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ABSTRACT It is of great importance to extract and validate an optimal subset of non-dominated
features for effective multi-label classification. However, deciding on the best subset of features is an
NP-Hard problem and plays a key role in improving the prediction accuracy and the processing time of
video datasets. In this study, we propose autoencoders for dimensionality reduction of video data sets
and ensemble the features extracted by the multi-objective evolutionary Non-dominated Sorting Genetic
Algorithm and the autoencoder. We explore the performance of well-known multi-label classification
algorithms for video datasets in terms of prediction accuracy and the number of features used. More
specifically, we evaluate Non-dominated Sorting Genetic Algorithm-II, autoencoders, ensemble learning
algorithms, Principal Component Analysis, Information Gain, and Correlation Based Feature Selection.
Some of these algorithms use feature selection techniques to improve the accuracy of the classification.
Experiments are carried out with local feature descriptors extracted from two multi-label datasets, the MIR-
Flickr dataset which consists of images and the Wireless Multimedia Sensor dataset that we have generated
from our video recordings. Significant improvements in the accuracy performance of the algorithms are
observed while the number of features are being reduced.

INDEX TERMS Feature Selection, Multi-label, Multi-objective Optimization, Autoencoder, Ensemble,
Classification.

I. INTRODUCTION

MULTI-LABEL classification has been applied to many
problems in various fields of application, including

the diagnosis of diseases based on many signs and symptoms
[1] and also used in many tools developed for the classifi-
cation of social media resources, images, bioinformatics [2],
videos [3], patient classification [4], text [5], and audio that
may need to be assigned with more than one label [6]. Im-
ages are the subject of research on multi-label classification
problems in multimedia resources. If an image of the sea is to
be labeled as a beach, a comprehensive analysis of the scene
may be necessary to identify the image. An image of the sea
containing sunbeds, parasols, people, bags, sand, and sailing
provides more accurate clues for identifying the image. The
absence of certain objects on the image can also be useful for
the classification of the scene. The absence of a truck or a
skyscraper reinforces the idea that this image is a beach. This
concept is called Semantic Scene Analysis/Classification [7].

In general, the structure of a scene is first generated, and then
the associated objects are detected for semantic analysis.

An important aspect of real data is that it usually has mul-
tiple scopes. An image taken by the camera can include many
features, correlated or not. Tagging this rich data content with
simple binary labels may not be possible in many cases. For
this reason, multi-label classification is an important field of
data classification. For binary classification, data is labeled as
one of two classes, while for multi-class classification, there
are more than two possible classes and each row of data is
labeled with only one class. On the other hand, for multi-
label classification, there are more than two possible labels
and each row of the data can have more than one label.

Irrelevant and/or redundant data should be filtered before
being transmitted to big data stores in order to speed up
data processing. Concentrating on relevant big data might
also increase the accuracy of the classification and provide
better data analysis models. A widely used filtering method
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is the selection of features, which is used in preprocessing
the data to achieve these goals. The feature selection process
searches for the most relevant and sufficient subset of features
for data mining and classification. There are three main
methods for performing feature selection: filtering, wrapper,
and embedded methods. The filtering methods use computa-
tionally inexpensive evaluation functions over all available
data features, providing a ranking of the features that can
be used to select only a feasible portion of the data [8].
Wrapper methods use learning algorithms to determine the
most relevant subsets of features used for training to maxi-
mize the performance of learning. The evaluation of wrapper
algorithms is computationally very expensive, but they can
determine the most valuable subset of features [9]. Embedded
methods combine feature selection methods with a model
construction process (wrapper), so that they have an ability
to stop the attribute filtering process when the performance
achieved by the classification/learning algorithm reaches a
sufficient level [10].

In this study we first use autoencoders to implement the
dimensionality reduction for video data. The number of lay-
ers of autoencoder is determined with a heuristic approach.
Subsequently, the sets of reduced number of features ex-
tracted with the two regularized autoencoders, dropout and
denoising autoencoders, are determined as a latent space
representation of input data. Then, feature selection is applied
to the same input data with NSGA-II. After both feature se-
lection operations are done and reduced dimensional feature-
sets are obtained, these feature-sets are combined. Thus,
most descriptive features that are selected by two different
methods are combined and ensemble feature selection results
are achieved with NSGA-II and multi-label classification al-
gorithms. Our ensemble feature selection approach provides
better results than the previous results on the datasets used
in this study. The Hamming score is increased while the
number of features is being reduced during multi-objective
optimization.

Second, we analyze the performance of multi-label clas-
sification algorithms, Non-dominated Sorting Genetic Algo-
rithm (NSGA-II) [11], autoencoders, ensemble learning al-
gorithms, Principal Component Analysis (PCA), Information
Gain (IG), and Correlation Based Feature Selection (CBFS).
Binary Relevance (BR), Classifier Chains (CC), Pruned Sets
(PS) and Random k Label-sets (RAkEL) are the main multi-
label classification algorithms. Support Vector Machines
(SVM), J48-Decision Tree (J48) and Logistic Regression
(LR) are used to evaluate the fitness values (prediction accu-
racy). Thanks to parallel computing (using lightweight multi-
threading), the fitness value calculations of the chromosomes
are sped-up in NSGA-II. To our knowledge, we have imple-
mented for the first time dimensionality reduction algorithms
using autoencoders for multi-label classification. The under-
complete autoencoders are used in the form of denoising and
drop-out regularization in different noise factors with well-
tuned parameter settings.

Two different datasets are used in our experiments, MIR-

Flickr dataset which consists of images and the Wireless
Multimedia Sensor (WMS) dataset that we have generated
from our own video recordings. For the WMS dataset, three
minute-video and 1,000 frames of this video are provided
in a multi-labeled format (three labels) with Scale-Invariant
Feature Transform (SIFT) local feature descriptors (100 bags
of visual words for each). To the best of our knowledge,
the image/video datasets and the selection of features on
local descriptors are not studied and evaluated before, for
the first time in this study. Additionally, we review state-
of-the-art feature selection algorithms and improvements to
ensembled feature sets that are extracted by two different
feature selection approaches, deep autoencoder and the scal-
able multi-objective evolutionary algorithm, with the second
optimization step are carried out for the first time in our study.
In this paper, we show that the quality of the results of our
approach is improved with higher Hamming scores and fewer
features. The contributions of our study can be listed as:

• Autoencoders are proposed to implement the dimen-
sionality reduction of video data and a heuristic ap-
proach is developed to determine (tune) the number of
layers of the proposed autoencoder.

• A parallel multi-objective NSGA-II algorithm is used to
select the best subset of features and the resulting set is
combined with the feature set of the autoencoder.

• The proposed algorithms are verified to be robust after
comprehensive experiments. There are small deviations
from the best solutions reported in literature.

• An efficient multi-objective ensemble method is intro-
duced to extract the most descriptive features of video
datasets. The Hamming-score is improved while the
minimum number of features is being used.

