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Abstract

We study a softly-broken supersymmetric model whose gauge symmetry is that of the standard

model (SM) gauge group times an extra Abelian symmetry U(1)′. We call this gauge-extended

model U(1)′ model, and we study a U(1)′ model with a secluded sector such that neutrinos acquire

Dirac masses via higher-dimensional terms allowed by the U(1)′ invariance. In this model the µ term

of the minimal supersymmetric model (MSSM) is dynamically induced by the vacuum expectation

value of a singlet scalar. In addition, the model contains exotic particles necessary for anomaly

cancellation, and extra singlet bosons for achieving correct Z ′/Z mass hierarchy. The neutrinos are

charged under U(1)′, and thus, their production and decay channels differ from those in the MSSM

in strength and topology. We implement the model into standard packages and perform a detailed

analysis of sneutrino production and decay at the Large Hadron Collider, for various mass scenarios,

concentrating on three types of signals: (1) 0ℓ + MET, (2) 2ℓ + MET, and (3) 4ℓ + MET. We

compare the results with those of the MSSM whenever possible, and analyze the SM background

for each signal. The sneutrino production and decays provide clear signatures enabling distinction

of the U(1)′ model from the MSSM at the LHC.
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I. INTRODUCTION AND MOTIVATION

The MSSM is arguably the most popular ‘new physics’ scenario referring to a perturbative

completion of the SM beyond Fermi energies. Motivated by the resolution of such long

standing problems of the SM as the gauge hierarchy problem, the existence of dark matter

and the added attraction of gauge unification, nevertheless, it still has some outstanding

problems. One of these is the so-called µ problem [1]. Supersymmetric models which extend

the MSSM via an extra gauge group generally intend to solve µ problem and incorporate an

extra singlet field, whose coupling to the Higgs fields and VEV generate dynamically the µ
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term. These models extend the SU(2)L ⊗ U(1)Y MSSM electroweak symmetry by an extra

U(1) gauge symmetry. Such an extension is minimal, and it is well motivated in superstring

theories [2], grand unified theories [3] and in dynamical electroweak breaking theories [4].

The simplest versions contain a singlet field and an extra neutral gauge boson. Other

versions also allow right-handed neutrinos into the spectrum. In a non-minimal version of

the U(1) extended MSSM, which includes several singlet (S) fields, the tension between the

electroweak scale and developing a large enough Z ′ mass is resolved. We call this version of

the model secluded sector U(1)′, a shorthand notation for SU(3)c⊗SU(2)L⊗U(1)Y ⊗U(1)′,

the gauge symmetry underlying the model, and describe it in the next section. In the MSSM,

as in the SM, neutrinos are massless. The fact that neutrino oscillation imply non-vanishing

neutrino masses is a strong motivation to consider an extended form of the MSSM. Small

neutrino masses consistent with neutrino oscillation phenomenology are usually explained

by the see-saw mechanism [5]. In the see-saw mechanism, large Majorana masses for right-

handed neutrinos induce small Majorana masses for left-handed neutrinos. In the scalar

sector, right-handed sneutrinos mix with the left handed sneutrinos and give potentially

new signals for extended symmetry. The choice of U(1) symmetry would determine the

magnitude and type of neutrino masses. In this paper, we consider a U(1)′ extended form

of the MSSM that contains Dirac-type neutrino masses.

Direct or indirect detection of the superpartners of the Standard Model particles, the

definitive signal for supersymmetry, is one of the major aims of the LHC experiments. Except

for the LSP in the R−parity conserving supersymmetry, the superpartners are expected to

decay instantaneously into SM particles, plus the LSP, detected as missing energy. The

common methodology for detection is to analyze the production and cascade decays of the

supersymmetric particles. As the right sneutrinos, which can mix with the left sneutrinos

are a feature of the U(1)′ model that distinguishes it from MSSM, studying sneutrino signals

would be an important test for this model.

Systematic analyses of sneutrino decays in the MSSM have been performed in [6]. The

aim of this article is to perform a comparative study of LHC signals of sneutrino production

and decays in the MSSM and in a supersymmetric model with a secluded U(1)′ breaking

sector [7] via their decay chain topologies. Differences between MSSM and the secluded

sector U(1)′ model likely reveal themselves via decay modes of the sneutrino. We analyze

the signals, and, for completeness, we also include possible Standard Model backgrounds.
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In most variants of the MSSM consistent with relic density calculations, the LSP is

the lightest neutralino, typically a mixed state of bino (fermionic partner of the U(1)Y

gauge boson) and the higgsino. In a previous work [8], we showed that a minimal U(1)′

model (one extra singlet boson) could be consistent with the excess positron observed in

satellite experiments, choosing on of the right-handed sneutrinos as the LSP. However, for

the purpose of this work (dependent on parameter space chosen to compare our results with

those of MSSM), the secluded sector U(1)′ lightest neutralino appears consistently to be

the lightest supersymmetric particle (LSP) and therefore is a potentially viable dark matter

(DM) candidate, although its composition is likely to differ from the lightest neutralino in

MSSM.

Here we perform a thorough analysis of sneutrino production and decay in the secluded

sector U(1)′ model. In order to compare with previous signals, we establish a set of three

mSUGRA-inspired benchmarks for our model. Similar to the mSUGRA benchmark points

analyzed in MSSM (LM1, LM2, LM6) [9–11], we analyze the corresponding scenarios in

secluded sector U(1)′ model (LM1′,LM2′,LM6′). Here LM stands for Low Mass, a choice

likely to yield visible signals at the LHC.

