of aggregate and cohesiveness with two different
cue speeds were influenced by diffusion the most, the
impact of diffusion on cohesiveness with medium cue
speed is the lowest. F = 13.6 and 13.0 for experiments
with and without ®, respectively, while F is greater
than 30 in the test of size of aggregate with medium cue
speed and both the metrics with fast cue speed.

6. Discussion

The observation made from the results suggests that the
environmental effects and pheromone injection have an
impact on the performance of collective behaviour of
robots: size of aggregate and cohesiveness. The impact
of the environmental effects and pheromone injection

of robot swarm across different population sizes is dis-
cussed in detail here.

6.1. Static cue configuration

In static cue configuration, we have found that the
trend of swarm behaviour did not noticeably vary
between two population sizes (N € {4,6} robot).
Statistical analysis of the results showed that the popu-
lation size did not affect the size of aggregate and cohe-
siveness. It means that the ratio of the size of aggregate
given the population size did not differ by the popula-
tion size. In other words, the aggregation performance
increased linearly with the population size. This rela-
tionship between the population and swarm perfor-
mance was also reported in several works (Arvin et al.,
2016, 2018). While the decrease in swarm performance
using pheromone-based communication with high-
density robot swarms was reported in Hamann (2013)
and Hunt et al. (2019), this work did not show the
decrease in the performance due to relatively small sizes
of robot swarm.

In the set of experiments without &, we investigated
the effect of diffusion on the swarm aggregation perfor-
mance when there was no feedback provided by bidir-
ectional communication. In the plots, the decrease in
the size of aggregate and increase in the cohesiveness by
increasing diffusion rate was observed. It was revealed
that diffusion had the most significant impact both on
the size of aggregate and cohesiveness. This result is
identical with the impact of diffusion on the swarm
behaviour of robots reported in Arvin et al. (2018).
Such impact of diffusion can be exploited for desired
swarm behaviour (Payton et al., 2001).

In the set of experiments with ®, we studied the
impact of pheromone injection as a feedback mechan-
ism on the swarm aggregation performance with differ-
ent diffusion rates. The results revealed that activation
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Table 4. Results of fully nested ANOVA test.

Factor Size of aggregate Cohesiveness

F p F p
Population (N) 0.05 .83 0.55 .50
Diffusion (k) 12.37 .0l .17 A4l
Pheromone (®) 3.27 .02 5.48 .00
Cue Speed (u) 5.55 .00 13.32 .00
Time (t) 391 .00 3.22 .00

ANOVA: analysis of variance.

of the feedback mechanism had a substantial impact on
the swarm behaviour. The effect of diffusion that
reduces the size of aggregate was diminished by the
feedback via pheromone injection. The statistical anal-
ysis confirmed that pheromone injection was one of the
significant factors affecting the swarm aggregation per-
formance (see Table 4). The similar impact of the pher-
omone injection that increases the swarm behaviour
was reported in several works both in biology (Sumpter
& Beekman, 2003; Wyatt, 2003) and robotics (Arvin
et al., 2018; Liu et al., 2007).

6.2. Dynamic cue configuration

In dynamic cue configuration, we investigated the
impact of dynamic environment as well as the factors
in static cue configuration. As identical in static cue
configuration, the population size did not have signifi-
cant impact on the swarm performance according to
the statistical analysis (see Tables 2 and 3).

In the set of experiments without @, similar results
in the experiments with static cue configuration were
observed for both two cue speeds. The increase in diffu-
sion rate led the decrease in the size of aggregate and
the cohesiveness. Although the same impact of diffu-
sion appeared in both static and dynamic cue config-
uration, the amount of the impact was differently
observed. In dynamic cue configuration, it is shown
that the time taken for the robots to completely leave
the cue was delayed than in static cue configuration.
This delay indicates the moving cue dragged the robots
to the cue rather than randomly moving. Nevertheless,
the statistical analysis confirmed that diffusion was the
most influential factor of the swarm performance.

The effect of pheromone injection in dynamic cue
configuration was investigated in the same manner
used in static cue configuration. The results demon-
strated that the pheromone injection affected the
swarm performance. Although the observed impact
was identical with static cue configuration, the observa-
tion in dynamic cue configuration was not as clear as
in static cue configuration. In Figures 9 and 13, the
trend of the size of aggregate in experiments with &

was not clearly distinguished from experiments without
@ whereas the impact of pheromone injection weaken-
ing the diffusion effect was clearly shown in the other
configurations. Despite of this vagueness of the impact
of pheromone injection shown in the mentioned fig-
ures, the results in corresponding figures displaying
cohesiveness still showed that the pheromone injection
had impact. As seen in Figures 10 and 14, the increased
cohesiveness in experiments with & compared to with-
out @ is described. This result posited that pheromone
injection allowed the robots to stay close to the cue
rather than randomly roaming around. The impact of
pheromone injection was significant on the swarm per-
formance according to the statistical analysis. The
robustness of the swarm using the feedback via phero-
mone injection against the environmental factors was
similarly reported in Liu et al. (2007) and Stewart &
Russell (2006).

Figure 17 shows the overall experiments designed to
show the impact of cue speed primarily. The results
depicted that the cue speed did not deteriorate the
swarm performance. Interestingly, in experiments with
the medium cue speed, the size of aggregate reached
the highest regardless of diffusion and pheromone
injection. This observation suggests that the gradient
made by moving pheromone with a moderate speed
leads the highest responsiveness on pheromone for
robots. This guidance effect using the gradient in pher-
omone trails was reported in Nieh et al. (2004). As well
as the observation of maximised dragging effect with
the medium cue speed, it is worth noting that the size
of aggregate with the fast cue speed fluctuated shown
in Figure 17(d). It was caused by the definition of the
cue location. As mentioned in ‘Results’ section, it is
shown that the swarm aggregate was formed around
the cue, rather than roaming. Therefore, the swarm
was still robust with this extreme environmental effect.
The statistical analysis showed the cue speed was signif-
icantly influential to the robot swarm. This phenom-
enon that the increase in cue speed sustains the size of
aggregate against the environmental effects was also
reported in Na et al. (2019).

7. Conclusion

In this study, we proposed a state-of-the-art artificial
pheromone system, which, unlike the previous systems,
allows efficient and realistic emulation of environmen-
tal effects on the pheromone distribution. We demon-
strated that emulation of realistic spatio-temporal
development of pheromone, involving pheromone dif-
fusion and advection, can bring new insights into
the interplay of the swarms, released pheromones and
the environment. One of the interesting findings is that
the ability of the swarm to release pheromones counters
adverse effects of moving cue, which can displace
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Figure 17. The size of aggregate in experiments with different cue speeds (u € {0, 0.1, 0.2} cm/s) without pheromone (®P) injection
- (a), (b) and (c) and with pheromone (®) injection - (d), (e) and (f) with diffusion rates (k € {0, 50, 75} %/T) in N = 6 robots.

environmental cues. In future works, we will realise sce-
narios with more pheromone types implemented by dif-
ferent colours. Using pheromones with different
diffusion, evaporation and advection rates will allow
investigation of richer pheromone-swarm-environment
interactions emulating complex biological swarms in
the real world. Since the effect of time is paramount to
the swarm behaviours, we will combine the pheromone
field with the system for on-the-fly recharging systems
for swarm robotics.
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