Section 2 provides information on recent studies. Section
3 provides information on the related theoretical background
to the problem. The models proposed for the selection of the
features are described in detail and the validation algorithms
are explained in Section 4. The experimental results of the
proposed algorithms are evaluated and discussed in Section
5. Our final remarks and future studies are presented in the
last section.

II. RELATED WORK
This section summarizes the algorithms in literature that have
been used for multi-objective feature selection and multi-
label classification. A feature selection method that consists
of a heuristic checklist that provides a basic road-map by ask-
ing questions about features and labels is proposed in [12]. A
feature selection research for multi-objective optimization al-
gorithms that integrate genetic algorithms and machine learn-
ing techniques is presented in [13]. A new multi-label feature
selection method in classification for a multi-objective Parti-
cle Swarm Optimization PSO algorithm is presented in [14].
The NSGA-II and Evolutionary Non-Dominated Radial Slots
based algorithm (ENORA) is reported in [15]. An algorithm
to eliminate irrelevant, noisy and redundant features during
face recognition is developed in [16]. A NSGA-II with Naive
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Bayes (NB) and SVM for feature selection is proposed in
[17]. A feature selection approach based on the weighted
relevancy is given in [18]. Three multi-objective feature se-
lection methods for binary classification problems with ma-
chine learning are proposed in a recent study [19]. Proposed
techniques consist of two phases; feature subset selection
and applying machine learning techniques for better accu-
racy prediction. 1-NN algorithm as a classifier on NSGA-
II algorithm for multi-objective feature selection are used in
[20]. A multi-objective NSGA-II feature selection algorithm
for multi-label data classification with Label Powerset (LP),
Binary Relevance (BR), Classifier Chain (CC) and Calibrated
Label Ranking (CLR) is used in [21].

A hybrid genetic algorithm with SVM on feature selection
for hyper-spectral image classification in order to get better
band combination means to find irrelevant band combina-
tions with the minimal number of bands is developed in [22].
A feature selection algorithm, Reduced Pareto set Genetic
Algorithm with elitism (RPSGAe), with SVM is proposed in
[23]. A multi-objective PSO for feature selection with Linear
Forward Selection (LFS) and Greedy Step-wise Backward
Selection (GSBS) methods is proposed [24]. A PSO algo-
rithm focused on performance metrics of multi-objective op-
timization algorithms is developed [25]. In this study, hyper-
volume and two-set-coverage are investigated. A Teaching
Learning Based Optimization (TLBO) algorithm for feature
selection is proposed in [26]. In TLBO, the best learners are
selected as teachers and the remaining individuals are called
students. Pareto optimal results are reported as candidate
features for feature subset selection operation. The selection
of multi-label features using the ant-colony optimization is
studied in [27]. The authors use the multi-label k-nearest
neighborhood algorithm to evaluate the subsets of features
and compare them with some other approaches. Additionally,
an applied a multi-objective optimization algorithm based
on decomposition which is the Tchebycheff method for the
purpose of feature selection is developed in [28]. The authors
use multi-label benchmark datasets for validation of the
proposed feature selection approach. All results are com-
pared with other well-known multi-objective optimization
algorithms such as NSGA-II and PSO. A multi-objective
feature selection Artificial Bee Colony (ABC) algorithm to
maximize the classification performance and to minimize the
number of selected features is proposed in [29] [30]. The
ABC algorithm is reported to outperform other methods in
terms of both the dimensionality reduction and the classifica-
tion accuracy.

In recent years, ensemble feature selection techniques have
become popular. Among those, a comprehensive review of
ensemble feature selection techniques is presented [31]. An
ensemble feature selection on medical datasets is developed
[32]. They combine three types of feature selection tech-
niques (filter, wrapper, and embedded). As described in their
study, these three methods are combined and they show
that an average union and multi-intersection based ensemble
feature selection approaches perform better than those of

single feature selectors. They validate their methods with
small scale and also high dimensional datasets. There are
some other studies in the literature for ensemble feature
selection methods [33] [34].

The dimensionality of hand-crafted image features by us-
ing deep autoencoders is reduced [35]. The authors use fusion
and transfer learning and perform training with 10,000 im-
ages from Yahoo Flicker Creative Commons 100M dataset.
They create four deep-autoencoder models with changing
encoding-dimensions, starting from 32 up to 256. This work
hyper-parameters are stated as, batch size 950 with 350
epochs, the loss function is L1 (mean absolute error) and
the activation function is Rectified Linear Units (RELU).
While some feature sets yield better results after features
are used with autoencoder, some feature-sets are yield as not
appropriate for autoencoder dimensionality reduction.

A distributed computation model to measure the quality of
each feature with respect to multiple labels on Apache Spark
is developed [36] [37]. A parallel algorithm with Graphics
Processing Units (GPU) for computing the multi-label k-
Nearest Neighbor classifier without any loss of accuracy is
presented [38]. Experiments verify that it is able to achieve
200 times speed-up compared to a sequential execution with
a single CPU.

Autoencoders with state-of-the-art dimensionality reduc-
tion algorithms on two different image datasets (Modified
National Institute of Standards and Technology and Olivetti
Face Datasets) are developed in [39]. PCA, linear discrim-
inant analysis (LDA), locally linear embedding (LLE) and
ISO map dimensionality reduction techniques are used dur-
ing the experiments. The autoencoders are observed to pro-
vide results competitive with state-of-the-art algorithms. The
autoencoders extract different structures than other methods.
This property works well on the repetitive structures on
simpler datasets. The number of hidden layer nodes should
be equal to intrinsic dimensionality to get the best perfor-
mance. Because this study is about images and pixel-wised
reproducible representations, dimensionality reduction with
autoencoder part and setting parameters (such as the number
of nodes in the hidden layer) is studied in our research.
Feature selection by shallow autoencoders on 7 benchmark
datasets consisting of image and text data separately is de-
veloped in [40]. The authors report better solutions in most
cases when the results are compared with Laplacian Score
(LS), Multi-cluster Feature Selection (MCFS), Unsupervised
Discriminative Feature Selection (UDFS) and regularized
self-representation. Variational-autoencoder as an additional
optimizer for the encoders is proposed in [41]. The model
autoencoder consists of two stages. The first stage uses the
optimization of feature subsets and the second stage is used
for shallow regularized autoencoder optimization concerning
the weights and biases. The proposed method based on
autoencoder is reported to give better results than other state-
of-the-art algorithms.

There are many types of autoencoders and depending on
the dataset, features, and correlations among labels, most of
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the time it is observed that autoencoders have good perfor-
mance. Most models are created and evaluated on image data
but to the best of our knowledge, our research is unique in
that it uses image descriptors instead of pixel based images
directly.