Our paper is organized as follows. We briefly introduce the model in Section II, then define

the parameters and physical masses of supersymmetric particles in the secluded sector U(1)′

model in Section III. For each benchmark point, we insure that DM candidate of the U(1)′

model yields relic densities consistent with the WMAP range of cold dark matter density

[12]. We then perform a comparative analysis of the production, decays and detectability

of sneutrinos within these benchmark supersymmetric scenarios. During this analysis we

focus on the multilepton plus missing energy signatures of the supersymmetric scenarios.

We present the results of our simulation analysis for the LHC. In Section IV we conclude

the work. We leave the extensive details of the model for the Appendices.

II. THE U(1)′ MODEL

The MSSM suffers from a naturalness problem due to the presence of µ parameter,

responsible for giving masses to the Higgs bosons and Higgsino in the superpotential. From

a purely theoretical point of view, the value of this parameter is expected to be either of the

order of the GUT, Planck scale or zero. For phenomenological aspects, however, it must be
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of the order of the scale of electroweak symmetry breaking (EWSB) and it has to be non-zero

to agree with the experimental data. Seen from the low energy point of view, adding an

extra U(1) is needed in order to solve the µ problem [1] of the MSSM. Basically the problem

is remedied by extending the matter and gauge structure of the MSSM, e.g. within unified

and/or string models by introducing an additional singlet filed S, whose VEV generates the

µ term dynamically. Theories with an extra U(1)′ broken at the electroweak- to- TeV scale

by SM singlets are known to be able to generate an appropriately sized µ parameter (see

e.g. [1]).

The other success of the U(1)′ symmetry is being able to generate pertinent neutrino

masses by introducing right-handed neutrinos into the superpotential. The right-handed

neutrino sector and the µ parameter can be correlated for both Majorana [13] and Dirac

masses [14]. We assume here that lepton number is an accidental symmetry that is conserved

at the perturbative level. Hence, the neutrinos are Dirac fermions, requiring Yukawa cou-

plings of O (10−13). These couplings are technically natural, but an explanation for such a

strong suppression is clearly desirable. One way this can occur is if the U(1)′ invariance sup-

presses leading order contributions to Dirac neutrino masses and allows higher-dimensional

operators [14].

In this work, we extend the MSSM in the following ways. First, the gauge structure of the

MSSM, SU(3)C⊗SU(2)L⊗U(1)Y , is enriched to include an extra Abelian group factor U(1)′.

Second, we promote the µ parameter into dynamical field, S, which is charged under the

U(1)′. Third, exotics with Yukawa couplings to S are included to make the theory anomaly-

free. Fourth, Z ′/Z mass hierarchy in the model is ensured by three additional SU(2) singlet

fields which are coming from secluded sector of the model. The model also includes a term

that provides suppressed Dirac neutrino masses in accordance with observations. We present

the main relevant points in this section, leaving the details for the appendices.

In the minimal version of the model which contains only one singlet S, there is some

tension between the electroweak scale and the need to generate a large enough M ′
Z . These

two problems can be decoupled without fine tuning when several additional fields are incor-

porated into the model. An example of this kind of non-minimal model is secluded sector

model. The secluded sector model involves an ordinary sector of symmetry breaking fields,

which includes two Higgs doublets, and an SU(2)L singlet S. After acquiring a VEV, S

generates an effective µ parameter µ = hs〈S〉. The secluded sector of the model includes
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Field Q̂ Û D̂ L̂ N̂ Ê Ĥu Ĥd Ŝ Ŝ1 Ŝ2 Ŝ3 Q̂ Q̂ L̂ L̂

SU(3)C 3 3 3 1 1 1 1 1 1 1 1 1 3 3 1 1

SU(2)L 2 1 1 2 1 1 2 2 1 1 1 1 1 1 1 1

U(1)Y 1/6 -2/3 1/3 -1/2 0 1 1/2 -1/2 0 0 0 0 YQ −YQ YL −YL

U(1)′ Q′
Q Q′

U Q′
D Q′

L Q′
N Q′

E Q′
Hu

Q′
Hd

Q′
S Q′

S1
Q′

S2
Q′

S3
Q′

Q Q′
Q Q′

L Q′
L

TABLE I. Gauge quantum numbers of quark (Q̂, Û , D̂), lepton (L̂, N̂ , Ê), Higgs (Ĥu, Ĥd), SM-

singlet (Ŝ, Ŝ1, Ŝ2, Ŝ3), exotic quark (Q̂, Q̂) and exotic lepton (L̂, L̂) superfields.

three SU(2)L singlet fields Si, i = 1, 2, 3 which acquire large VEVs. All four VEVs of the

singlet fields S, S1,2,3 contribute to Z ′ mass. Thus, in this model, Z ′/Z mass hierarchy is

implemented mainly through the secluded sector of the model.

The superpotential of the model is given by

Ŵ = huQ̂ · ĤuÛ + hdQ̂ · ĤdD̂ + heL̂ · ĤdÊ + hsŜĤu · Ĥd +
1

MR
Ŝ1L̂ · ĤuhνN̂ + h̄sŜ1Ŝ2Ŝ3

+

nQ∑

i=1

hi
QŜQ̂iQ̂i +

nL∑

j=1

hj
LŜL̂jL̂j (1)

where the fields entering the equation, together with their quantum numbers are listed in

Table I. Here, MR is a large mass scale and hν is the Yukawa coupling responsible for

generating neutrino masses.