III. AUTOENCODERS AND DIMENSIONALITY
REDUCTION
The aim of an autoencoder is to learn a representation (en-
coding) for input data, typically for dimensionality reduction,
by training the artificial neural network in an unsupervised
manner. During this process, the semantic structure of the
data is learned with smaller representations; therefore, it is
typically used for dimensionality reduction with synthetic
features that are created by optimized weights and biases
[42]. Information retrieval with dimensionality reduction was
first implemented by Hinton and Salakhutdinov for semantic
hashing in 2009 [43].

Autoencoders reduce the input dimension through the bot-
tleneck (i.e. code) layer to have a smaller size representation
of the actual data. They try to reproduce the input from
that bottleneck layer as output. The simplest autoencoders
are called vanilla autoencoders that contain only three layers
(input, bottleneck/code, and output layers). It can be thought
to be the skeleton of autoencoders in general. Mathematical
representation of the autoencoder is stated in Equations 1 and
2. The function f refers to the encoder which takes input X
as the parameter and creates the code h. The decoder function
(g) takes as its an input the bottleneck layer (h) to reconstruct
the output layer (X̂) (as performed by a similar version of the
input layer (X)). Finally, this similarity is measured by the
loss function which is stated in Equation 3.

h = f(x) (1)

X̂ = g(h) (2)

L(x, g(f(x))) (3)

Types of autoencoders are examined under two titles con-
sidering the output size of the encoders; under-complete
autoencoders and over-complete autoencoders [44].

A. UNDER-COMPLETE AUTOENCODERS
When the number of nodes in the code layer (the output
size for the encoder part of the autoencoders) is smaller than
the input layer, these autoencoders are called under-complete
autoencoders. As shown in the Figure 1, input, bottleneck,
and the output dimensionalities are represented as |X|, |h|,
and |X̂| respectively. The autoencoder tries to copy input
to the output with learned coefficients and the size of the
input dimension (|X|) is equal to the size of output dimension
(|X̂|). Also, the size of the input dimension (|X|) is greater
than the size of the bottleneck layer (|h|) because the type of
the autoencoder is an under-complete autoencoder. The main

FIGURE 1. General structure of under-complete autoencoder

goal is to reduce the loss between the input and output, but it
should not be zero to avoid memorizing or copying the input
directly to the output. Therefore, the number of hidden layers
is smaller than the input.

B. OVER-COMPLETE AUTOENCODERS
For the over-complete autoencoders, the size of h might be
equal or larger than the size of input X . Figure 2 demon-
strates this structure. Over-complete autoencoders are pre-
ferred for classification purposes when the feature-set with
higher dimensional representation is required. The technique
of increasing the number of neurons to a higher dimen-
sionality than the actual feature-set is used for extracting
hidden structures in data with more significant features. How-
ever, the model can memorize directly without generating
structural identifications of the input data. In order to avoid
this situation, some regularization operations are used. The
types of regularized autoencoders are sparse autoencoders,
denoising autoencoders, contractive autoencoders, and regu-
larized autoencoders with dropout. These are good for under-
complete autoencoders to create better reduced dimensional
representations.

FIGURE 2. General structure of over-complete autoencoder
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C. REGULARIZATION FOR AUTOENCODERS
During the training of neural networks, it may be difficult to
learn the key features to be able to perform prediction on pre-
viously unseen validation data using the existing dataset due
to its unsuitability or small size. In addition to this, the model
that has been learned might not be good enough. In such
situations, some regularization techniques may be useful to
tackle the problem. The first regularization mentioned and
implemented in our study is the denoising autoencoder. The
denoising autoencoders are created to prevent over-fitting and
to extract better representations of the input data through the
bottleneck. Another method is dropout regularization which
is an extended version of the denoising autoencoder.

Dropout regularization: In dropout regularization, some
randomly selected nodes with all of its connections are
dropped out with probability, p. Since this probability param-
eter is a hyper-parameter to apply dropout regularization, it
should be tuned carefully. For most of the problems, p=0.5
gives successful results [45]. This regularization is applied to
all hidden layers and the input layer within the encoder part
of the autoencoder in contrast to the denoising autoencoder.
In other words, while training, some nodes are discarded
with their weights and biases. Therefore, efficient nodes from
the high dimensional model are selected and this method is
used to prevent over-fitting as denoising autoencoder. Figure
3 shows the structure of the dropout regularization (nodes
marked with X represent dropped out nodes).

FIGURE 3. Dropout regularization for dimensionality reduction.

Denoising autoencoders: are regularized forms of autoen-
coders to force the model for better learning [46]. As shown
in Figure 4, a specific rate of noise is added to the input layer
or randomly selected nodes are blanked-out from the input
layer. Later, the model is trained through some noisy input
so that the input is not the same as the output as in regular
autoencoders. The model of the autoencoder is trained with
this noisy input and forced to avoid this noise. This process
extracts better representations for dimensionality reduction.

IV. MULTI-LABEL VIDEO DATA CLASSIFICATION
ALGORITHMS
In this section, we explain multi-label image and video data
classification algorithms, multi-objective NSGA-II, autoen-
coders, and ensemble algorithms. Binary Relevance (BR)
[47], Classifier Chains (CC) [48], Pruned Sets (PS) [49],
and Random k-Labelsets (RAkEL) are used as multi-label
classification algorithms. Basic classifiers that are applied
for multi-label classification algorithms are SVM, LR, and
Decision Tree (J48).

To deal with multi-label classification problems, three
main approaches are applied: data transformation, method
adoption and ensemble-based classifiers [47]. For the data
transformation approach, the multi-label data is transferred
into multi-class or binary-class data, and then the problem
is solved with base classifiers and the results are combined.
The best known algorithms included in this study are BR,
CC, Label Powerset (LP) and PS. In the adoption approach,
the existing classification algorithms that solve multi-class or
binary-class problems are modified as its multi-label version.
Therefore, each algorithm has a different and unique solution
in the method adoption approach. The third approach ensem-
bles the algorithms used in this study and uses the advantage
of assembling these algorithms. The well-known ensemble
multi-label classifier is RAkEL that involves both BR and
LP.

NSGA-II is a classical population-based multi-objective
algorithm developed by Deb et al. [11]. We implement
the parallel version of this algorithm for the experimental
comparisons of our proposed algorithms (autoencoder and
ensemble algorithms). The NSGA-II algorithm starts with
a random initial population of chromosomes. Each chromo-
some has a selected set of features for a given dataset. Non-
dominated sorting operation is performed by considering the
Pareto-fronts. Individuals in smaller fronts have higher prior-
ities. The binary tournament method is applied to generate
a new population. At each crossover and bit-flip mutation
operations, two new children are generated. Only the best
half of the individuals is used to breed a new population.
Individuals with worse fitness values are eliminated. When
the maximum number of generations has been produced, the
algorithm terminates [11]. The pseudocode of the NSGA-II
algorithm is provided in Algorithm 1.

The evaluation metrics used for multi-class or binary clas-
sification cannot be used directly for multi-label classifica-
tion. The accuracy of the labels must be taken into account
in the label set. In this way, Hamming loss is a sample-based
metric that is used primarily. The loss measure is calculated
for each instance and an average value is calculated. The
symmetric difference (∆) is found between the prediction
and the actual label sets for all labels per instance (Equa-
tion 4). Then, it is normalized according to the number of
instances and the number of labels [47].

HammingLoss =
1

n

1

k

n∑
i=1

| Yi∆Zi | (4)
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FIGURE 4. Denoising autoencoder structure (h represents bottleneck and a represents hidden layer(s) of autoencoder).

#gen: number of generations;

P ← generate an initial population randomly;
S ← {} // set of evaluated chromosomes

for i← 1 to #gen do
foreach u in P do

if u does not exist in S then
u.objective1←#selected features;
u.objective2←
HammingScore(u,mca);
S ← S ∪ {u};

else
u.objective← S[u].objective;

end
end
P ← NSGA-II(P ) //generate a new population

end

return ParetoOptimalSolutions(P );
Algorithm 1: The pseudocode of NSGA-II.

Deep denoising autoencoder: Autoencoders are well-
known architectures due to their efficiency in dimensionality
reduction. We use an under-complete deep autoencoder with
10 encoder layers and 10 decoder layers for the solution
of our problem. All of the layers in encoder and decoder
are fully-connected (dense) with additional dropout layers to
avoid overfitting. Encoder and decoder layers are symmetric
for both the number of nodes and layers. This structure
is preferred based on the implementation of autoencoders
with a similar purpose as in the study of Petscharnig et
al. [35]. Since our aim is to learn latent space features
while reconstructing the input, sharing weights in this way
is more reasonable. In addition to this, we work on SIFT and

Segmentation-based Fractal Texture Analysis (SFTA) local
image descriptors, while the features are being extracted.
Data is turned into ’flat images’. Because of this, autoencoder
layers are selected as ’dense’ layers.

After the training and testing processes are performed
on our autoencoder model, latent space representation is
extracted as reduced dimensional synthetic data. After being
sure about the number of layers in our deep autoencoder, we
create a 10-layered network that has symmetrical layers in
encoder and decoder. Since the number of nodes is reduced
in the code layer, all intermediary layers are candidates for
being latent space representation. Through this perspective,
all reduced dimensional representations are extracted to com-
pare as shown in Figure 5. We have created ten different
autoencoders with varying numbers of layers.

Figure 6 shows our autoencoder model that is configured
for both datasets concerning the number of layers. Ten en-
coder layers as Dense with RELU activation and dropout
layers with 0.5 probability. The number of nodes for each
layer is changed. For the MirFlickr dataset that has 42 fea-
tures originally, the number of nodes starts from 38 to 2 as the
bottleneck. For WMS dataset with 100 features, the number
of nodes starts from 90 to 10 up to the code layer in the bottle-
neck and it is selected as 5. These values (bottleneck values)
are selected in this way like the nodes of the code layer are
decided for the general number of selected features from the
NSGA-II. Other layers are distributed concerning the code
and the input sizes. Denoising autoencoder is implemented
for the same structure.

Parallel multi-objective evolutionary algorithms are effi-
cient tools for the optimization of NP-Hard problems [50]
[51]. The performance of the optimization can be consider-
ably improved by using a well-grained parallel calculation
of chromosomes with intelligent operators (mutation and
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FIGURE 5. Reduced dimensional representation extraction on autoencoder.

crossover). The fitness calculation of the chromosomes in this
study requires a lot of time because of the applied machine
learning techniques. This process prevents the exploration
of more subset of features of selected elements. Therefore,
we implement a Parallel-NSGA-II algorithm [52]. The pro-
posed algorithm by Multi-Objective Evolutionary Algorithm
(MOEA) framework keeps a population at the memory of
the master processor and calculates the fitness values of the
chromosomes at each slave processor. Since the calculation
of the accuracy with a selected number of features is well-
grained, it is observed that this parallelization technique of
the conventional NSGA-II gets an almost linear speed-up
during the experiments. It is possible to calculate a larger
number of fitness values and obtain better results than the
standard (serial) version of the NSGA-II algorithm.

V. PERFORMANCE EVALUATION OF THE ALGORITHMS
The experiments are performed on a computer with 8 core
64-bit CPU (I7-3632QM, 2.20GHz). The algorithms are de-
veloped with Java programming language and the MOEA
framework [52]. Multi-label machine learning algorithms
are implemented with MEKA (a multi-label extension of
Waikato Environment for Knowledge Analysis (WEKA)
machine learning toolkit) [53]. Deep autoencoder is imple-
mented in Python programming language with Keras library
that uses Tensorflow backend.

Multi-label machine learning algorithms are selected from
a rich set of multi-label classification approaches. Data-
transformation approaches based on multi-class and binary
classification problems and ensemble-based approaches are

applied. Additionally, some recent versions of the algorithms
are applied on the datasets and by considering the results
based on both the execution time and the success of the
algorithms, BR, CC, PS, and RAkEL are selected as multi-
label classification algorithms.

In our experiments, two multi-label video/image datasets
are used to verify the algorithms. The first dataset is the
most widely used and publicly available image dataset MIR-
Flickr [54]. This dataset consists of 25,000 images. Important
features of the dataset are extracted in a study by Costa et al.
[55]. This feature set that is extracted with the Segmentation
based Fractal Texture Analysis (SFTA) algorithm is used in
our experiments. This extraction creates binary images with
binary stack decomposition. Extracted features are trans-
formed into vectors as feature sets [56]. There are 42 features
in MIR-Flickr dataset and at most 23 labels for each image
(Car, Bird, Lake, Night, Water, Sky, People, Baby, Clouds,
Tree, Portrait, Dog, Animals, Female, Transport, Flower,
Indoor, Male, Food, River, Structures, Sea, Sunset). The
labels and the correlations between the labels are presented
in Figure 7. With respect to the correlation chart, the most
correlated labels are people and males, sky and clouds. Some
interesting correlations are revealed such as baby and sky
exist together in almost all samples of a baby. The night and
male join have occurred in half of the night samples. Since
this dataset has many aspects and repetitive structures are
rare, the number of unique label-sets is 390 and the maximum
occurrence for a label-set is 37 with labels; structures, sunset,
transport, and indoor.

The second dataset is created by recording videos using the
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FIGURE 6. Autoencoder model for MirFlickr datasets

FIGURE 7. Labels and the chart of correlations for MIR-Flickr dataset.