The U(1)′ charges of the fields satisfy a number of conditions arising from phenomeno-

logical constraints, as well as from gauge invariance of the model and from the requirement

of cancellation of gauge and gravitational anomalies. They are as follows.

The U(1)′ charges satisfy Q′
Hu

+Q′
Hd

6= 0 to forbid the bare µ term, Q′
L +Q′

Hu
+Q′

N 6= 0

to induce neutrino masses correctly, and Q′
S1

+ Q′
S2

+ Q′
S3

= 0 to correctly generate the

Z − Z ′ mass hierarchy. Gauge invariance of the superpotential implies

0 = Q′
S +Q′

Hu
+Q′

Hd
,

0 = Q′
Q +Q′

Hu
+Q′

U ,

0 = Q′
Q +Q′

Hd
+Q′

D,

0 = Q′
L +Q′

Hd
+Q′

E,

0 = Q′
Q +Q′

Q +Q′
S,

0 = Q′
L +Q′

L +Q′
S,
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0 = Q′
S1

+Q′
L +Q′

Hu
+Q′

N . (2)

For the model to be anomaly-free the U(1)′ charges of fields must satisfy

0 = 3(2Q′
Q +Q′

U +Q′
D) + nQ(Q

′
Q + Q′

Q), (3)

0 = 3(3Q′
Q +Q′

L) +Q′
Hd

+Q′
Hu

, (4)

0 = 3(
1

6
Q′

Q +
1

3
Q′

D +
4

3
Q′

U +
1

2
Q′

L +Q′
E) +

1

2
(Q′

Hd
+Q′

Hu
)

+ 3nQY
2
Q(Q

′
Q +Q′

Q) + nLY
2
L (Q

′
L +Q′

L), (5)

0 = 3(6Q′
Q + 3Q′

U + 3Q′
D + 2Q′

L +Q′
E +Q′

N ) + 2Q′
Hd

+ 2Q′
Hu

+ Q′
S +Q′

S1
+Q′

S2
+Q′

S3
+ 3nQ(Q

′
Q +Q′

Q) + nL(Q
′
L +Q′

L), (6)

0 = 3(Q′ 2
Q +Q′2

D − 2Q′ 2
U −Q′ 2

L +Q′ 2
E )−Q′ 2

Hd
+Q′ 2

Hu
+ 3nQYQ(Q

′ 2
Q −Q′ 2

Q )

+ nLYL(Q
′ 2
L −Q′ 2

L ), (7)

0 = 3(6Q′ 3
Q + 3Q′ 3

D + 3Q′ 3
U + 2Q′ 3

L +Q′ 3
E +Q′ 3

N ) + 2Q′ 3
Hd

+ 2Q′ 3
Hu

+Q′ 3
S

+ Q′ 3
S1

+Q′ 3
S2

+Q′ 3
S3

+ 3nQ(Q
′ 3
Q +Q′ 3

Q ) + nL(Q
′ 3
L +Q′ 3

L ), (8)

which correspond to vanishing of U(1)′-SU(3)C-SU(3)C , U(1)′-SU(2)L-SU(2)L, U(1)′-

U(1)Y -U(1)Y , U(1)′-graviton-graviton, U(1)′-U(1)′-U(1)Y , and U(1)′-U(1)′-U(1)′ anomalies,

respectively. All these anomaly cancellation conditions are satisfied for a particular pattern

of charges and parameters. It is found that the solution to the mixed anomaly constraints

requires nQ = 3 color triplet pairs with hypercharge YQ = −1/3, and nL = 5 singlet pairs

with YL = −
√

2/5. With these parameter values one obtains the U(1)′ model displayed in

Table II. The U(1)′ charges for Higgs fields in the model are chosen as

Q′
S = −Q′

S1
= −Q′

S2
=

1

2
Q′

S3
, Q′

Hu
+Q′

Hd
+Q′

S = 0. (9)

Under the conditions above, the supersymmetry breaking soft terms for the secluded sector

model are

Vsoft = V I
soft + V o

soft (10)

where V I
soft are the allowed U(1)′ dimension-2 operators

V I
soft = (m2

SS1
SS1 +m2

SS2
SS2 +m2

S1S2
S†
1S2 + h.c.) (11)

and V o
soft term is defined as

V o
soft = m2

Hu
|Hu|2 +m2

Hd
|Hd|2 +m2

S|S|2 +
∑3

i=1m
2
Si
|Si|2 (12)

− (AshsSHuHd + As̄h̄sS1S2S3 + h.c.)
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Q′
Hu

= −2

Q′
Hd

= 1

Q′
S = 1

Q′
S1

= −1

Q′
S2

= −1

Q′
S3

= 2

Q′
Q = x

Q′
U = 2− x

Q′
D = −1− x

Q′
L = 1

3 − 3x

Q′
E = −4

3 + 3x

Q′
N = 8

3 + 3x

Q′
Q = 4−12x−

√
2Ω

18

Q′
Q = −22+12x+

√
2Ω

18

Q′
L = −15+13

√
10−12

√
10x+

√
5Ω

30

Q′
L = −15−13

√
10+12

√
10x−

√
5Ω

30

TABLE II. A set of U(1)′ charges satisfying all gauge invariance and anomaly cancellation condi-

tions. The charge of the quark doublet Q̂ is left free, and for simplicity Ω(x) =
√
241 + 708x + 612x2

is introduced.

We set m2
S1S2

= 0 as only two of the Si fields are needed to break the global U(1) symmetries.

To insure that the potential is not bounded from below, we require

m2
S +m2

S1
+ 2m2

SS1
> 0 ,

m2
S +m2

S2
+ 2m2

SS2
> 0. (13)

In the model, the charge of the quark doublet Q̂ is kept as a free parameter after the

normalization Q′
Hu

= −2, Q′
Hd

= 1, Q′
S = 1, Q′

S1
= −1, Q′

S2
= −1, Q′

S3
= 2.

In this model the left and right sneutrinos mix, and the mixing matrix can in general be

expressed as

Lν̃
m = −

3∑

i,j=1

(ν̃i∗
L ν̃

j∗
R )




m2
ν̃i
LL

m2
ν̃ij
LR

m2
ν̃ij
RL

m2
ν̃j
RR







ν̃i
L

ν̃j
R


 , (14)

where i, j are the flavor indices and the matrix elements are given by

m2
ν̃i
LL

= M2
Li

+ (mii
ν )

2 +
1

4
(g2Y YL − g2

2
)(〈H0

u〉2 − 〈H0
d〉2)

+
1

2
g2Y ′Q′

L(Q
′
Hu

〈H0
u〉2 +Q′

Hd
〈H0

d〉2 +Q′
S〈S〉2ρs)

m2
ν̃j
RR

= M2
Nj

+ (mii
ν )

2 +
1

4
g2Y YN(〈H0

u〉2 − 〈H0
d〉2)

+
1

2
g2Y ′Q′

N(Q
′
Hu

〈H0
u〉2 +Q′

Hd
〈H0

d〉2 +Q′
S〈S〉2ρs)

m2
ν̃ij
LR

= (m2
ν̃ij
RL

)∗ = m
ij
ν

[
A∗

νi
+

µ

tan β
+

h̄s〈S2〉〈S3〉√
2〈S1〉

]
. (15)

Here M2
Li

and M2
Ni

are soft mass terms and Aνi are trilinear couplings (assumed flavor-

diagonal). Dirac neutrino masses mν , the µ parameter and ρs in the equations above are

expressed as

mν =
1

MR
〈S1〉〈H0

u〉hν ≡ Yν

(
〈H0

u〉/ sinβ
)
, µ =

hs〈S〉√
2

, ρs = 1 +

∑3
i=1Q

′
Si
v2si

Q′
Sv

2
s

. (16)
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In this model, neutrino masses are chosen to be Dirac-type. The effective neutrino Yukawa

coupling Yν leads to neutrino masses in agreement with the experiment. Numerically, we

obtain [8]

|Yν | ≃ 3× 10−13

( |mν |2
2.8× 10−3 eV2

)1/2

. (17)

III. MSSM VS. U(1)′ AT THE LHC ENERGIES

A. Parameter Space and Relic Density

Motivated by the fact that the scalar neutrino LSP can in principle explain the WMAP

data as well as excess positron flux measured by various satellite experiments [8], we ana-

lyze the model further by investigating the production and decay mechanism of the scalar

neutrinos at LHC.

The model we consider here, the secluded-U(1)′ with right-handed neutrinos, has some

advantages over the so-called the minimal U(1)′ where only one additional scalar field is

introduced. The squark phenomenology in this minimal U(1)′ model has been explored in

Ref. [15] where there is difficulty with inducing a small µeff while satisfying the Z ′ mass

bound, which is around 1 TeV. This is because both µeff and mZ′ are proportional to

the vacuum expectation value of the additional scalar field S. One needs three additional

scalars to ameliorate the picture the VEVs of the new scalars are kept large large. This is

one motivation for the secluded U(1)′ model. For further details of the model, see [7].

Z1 , Z2

qi

q̄i

ν̃L,R

ν̃∗L,R

qi

q̄i

H1, H2, ..., H6

ν̃L,R

ν̃∗L,R

FIG. 1. The Feynman diagrams for the production of the scalar neutrinos in the secluded-U(1)′

model. Hi, i = 1, ..., 6 are the CP-even physical Higgs bosons.

The Feynman diagrams contributing to the hard production of scalar neutrinos are given

in Fig 1. For simplicity we neglect the mixing between Z ( the Z boson of the SM) and Z ′ in

9



the numerical analysis so that Z1 ≡ Z and Z2 ≡ Z ′. In addition to Z ′ exchange (left-handed

diagram), all CP-even Higgs bosons contribute to the process in the s-channel (right-handed

diagram).

Once the scalar neutrinos are produced, they will decay. The decay pattern strictly

depends on scenario chosen for the free parameters. Since we are interested in rather light

scalar neutrinos (assuming low-energy SUSY exits), we prefer to choose MSSM-like Low

Mass (LM) scenarios [9]. Battaglia et. al have proposed updated post-WMAP benchmark

points for the constrained MSSM [10] modifying earlier proposal [11], and we include these

points in Table III.