WMS dataset that is designed for our earlier research. The
recorded video files are split into five-second shots and all
of the objects are identified by a human user and manually
annotated as ground truth. There are three possible labels
(person, group of people and vehicle). After the annotation
process is completed, SIFT features are extracted based on
key-point localization of objects [1]. The implementation is
done using OpenCV library and the Python programming
language [57]. Once the SIFT features are produced, the
codebook is constructed to obtain a dictionary of visual
words. During the construction of the codebook, the k-means
clustering algorithm is applied to determine the centroids.
Then, L1 normalization is applied to obtain the final version
in the form of 100 bags of visual words for each frame. The

FIGURE 8. Labels and the chart of correlations for WMS dataset

data is extracted from 3-minute videos and 1000 video frames
are used for feature extraction. Figure 8 shows the correlation
between labels. Most correlated labels are person and groups
of people. A person and a vehicle exist together for nearly
80% of vehicle object samples. Additionally, since tree labels
are available in the WMS dataset, 8 label-sets occur and
the most correlated labels are person and vehicle with 70
samples.

The results reported here are the averages of five execu-
tions with five-fold cross-validation. This method is used
to minimize the impact of random factors. The dataset is
divided into five equal-size partitions and four of them are
used for training. The remaining partition is used for testing.
The average of these five executions is the final accuracy
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TABLE 1. Ensemble Multi-label classification performances on WMS dataset
considering both Hamming-score and execution time.

Hamming-Score Total-time
PS 0.674 0.123
EPS 0.775 0.754
BR 0.713 0.176
EBR 0.79 1.032
CC 0.711 0.182
ECC 0.781 1.043
RAkEL 0.674 1.174
ERAkEL 0.512 7.209

TABLE 2. Ensemble Multi-label classification performances on MIR-Flickr
dataset considering both Hamming-score and execution time.

Hamming-Score Total-time
PS 0.805 0.633
EPS 0.852 3.285
BR 0.859 0.496
EBR 0.866 2.69
CC 0.84 0.753
ECC 0.861 5.561
RAkEL 0.802 0.844
ERAkEL 0.849 4.175

value. This is one of the most common techniques in the
literature to evaluate the predictive accuracy of machine
learning algorithms. The parameters used in the experiments
for the NSGA-II algorithm are presented in Table 3. These
parameters are decided after comprehensive experiments.
The proposed method is sensitive to its parameters. We
use the best parameter settings of NSGA-II that have been
provided by previous studies.

Ensemble feature selection uses multi-label classification
algorithms. All algorithms are selected considering different
types of multi-label classification approaches. Methods BR
and CC are used for binary data transformation and for
multi-class data transformations PS is used. The Random
k Labelset algorithm is implemented as an ensemble multi-
label classifier, which is one of the state-of-the-art ensemble
multi-label classifiers. In order to observe the performance
difference between classic multi-label classification methods
and state-of-the-art ensembles for multi-label classification,
EnsembleML is implemented with widely used multi-label
classification library, Meka. All other four implemented
multi-label classification algorithms are implemented in en-
semble version and results are represented in Tables 1 and 2
for WMS and MIR-Flickr dataset respectively. For all results,
five-fold cross validation is applied and J48 decision tree
algorithm is used as a base classifier.

Tuning the parameters of an autoencoder has an important
effect on its performance. Since an autoencoder is a neural
network, the number of layers and the number of nodes in
each layer should be set properly for the model. The method
explained in Section IV with Figure 5 is applied to select the
number of layers and the termination condition. As a result of
this operation, the bottleneck layer with 2 nodes and previous
5 layers with 6, 10, 14, 18, and 22 nodes are trained and

reduced dimensional features are extracted from these layers
for the MirFlickr dataset. Other layers are not tested because
accuracy is decreased with earlier layers. With respect to the
results displayed in Figure 9, layer-10 is selected. This layer
which is also a bottleneck (the least number of nodes) of the
model with 2 nodes provides better results. Additionally, a
similar methodology is applied on WMS dataset and again 10
layers are used to detect the required number of layers. The
results are given in Figures 10, 11, 12, and 13 for the BR, CC,
PS, and RAkEL algorithms respectively. Concerning these
results, Layer-6 with 40 nodes and Layer-5 with 50 nodes are
selected. Layer-2 has good results but the number of features
is too high for a dimensionality reduction.

Since implemented autoencoder is under-complete and
aims dimensionality reduction, the number of nodes is started
at a value smaller than the number of input features and it is
reduced through bottleneck which is determined in the previ-
ous step. Since MirFlickr dataset has 42 features, the number
of nodes of the first layer is started from 38 and reduced by 4
at a time until it becomes 2. Similarly, WMS dataset has 100
features. The number of nodes in the first layer is started from
90 and reduced by ten until the bottleneck. The bottleneck has
5 nodes for this model.

By tuning the layers and number of nodes for MirFlickr
dataset, 10 layers are selected with encoding-dimension 2.
For WMS dataset, 5 layers are selected with encoding-
dimension 50.

The activation function, optimizer, learning rate, loss func-
tion, batch size and the number of epochs are also tuned
experimentally. Adam [58] and Stochastic Gradient Descent
(SGD) are used optimizers with 0.1, 0.01, 0.001 learning
rates (See Figure 14).

Sigmoid and RELU are applied as loss functions, mean
absolute error and mean squared error respectively to select
best-fitted parameters as activation functions. 32, 128 and
256 batch sizes are tried on both datasets. For MirFlickr and
WMS datasets, 100 and 300 epochs are applied respectively.
Parameters used for both datasets are given in Table 4.

A. THE RESULTS OF THE DENOISING AUTOENCODER
In order to analyze the effect of another type of regularization
than the dropout, denoising autoencoder is examined. All
parameters remain the same as in the dropout regularized
autoencoder. Dropout layers are omitted and noise is added
to the input layer in different noise levels.

For WMS dataset denoising autoencoder is applied with
varying noise factors 0.3, 0.5, 0.8 and results are given in
Table 6. When average execution results are considered, 0.5
is selected as the best noise factor. However, varying all
different noise factors, denoising autoencoder results are not
better than those of dropout regularized autoencoder.

The same experiments are applied on the MIR-Flickr
dataset and results are given in Table 7. When the noise factor
is selected as 0.5, six (6) algorithms have better performance
than the noise factor selection of 0.8 and the results of
five (5) algorithms are better than those with 0.3. If the
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TABLE 3. Parameter settings for the NSGA-II algorithm (N is the number of individuals in the population).

Parameter Value
Population size 50
Crossover rate 1.0
Mutation rate 1/N
Distribution index for mutation 20.0
Distribution index for crossover 15.0

FIGURE 9. Setting the number of layers and the results of the algorithms for MirFlickr dataset (The results of the PS-LR are not added due to its long execution
time).

TABLE 4. Selected parameters for the MirFlickr and WMS datasets

MirFlickr Dataset WMS Dataset

Activation Function relu, last layer sigmoid relu, last layer sigmoid
Optimizer Adam Adam
Learning Rate 0.001 0.001
Loss Function Mean Absolute Error Mean Squared Error
Batch Size 256 128
Number of Epochs 100 300

mean averages of different noise factors are compared, the
best selection does not change. For this dataset, the dropout
regularized autoencoder performs better than denoising au-
toencoder. The difference between results on denoising and
dropout regularized autoencoders is less than that is observed
on the WMS dataset. As a result, since the dropout regular-
ized autoencoder performance is better than denoising au-
toencoder for both datasets, dropout regularized autoencoder
is used in the other experiments using ensembling.

The execution times of denoising autoencoder and dropout
regularized autoencoder are presented in Table 5. Mainly,
dropout regularized autoencoder takes slightly more exe-
cution time than denoising autoencoder since dropout reg-
ularization is applied on each hidden layer but denoising

autoencoder uses only the input of the model. Although the
execution times of both autoencoders are not much different,
when compared with the NSGA-II, autoencoder takes much
less execution time. While autoencoder takes 0.80 seconds on
average for MIR-Flickr dataset, NSGA-II takes a minimum
of 20 minutes for the execution of a generation in the average
with parallel implementation. The execution time of our
ensemble approaches used in this study changes depending
on the number of ensembled features.

The computational complexity of the algorithms mainly
depends on the performance of the machine learning algo-
rithms. The techniques used in this study are polynomial
time processes. The cross validation is another reason of
the long execution times. Training period of the datasets
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FIGURE 10. Setting the number of layers, the results of the BR algorithms for WMS dataset.

FIGURE 11. Setting the number of layers, the results of the CC algorithm for WMS dataset.

FIGURE 12. Setting the number of layers, the results of PS algorithm for WMS dataset.
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FIGURE 13. Setting the number of layers, the results of the RAkEL algorithms for WMS dataset.

FIGURE 14. Applied different learning rates and the results of the parameter tuning experiments.

TABLE 5. The execution times of denoising and dropout regularized autoencoders in seconds.

Run Denoising AE Dropout regularized AE

WMS

1 30.0 27.2
2 26.3 24.7
3 25.7 28.6
4 26.1 26.9
5 25.8 30.4

Mean Average 26.8 27.6

MIR-Flickr

1 76.5 84.9
2 79.3 78.7
3 82.9 99.6
4 83.4 77.7
5 74.2 82.2

Mean Average 79.2 84.6

with many features takes longer times than the execution
time of smaller feature sets. NSGA-II has a termination
condition that depends on the number of the generations and
autoencoders work with the number of epochs. These are the
main parameters for the cost effectiveness of the proposed
methods in our study.

B. HETEROGENEOUS ENSEMBLE APPROACH FOR
FEATURE SELECTION

There are two types of feature selection ensembles, ho-
mogeneous and heterogeneous [31]. In the homogeneous
approach, the same feature selection algorithm is applied on
different subsets of data and the results of all the subsets of
features obtained using the same algorithm are aggregated.
In the heterogeneous approach, there are multiple feature
selection algorithms applied on the same dataset. After all
of the feature selection algorithms are applied and reduced
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TABLE 6. The results of the denoising autoencoder with noise factors 0.3, 0.5, 0.8 and comparison with dropout regularized autoencoder with WMS dataset. (NF is
Noise Factor).

MLC Base Classifier NF: 0.3 NF: 0.5 NF: 0.8 AE with Dropout

BR
J48 0.69555 0.72622 0.71333 0.788
SVM 0.73155 0.73155 0.73155 0.809
LR 0.72488 0.72311 0.72266 0.799

CC
J48 0.71198 0.71822 0.69333 0.777
SVM 0.72533 0.73199 0.73155 0.776
LR 0.72088 0.71333 0.71777 0.778

PS
J48 0.66399 0.64044 0.64355 0.761
SVM 0.71688 0.72755 0.73155 0.778
LR 0.71155 0.70977 0.71822 0.779

RAkEL
J48 0.66399 0.64044 0.64355 0.761
SVM 0.71688 0.72755 0.73155 0.773
LR 0.71155 0.70977 0.71822 0.779

Average 0.70792 0.70833 0.70807 0.77983

TABLE 7. The results of the denoising autoencoder with noise factors 0.3, 0.5, 0.8 and comparison with dropout regularized autoencoder for MIR-Flickr dataset.
(NF is Noise Factor).

MLC Base Classifier NF: 0.3 NF: 0.5 NF: 0.8 AE with Dropout

BR
J48 0.86778 0.86769 0.86778 0.8669
SVM 0.86778 0.86778 0.86778 0.8683
LR 0.86778 0.86773 0.86704 0.8675

CC
J48 0.83326 0.83360 0.83334 0.8486
SVM 0.84647 0.84647 0.84647 0.8532
LR 0.83773 0.83378 0.83313 0.8433

PS
J48 0.81469 0.83273 0.81847 0.814
SVM 0.83830 0.83847 0.83569 0.8423
LR - 0.83547 - 0.8397

RAkEL
J48 0.86204 0.86713 0.86291 0.859
SVM 0.86778 0.86778 0.86778 0.86647
LR 0.86686 0.86760 0.86699 0.86647

Average 0.85158 0.85371 0.85219 0.85419

dimensional feature-sets are recorded, all of these results are
ensembled.

We implement heterogeneous approach for the feature
selection (See Figure 15). We use two different feature se-
lection algorithms in our proposed approach. Since autoen-
coders are used for dimensionality reduction, latent space
representation of the implemented autoencoder model is
saved as the produced synthetic features from actual input.
On the other hand, features discovered by the genetic al-
gorithm are saved for a result of heterogeneous ensemble
feature selection scheme. The collection of this new feature-
set is given as input to the genetic algorithm for the next step
of optimization.

C. THE COMPARISON OF AUTOENCODER RESULTS
AND ENSEMBLE WITH NON-DOMINATED SORTING
GENETIC ALGORITHM-II
After having the results of the NSGA-II algorithm, one of
the most popular dimensionality reduction algorithms from
the aspect of deep neural networks, autoencoder is tested.
Table 8 presents the overall results of WMS dataset based on
the autoencoder and ensemble of NSGA-II and autoencoder.

For all steps, the number of features and hamming-score
values are stated. BR algorithm does not perform well with
reduced dimensional autoencoder features as image descrip-
tor features used with the NSGA-II algorithm. Almost all
algorithms have better results considering both objectives
which are the number of features and Hamming-score.

We concatenate reduced dimensional datasets that are gen-
erated from autoencoder and NSGA-II algorithms. Two dif-
ferent merged datasets are revealed. By selecting the subset
of datasets generated by the NSGA-II algorithm to merge,
different aspects are applied. The first one selects the subset
considering the Pareto-optimal results which are selected
as BR-J48 algorithm with 14 features, and the second one
selects subset considering the highest Hamming-score which
is BR-SVM with 42 features. Then the selection of reduced
dimensional representations by autoencoder is performed in
the selection of the number of layers. These combinations
are merged and MLC machine learning algorithms are ap-
plied to evaluate newly merged datasets. Since features are
generated with results of BR and J48 algorithms for the first
merged dataset, BR and J48 algorithms are not applied again.
These rows are represented as NA. Similarly, BR and SVM

VOLUME 4, 2020 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022317, IEEE Access

FIGURE 15. Proposed Heterogeneous Ensemble Feature Selection Schema

algorithms are used when the dataset is created for Algo-
III. Because of this reason, these algorithms are not used for
validation of the Algo-III and Algo-IV and represented as
NA.