To compare our results with MSSM predictions, we choose three low-mass MSSM sce-

narios (benchmark points), namely LM1, LM2 and LM6, from the low mass scenarios of

MSUGRA and use Softsusy package [16] to generate the MSSM spectrum. In the se-

cluded U(1)′ we choose LM-like scenarios, denoted as LM1′, LM2′ and LM6′ by keeping

the overlapping parameters the same and fixing the additional parameters to agree with

phenomenological constraints on masses. The input parameters for LM1, LM2 and LM6

for MSSM as well as their corresponding prime versions for the secluded U(1)′ are given

in Table III. As seen from Table III, the VEVs of the additional scalars (S1, S2 and S3)

vsi, i = 1, 2, 3 are taken above the TeV scale so that the Z ′ mass bound is satisfied no matter

what the VEV of the scalar field S is chosen. In fact, for convenience, the parameters µeff

and hs are taken as free parameters and the VEV of S are determined accordingly using

the relation given in Eq. (16). From Table IV it is seen that the scalar neutrino masses are

rather light. The left-handed sneutrinos masses are varying in the 168 GeV-287 GeV range

while the right-handed ones are in the 412 GeV-704 GeV depending on the LM scenario as

well as on the flavor of the scalar neutrino. The right-handed scalar neutrinos are heavier,

showing the same pattern as in the neutrino sector. With these chosen masses we can foresee

that the production cross section for the left-handed sneutrinos will dominate the one for

the right-handed ones.

The validity of the MSSM scenarios LM1, LM2 and LM6 has been confronted with both

the LEP and Tevatron data. There will be no contributions to the LEP observables from

our LMX′, X = 1, 2, 6 scenarios since the lightest Higgs boson mass in the model is 218

GeV, which is already above the LEP energy. For the Tevatron case, however, one needs

do a more careful analysis. Nevertheless, as the LMX′ scenarios aim to be consistent with

10



Parameters MSSM U(1)′

LM1 LM2 LM6 LM1′ LM2′ LM6′

sign(µ) + + + + + +

tan β 10 35 10 10 35 10

Q′
Q – – – -2 -2 -2

µ (µeff ) 373 506 583 373 506 583

hν – – – 1 1 1

hs – – – 0.5 0.7 0.7

h̄s – – – 0.75 0.75 0.70

As – – – 200 200 200

As̄ – – – 100 100 100

vs1 – – – 1450 1350 1600

vs2 – – – 1250 1250 1450

vs3 – – – 1150 1100 1300

RY ′ – – – 49.4 45 42

Mν̃eR
– – – 400 500 600

Mν̃µR
– – – 450 550 650

Mν̃τR
– – – 500 600 700

M1 98 139 159 98 139 159

M2 189 266 303 189 266 303

M3 630 871 989 630 871 989

ML1 181 295 284 199 295 284

ME1 110 218 171 121 218 171

MQ1 586 821 916 586 821 916

MU1 569 797 888 569 797 888

MD1 567 795 885 567 795 885

ML2 181 295 284 199 295 284

ME2 110 218 171 121 218 171

MQ2 586 821 916 586 821 916

MU2 569 797 888 569 797 888

MD2 567 795 885 567 795 885

ML3 180 283 284 198 283 284

ME3 108 182 168 121 182 168

MQ3 538 731 842 538 731 842

MU3 467 652 729 467 652 729

MD3 563 748 879 563 748 879

M2
SS1,2

– – – −2× 106 −2× 106 −2× 106

At -517 -698 -806 -517 -698 -806

Ab -791 -960 -1224 -791 -960 -1224

Aτ -159 -139 -251 -159 -139 -251

TABLE III. The scenarios (benchmark points) LM1, LM2, and LM6 (for the MSSM i. e. minimal

supergravity), and LM1′, LM2′ and LM6′ (for the U(1)′ model). The unprimed LMX and primed

LMX ′ benchmark points similar mass spectra. Parameter RY ′ is defined in Appendix C.
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Masses MSSM U(1)′

LM1 LM2 LM6 LM1′ LM2′ LM6′

mZ′ – – – 1476 1418 1661

mχ̃0
1

96 141 161 96 63 79

mχ̃0
2

178 264 302 99 138 158

mχ̃0
3

340 448 513 177 258 295

mχ̃0
4

360 462 529 356 443 425

mχ̃0
5

– – – 392 527 603

mχ̃0
6

– – – 412 536 609

mχ̃0
7

– – – 633 593 657

mχ̃0
8

– – – 1364 1311 1438

mχ̃0
9

– – – 5312 6592 7110

mχ̃±
1

177 264 303 174 256 293

mχ̃±
2

362 466 532 397 523 598

mẽL 186 298 287 155 248 271

mẽR 120 223 178 193 285 206

mµ̃L
186 298 287 155 248 271

mµ̃R
120 223 178 193 285 206

mτ̃1 111 146 171 144 168 195

mτ̃2 190 309 289 200 305 276

mν̃e 168 287 276 133 235 259

mν̃µ 168 287 276 133 235 259

mν̃τ 168 274 275 132 219 258

mν̃eR
– – – 412 514 604

mν̃µR
– – – 460 563 654

mν̃τR
– – – 509 612 704

mH0
1

109 112 112 218 252 238

mH0
2

371 423 576 780 807 735

mH0
3

– – – 852 870 942

mH0
4

– – – 884 1198 1089

mH0
5

– – – 1251 1883 1339

mH0
6

– – – 2789 2770 2844

mA0
1

371 423 576 418 412 431

mA0
2

– – – 868 1256 1085

mA0
3

– – – 1257 1883 1246

mA0
4

– – – 2591 2586 2599

mH± 380 431 581 867 1881 1081

TABLE IV. The complete mass spectra of the benchmark points (scenarios) given in Table III for

both MSSM and the secluded U(1)′.
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the corresponding MSSM scenarios, in the limit where the extra U(1)′ particles decouple,

we expect consistency with the Tevatron data. To verify this point, we used the package

HiggsBounds [17], which yields results for any arbitrary Higgs sector.