For the final stage, the results of these merged algorithms
(Algo-I and Algo-III) are applied on NSGA-II again for one
more optimization step. The results of both algorithms (Algo-
II and Algo-IV) are improved in terms of the number of
features and Hamming-score when compared to the previous
step considering all objectives on 6 MLC machine learning
algorithm combinations.

Table 9 presents the overall results of MirFlickr dataset
based on autoencoder and ensemble version with NSGA-
II. Similar operations are performed for MirFlickr dataset.
The results of 5 algorithms are improved when compared
with NSGA-II. CC-J48 with 6 features are concatenated with
autoencoder model that has 2 dimension (Algo-V) and sim-
ilarly, BR-J48 with 6 features are concatenated with autoen-
coder with the encoded dimension-2 (Algo-VI). Since Algo-
VI results are better than Algo-V, one more step optimization
is applied on Algo-VI with NSGA-II. The best results are
recorded by RAkEL algorithm. All of applied MLC machine
learning algorithm results are improved with autoencoder,
Algo-V, Algor-VI and Algo-VII when compared to before
feature selection and previous steps.

In conclusion, autoencoder based dimensionality reduction
performs better on a dataset that is simple and includes
repetitive structures and fewer labels, as in WMS dataset
[39].

D. THE RESULTS OF CORRELATION BASED FEATURE
SELECTION, INFORMATION GAIN, PRINCIPAL
COMPONENT ANALYSIS ALGORITHMS
Our algorithms are also compared with PCA, IG, and CBFS.
PCA is a linear dimensionality reduction technique that uses

linear mapping via covariance or correlation relationship
between features. Though variance of the low dimensional
data is maximized and by using eigenvectors, most related
features arise. This algorithm is based on a study by Pearson
[59]. This supervised dimensionality reduction technique is
revised in a book by Jolliffe [60]. The other implemented
algorithm is IG, which is used for splitting decision trees but
it is also a popular feature selection technique. The difference
between the entropy of dataset D and the weighted sum of
selected subset entropies is calculated as the information gain
and the highest is selected as the strongest feature. For this
purpose, searching is performed via ranking all attributes.
Multi-label classification techniques are used while applying
IG on multi-label data. Binary relevance based IG results
are evaluated on other multi-label classification algorithms.
The last feature selection algorithm we use is CBFS. It is
a filter-based feature selection algorithm and ranks features
by a heuristic evaluation function given in Equation 5. The
average class-feature correlation is represented as rcf . rff
represents the average feature-feature correlation where k
represents the number of features. The subsets are evaluated
considering feature-feature and feature-class correlations of
all features. Termination is performed by the ’best-fit’ search
method. If five consecutive subsets are not improved over the
current best subset, then searching is terminated.

µs =
krcf√

k + k(k − 1)rff
(5)

The algorithms are evaluated on both datasets. Tables 10
and 11 present the results on WMS and MIR-Flickr datasets,
respectively. For both datasets, BR, CC, PS, and RAkEL
multi-label classification algorithms are applied with base
classifiers J48 decision tree, SVM and LR on new reduced
subsets.
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For the WMS dataset, similar results are recorded. Our
proposed feature selection approach has further optimized
ensemble feature selection. With NSGA-II (Algo-IV), the
results are 0.7983 Hamming score with 22 features on the
CC-J48 algorithm combination. CBFS can reach 0.7520
Hamming-score and IG has 0.79200 Hamming-score. PCA
has the worst results (see Table 10).

With MIR-Flickr dataset, our proposed feature selec-
tion approach, which is further optimized ensemble fea-
ture selection, NSGA-II (BR-J48 & AE) (Algo-VII) has
reached 0.8678 Hamming-score value with one feature. With
the same algorithm combination, CBFS reports 0.86335
Hamming-score value with 17 features, IG reports 0.86265
with the same number of features and PCA has better results
than both CBFS and IG (see Table 11).

The results obtained by our final approach include further
optimization of the ensemble feature selection algorithms
(Algo-II, Algo-IV for the WMS dataset, Algo-VII for the
MIR-Flickr dataset). All the results are better for three
algorithms out of five compared to the results of the au-
toencoder. However, the genetic algorithm (NSGA-II) gives
better results than the autoencoder for the MIR-Flickr dataset.
However, the autoencoder results on the WMS dataset are
better than NSGA-II in eight out of twelve algorithms, since
the WMS dataset includes many repetitive structures and
the number of possible labels or the number of objects that
should be found in the frames is not high, unlike the MIR-
Flickr dataset. As far as the selection approaches of ensemble
feature selection (Algo-I and Algo-III) are concerned, they
work much better than the genetic algorithm (NSGA-II) and
autoencoder. Finally, by applying further optimization on the
selection of ensembled feature sets, we obtain the best results
from these optimized algorithms (Algo-II and Algo-IV). In
addition, Algo-IV improves the results for five out of six
algorithms, as shown in Tables 6 and 7.

In order to show the significance of our algorithms, we
run the algorithms many times and we obtain small de-
viation thorough these tests. Algo-III has 0.9% deviation
with CC-J48, 0.5% deviation with CC-LR, 0.7% with PS-
J48, 0.6% deviation with RAkEl-LR on WMS dataset and
has 0.05% deviation with CC-LR, 0.01% deviation with
PS-SVM, 0.02% with RAkEl-LR MIR-Flickr Dataset. The
deviations are less than 1% in the average.

Additionally, t-tests are performed to verify the signifi-
cance level of the proposed algorithms. α is selected as 0.05
(5%) for both datasets and the resulting value is obtained as
0.000092 after the experiments. All values are better than
0.05 so the results are decided to be statistically significant.

VI. CONCLUSION
We analyze the performance of multi-label video data classi-
fication algorithms through feature selection techniques. The
multi-objective evolutionary NSGA-II is used for the feature
selection process and autoencoders with regularizations as
denoising autoencoder and drop-out regularization are im-
plemented. An under-complete autoencoder is implemented

for dimensionality reduction with two different techniques.
The first one is denoising autoencoder, which is based on
adding in a certain amount of noise to the input image for
better learning through the output and the second one is
dropout regularization before every hidden layer in encoder
part for similar purposes with the denoising autoencoder. The
number of layers is determined with a heuristic approach. A
dimensionally reduced sub-set of data is extracted after all ten
hidden layers. For MIR-Flickr dataset 10th layer has better
performance than others. However, for WMS dataset 5th

layer gives better results. Other parameters such as optimizer,
activation function, learning rate are also set.

The reduced dimensional feature sets that are extracted
with both dropout regularized autoencoders and NSGA-II are
ensembled. The ensemble of these combined feature-sets is
evaluated. Our proposed method which is based on ensem-
ble feature selection using deep autoencoder and NSGA-II
with two-step optimization is performed for the first time
in the literature to the best of our knowledge. Additionally,
for ensemble feature selection, deep autoencoders are not
used before. When the results are discussed, our proposed
method has competitive results compared to state-of-the-art
algorithms and feature selection algorithms without applying
ensembling. Our proposed method provides better results on
the WMS dataset that has repetitive structures and a limited
number of labels. The Hamming score is increased while
the number of features is reduced during the multi-objective
optimization. The algorithms succeeded in obtaining the sets
of optimal Pareto solutions.

Algorithms CBFS, IG, and PCA can provide good results
but NSGA-II has the best results with the longest execution
times. Pareto optimal solutions of autoencoders have almost
the same results with NSGA-II. But with less execution time
and fewer number of features in the average. The proposed
method provides (near)-optimal solutions. The exact solution
(finding the optimal subset of features) is NP-Hard and its
algorithm is not reasonable.

The proposed algorithms can be used for the classification
of images, social media resources, videos, patients, texts, and
audio files. In the future, new algorithms can be executed on
more powerful parallel computing machines. Increasing the
number of generations and exploring with diverse popula-
tions can yield better results. Other multi-label classification
problems with diverse image feature descriptors can be used.
Different types of autoencoders and multi-objective feature
selection algorithms can also be developed with other possi-
ble ensemble feature selection techniques.
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TABLE 8. Overall results for WMS dataset with autoencoder and ensembled NSGA-II and autoencoder. (HS is Hamming-score, #Feat is Number of Features).
Algo-I is NSGA-II-BRJ48 & AE-40, Algo-II is one more step optimization of Algo-I results with NSGA-II, Algo-III is NSGA-II-BRSVM & AE-50, Algo-IV is one more
step optimization of Algo-III results with NSGA-II (NA stands for Not Available).

Before Feat.Sel. NSGA-II Autoencoder Algo-I Algo-II Algo-III Algo-IV

MLC
Algorithm

Base
Classifier HS #Feat. HS #Feat. HS #Feat. HS #Feat. HS #Feat. HS #Feat HS #Feat.

BR
J48 0.6447

100

0.7848 14 0.778 40 NA

54

NA NA NA

92

NA NA
SVM 0.7164 0.8493 42 0.809 80 NA NA NA NA NA NA
LR 0.6940 0.8455 32 0,799 40 NA NA NA NA NA NA

CC
J48 0.6455 0.7813 14 0,777 40 NA NA NA 0.7364 0.7983 22
SVM 0.7181 0.7658 8 0,776 11 0.7793 0.7834 4 NA NA NA
LR 0.6877 0.7776 11 0,778 10 0.7817 0.7871 8 0.8043 0.7876 12

PS
J48 0.6206 0.7557 11 0.761 10 NA NA NA 0.7451 0.7907 34
SVM 0.7037 0.7772 9 0.778 11 0.7920 0.7822 12 NA NA NA
LR 0.6624 0.7671 45 0.779 10 0.7713 0.7835 8 0.7652 0.7872 18

RAkEL
J48 0.6206 0.7523 10 0.761 10 NA NA NA 0.7450 0.7787 5
SVM 0.7037 0.7649 47 0.773 10 0.7921 0.7782 7 NA NA NA
LR 0.6624 0.7713 21 0.779 10 0.7802 0.7862 10 0.7745 0.8127 38

TABLE 9. Overall results for MirFlickr dataset with autoencoder and ensembled NSGA-II and autoencoder. (HS is Hamming-score, #Feat is Number of Features).
Algo-V is NSGA-II-CCJ48 & AE-2, Algo-VI is NSGA-II-BRJ48 & AE-2, Algo-VII is one more step optimization of Algo-VI (NA stands for Not Available).

Without Feat. Sel. NSGA-II Autoencoder Algo-V Algo-VI Algo-VII

MLC
Algorithm

Base
Classifier HS #Feat. HS #Feat. HS #Feat. HS #Feat. HS #Feat. HS #Feat.

BR
J48 0.8618

42

0.8886 6 0.8669 10 NA

8

NA

8

NA NA
SVM 0.8657 0.8796 25 0.8683 2 0.8658 NA NA NA
LR 0.8611 0.8667 4 0,8675 2 0.8648 NA NA NA

CC
J48 0.8383 0.8860 5 0,8486 10 NA NA NA NA
SVM 0.8511 0.8860 5 0,8532 6 NA 0.8492 0.8521 1
LR 0.8431 0.8653 6 0,8433 2 NA 0.8456 0.8475 2

PS
J48 0.8079 0.8504 4 0.8140 2 NA NA NA NA
SVM 0.8429 0.8601 9 0.8423 22 0.8436 0.8430 0.8439 2
LR 0.8020 0.8214 15 0.8397 2 - - - -

RAkEL
J48 0.8023 0.8225 8 0.8590 2 NA NA NA NA
SVM 0.8654 0.8189 9 0.8664 2 0.8654 0.8678 0.8678 1
LR 0.8449 0.8121 12 0.8665 2 0.8641 0.8633 0.8674 1
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TABLE 10. The results of CBFS, IG, and PCA algorithms on WMS Dataset.

Algorithm Base Classifier CBFS IG PCA

BR
LR 0.75167 0.79200 0.71810
SVM 0.75200 0.79033 0.72238
J48 0.71700 0.72767 0.70143

CC
LR 0.74033 0.78833 0.70238
SVM 0.75167 0.78383 0.72286
J48 0.71900 0.71883 0.67286

PS
LR 0.74700 0.78400 0.71095
SVM 0.74700 0.78650 0.72810
J48 0.68700 0.71400 0.66000

RAkEL
LR 0.74700 0.78400 0.71095
SVM 0.74700 0.78650 0.72810
J48 0.68700 0.71400 0.66000

TABLE 11. The results of CBFS, IG, and PCA algorithms on MIR-Flickr Dataset.

Algorithm Base Classifier CBFS IG PCA

BR
LR 0.86452 0.86428 0.86583
SVM 0.86570 0.86570 0.86778
J48 0.86335 0.86265 0.86409

CC
LR 0.84726 0.84596 0.84543
SVM 0.85787 0.85726 0.84561
J48 0.84674 0.84574 0.84435

PS
LR - - -
SVM 0.84139 0.84165 0.84048
J48 0.81104 0.80615 0.80904

RAkEL
LR 0.85783 0.85833 0.86313
SVM 0.86543 0.86496 0.86739
J48 0.81100 0.81178 0.81709
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