Observables MSSM U(1)′

LM1 LM2 LM6 LM1′ LM2′ LM6′

σ(pp → ν̃eR ν̃
∗
eR)/fb - - - 80.5 67.8 29.1

σ(pp → ν̃µR
ν̃∗µR

)/fb - - - 66.7 55.1 24.0

σ(pp → ν̃τR ν̃
∗
τR)/fb - - - 54.9 44.6 19.7

σ(pp → ν̃ℓL ν̃
∗
ℓL
)/fb 36.7 4.1 5.3 887.6 734.0 371.9

σ(pp → ν̃τL ν̃
∗
τL)/fb 37.2 4.9 5.3 890.7 778.7 373.1

σTOT(pp → ν̃iν̃
∗
i )/fb 110.6 13.1 15.9 2868.0 2414.2 1189

ΩDMh2 0.120 0.120 0.120 0.115 0.109 0.100

TABLE V. The production cross section and the relic density ΩDM values for the LM scenarios

considered in the paper.

The production cross sections for the scattering pp → ν̃ℓL,R
ν̃∗
ℓL,R

processes are listed

in Table V, for both MSSM and the secluded U(1)′ model. The values were obtained

implementing the secluded U(1)′ model into CalcHEP [18] with the help of LanHEP [19]. The

parton distributions in the proton have been parametrized by using CTEQ6M of LHAPDF [20].

The MSSM total cross sections (including the three scalar neutrino flavors) are in the range

of 4 to 110 fb while in the secluded U(1)′ model they are varying between 1.1 pb to 2.6

pb. The new right-handed sneutrino cross sections in the secluded U(1)′ model are about

10 times smaller than the cross sections for their left-handed counterparts, and are in the

range of 20 fb to 80 fb.

In Table V, we also included the relic density of the dark matter for all six scenarios.

This calculation is straightforward using the Micromegas package [21], once we include the

model files from CalcHEP. All the numbers are within the 1σ range of the WMAP result [22]

which can be given with those from the Sloan Digital Sky Survey [12]

ΩDMh2 = 0.111+0.011
−0.015 . (18)

We note that the relic density of the dark matter ΩDMh
2 is very sensitive to the free parameter
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FIG. 2. The Feynman diagrams for the three-body decay channels of the next-to-LSP χ̃0
2 in the

secluded-U(1)′ model. Here Hi, i = 1, ..., 6 are the CP-even physical Higgs bosons while A0
i , i =

1, ..., 4 are CP-odd ones.

RY ′ listed in Table III which varies between 42 to 50. It’s defined (see also Appendix C) as

the ratio between bare U(1) gaugino masses

RY ′ ≡ MỸ ′/MỸ

where MỸ and MỸ ′ are the Bino and Bino′ mass parameters appearing in the 9 × 9 neu-

tralino mixing matrix. More details are given in Appendix C. In Table IV the Lightest

Supersymmetric Particle (LSP) is the lightest neutralino χ̃0
1 with masses 96 GeV, 63 GeV

and 79 GeV for the LM1′,LM2′ and LM6′ scenarios, respectively. The next-to-lightest su-

persymmetric particle is χ̃0
2 with masses 99 GeV, 138 GeV and 158 GeV, respectively. For

such a spectrum, there will be no kinematically available two-body decays for the χ̃0
2, so

that three-body channels need to be considered. The three-body decay modes relevant to
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the analysis here are given in Fig. 2. These decay modes will be considered in the LHC

simulation but not the relic density calculation, as they give negligible contributions. The

sizable contributions to the relic density are for the LM1′ scenario

• χ̃0
1 χ̃

0
2 → τ−τ+ (15%)

• χ̃0
2 χ̃

0
2 → τ−τ+ (13%)

• χ̃0
1 χ̃

0
2 → e−e+/µ−µ+ (8% for each channel)

• χ̃0
2 χ̃

0
2 → e−e+/µ−µ+ (8% for each channel)

• χ̃0
2 χ̃

0
2 → νlν̄l , l = e, µ, τ (5% for each channel)

• χ̃0
1 χ̃

0
1 → τ−τ+ (5%)

• χ̃0
1 χ̃

0
1 → e−e+/µ−µ+ ( 3% for each channel)

• χ̃0
1 χ̃

0
2 → νlν̄l , l = e, µ, τ (3% for each channel)

• χ̃0
1 χ̃

0
2 → W−W+ (2%)

In the LM2′(LM6′) only χ̃0
1 χ̃

0
1 annihilation contributes to the relic density of the dark matter

as follows

• χ̃0
1 χ̃

0
1 → τ−τ+ (75% (38%))

• χ̃0
1 χ̃

0
1 → µ−µ+ (8% (26%))

• χ̃0
1 χ̃

0
1 → e−e+ (8% (26%))

• χ̃0
1 χ̃

0
1 → bb̄ (3% (%1))

• χ̃0
1 χ̃

0
1 → ντ ν̄τ (1% (3%))

• χ̃0
1 χ̃

0
1 → νlν̄l , l = e, µ (0% (3%))

• χ̃0
1 χ̃

0
1 → dd̄/ss̄ (1% (0%))
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Contributions from the χ̃0
2 χ̃0

2 or χ̃0
1 χ̃0

2 annihilations for the χ̃0
1 scenario are due to the fact

that χ̃0
1 and χ̃0

2 are almost degenerate in mass and since the two-body decay channel limit

is used in Micromegas, χ̃0
2 acts very similar to χ̃0

1. There is no sizable contributions from χ̃0
2

in the other two scenario since χ̃0
2 is much heavier. The bino, wino, higgsino and singlino

compositions of the neutralinos for the scenarios LM1′,LM2′ and LM6′ are given in Table VI

in Appendix D. The LSP χ̃0
1 is mainly bino for LM1′ but mostly singlino (S̃) for LM2′ and

LM6′ (94.2% and 93.6%, respectively, for the two scenarios). The situation is reversed for

the next-to-LSP, χ̃0
2.

B. The LHC Signals

After discussing the chosen scenarios and the details of the relic density calculation of

the dark matter, we proceed to discuss the signals at LHC from scalar neutrino production

processes. To determine and classify all possible signals for the scenarios LM1′,LM2′ and

LM6′, we need to look at the decay topology of the scalar neutrinos.

Since we include MSSM scenarios LM1, LM2 and LM6 for comparison purposes, we first

outline the main decay modes governing the decay channels. The left-handed scalar neutrinos

ν̃ℓL decay to νℓ χ̃
0
1 with about 100% branching ratio for the LM1 and LM6, since all the other

neutralinos are heavier than the scalar neutrinos. The picture is a bit more complicated for

the LM2 where ν̃ℓL, ℓ = e, µ decay to νℓ χ̃
0
1 (71%), ℓ χ̃±

1 (20%) and νℓ χ̃
0
2 (8.8%). For the ν̃τL ,

the branching decay ratios are W τ̃1 (61.5%), ντ χ̃
0
1 (34.2%), τ χ̃±

1 (3%) and ντ χ̃
0
2 (1.3%).

Further in the decay chain χ̃0
2 decays mainly to τ τ̃1/τ̄ τ̃

∗
1 (48% for each channel), and the

chargino χ̃±
1 toντ τ̃1 (with 95.4% branching ratio) and W χ̃0

1 (4.6% branching ratio).

In the secluded U(1)′ model, the decay modes of the scalar neutrinos with more than 1%

branching ratio are, for the scenarios LM1′/LM2′/LM6′

• ν̃ℓL(ν̃ℓR) → νℓ χ̃
0
1 , 8.6% (0%) / 91.7% (84.8%) / 93.2% (65.7%)

• ν̃ℓL(ν̃ℓR) → νℓ χ̃
0
2 , 91.4% (90.6%) / 8.3% (0%) / 6.8% (0%)

• ν̃ℓL(ν̃ℓR) → νℓ χ̃
0
4 , 0% (8.8%) / 0% (14.8%) / 0% (34.1%)

There will be further decays of χ̃0
2 and χ̃0

4 in the chain. It is better to consider χ̃0
4 first.

Again in the same notation (LM1′/LM2′/LM6′) it decays as
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• χ̃0
4 → τ τ̃ ∗1 (τ τ̃ ∗2 ) , 6.5% (4.9%) / 9.1% (3.7%) / 8.6% (3.9%)

• χ̃0
4 → ℓ ℓ̃∗L (ℓ ℓ̃∗R) , 6.0% (5.3%) / 5.2% (5.0%) / 4.0% (8.3%)

• χ̃0
4 → νℓ ν̃

∗
ℓL
(ντ ν̃

∗
τL
) , 5.2% (5.2%) / 5.4% (5.9%) / 4.2% (4.3%)

where ℓ = e, µ and the conjugated decay modes are not listed. Then the decay modes of the

scalar leptons for ℓ = e, µ∗ are

• ℓ̃L → ℓ χ̃0
1 (ℓ χ̃

0
2) , 6.7% (93.3%) / 90.1% (9.9%) / 92.6% (7.4%)

• ℓ̃R → ℓ χ̃0
1 (ℓ χ̃

0
2) , 20% (80%) / 71.6% (28.4%) / 89.7% (10.3%)

As can be seen from the above decay patterns, each decay ends up with either an LSP

χ̃0
1 or next-to-LSP particle χ̃0

2. As mentioned earlier, χ̃0
2 cannot decay into two-body but

instead must undergo the one of the three-body decays given in Fig. 2. The relative ratios

are† given in the (LM1′/LM2′/LM6′) order as

• χ̃0
2 → νℓ ν̄ℓ (ντ ν̄τ ) χ̃

0
1 , 24% (24%) / 4.5% (6.3%) / 1.8% (1.8%)

• χ̃0
2 → ℓ+ ℓ− (τ+ τ−) χ̃0

1 , 14% (0%) / 10.8% (63%) / 28.7% (37%)

In the light of these decay patterns, there are mainly three types of signal: (1) 0ℓ+ 6ET ,

(2) 2ℓ+ 6ET and (3) 4ℓ+ 6ET . It is in fact also possible to produce signals with six or eight

leptons but the probability is very suppressed thus we ignore such signals. Therefore, in the

rest of this section we discuss these three signals at LHC. Predictions from MSSM will be

included as well. In MSSM there is no the 4ℓ+ 6ET type of signal in MSSM for the LM1 and

LM2 and LM2 scenarios. The 2ℓ+ 6ET signal is possible through chargino χ̃±
1 decay.

The usual concern is the possible background for the signals from the SM. For the 0ℓ+ 6ET

mode, the background will come from the Drell-Yan (D-Y), pp → νℓν̄ℓ, and pp → ZZ where

each of Z decays invisibly. Since the D-Y has a huge cross section, some cuts need to be

implemented. In the 2ℓ+ 6ET case, in addition to the D-Y and ZZ production (where

one of the Z decays leptonicaly), there is W+W− production. In principle there could be

contributions from the tt̄ with jet veto, but we ignore such possibility since the b-jets are

going to be quite energetic and can be tagged. The process pp → ZZ → 4ℓ can be the

∗ We discard ℓ = τ case since such a pattern ends up with a τ lepton in the final state. We concentrate

only on the first two generations of the charged leptons.
† Note that the τ−τ− channel is not kinematically open for the LM1′ scenario.
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background for the 4ℓ+ 6ET decay mode. However, a simple 6ET cut would eliminate events

from the SM process pp → ZZ → 4ℓ. We confirmed this with our event simulation.

At the first stage, the following basic cuts are applied to suppress the SM background.

It is required that, whenever relevant,

• Each isolated charged lepton (electron or muon) has a transverse momentum pT (ℓ) >

15GeV.

• The missing transverse energy satisfies 6ET > 100GeV.

• The leptons are constrained to be in the central barrel region of the detector by forcing

the pseudorapidity |η| < 2.

• The cone size between two charged lepton ∆Rℓℓ is at least 0.4. Here ∆Rℓℓ =

(∆η2 +∆φ2)
1/2 defined in the pseudorapidity-azimuthal angle plane.

As mention above, a missing transverse energy cut 6ET > 100GeV practically gets rid of

the SM background for the 4ℓ+ 6ET signal, which is now considered background free. For

the 4ℓ+ 6ET signal, in order to get enough statistics after the cuts (as much less number of

events pass the cuts as compared of the other two signals), we relaxed the some of the above

cuts. We use pT (ℓ) > 5GeV and ∆Rℓℓ > 0.2 for the analysis of this signal.

With the above cuts, the SM background is still larger than the signals 0ℓ+ 6ET and

2ℓ+ 6ET . The D-Y and W+W− dominate the ZZ cross section and they are all well above

the signal for 6ET < 500GeV. Such background domination happens in various other dis-

tributions in most part of the region. There is no point to present these figures. Instead

we need to find a better way to handle the background. After examining the results at

the first stage, we decided to use Esum
T , also known as the effective mass meff in literature.

This variable could be helpful in reducing the backgrounds while keeping most of the signal

events especially if we use a suitable value for the cuts. Esum
T is defined as the scalar sum of

the lepton transverse momenta and the missing transverse energy

Esum
T ≡ meff =

∑

ℓ

|pT (ℓ)| + 6ET . (19)

where the missing transverse energy 6ET is the sum of the total x and y components of the

momenta in quadratures. Since it has been observed that the signal processes lead to mostly

high meff (or Esum
T ) distributions, a cut on meff would substantially reduce the background.
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Thus, as a second stage for the cuts meff = Esum
T > 750GeV has been employed (but only

for the 0ℓ+ 6ET and 2ℓ+ 6ET cases.)

Global inclusive variables like 6ET and Esum
T are used to estimate the mass scalar of

the parent particles produced in the hard scattering (thus estimating the scale of the new

physics). In a recent paper by Konar et al. [23], a new global inclusive variable, called

ŝ
1/2
min, is proposed as an alternative. For SUSY models with R parity conservation, the decay

chain always ends with an LSP, which is left undetected at the collider. This makes mass

reconstruction procedure almost impossible, especially if there are more than one LSP (there

are at least have two LSPs in the final state). Without going into extensive details of the

signal, there is an easy way to approach guessing the scale of the new physics through the

parameter ŝ
1/2
min. It is defined as [23]

ŝ
1/2
min =

√
E2 − P 2

z +
√

6E 2
T +M2

invisible (20)

where E is the total calorimeter energy, ~P is the total visible momentum and Minvisible is the

total mass of all invisible particles produced in each event, which is the only unknown. All

the others variables can be measured at the detector. Hence ŝ
1/2
min(Minvisible) is the variable

to consider. The peak of the ŝ
1/2
min distribution is associated with the mass threshold of the

parent particles originated from the hard scattering. Of course, an estimation needs to be

done for the total invisible mass Minvisible. In most of the cases the ŝ
1/2
min(0) gives a pretty

good idea about the masses of the parent particles. It is shown that the method works

better for signals with fewer invisible particles and/or more visible particles. It also works

better with higher SUSY scales where Initial State Radiations (ISR) are less significant. We

include some figures for ŝ1/2min(0) in the 0ℓ+ 6ET as well as 4ℓ+ 6ET signal.

The events are generated at the partonic level with CalcHEP [18] and passed to Pythia [24]

with the use of CalcHEP-Pythia interface for hadronization and cuts. We simulated 4× 106

events for the 0ℓ+ 6ET , 2ℓ+ 6ET and 4ℓ+ 6ET signals. Since the relative number of events

in each signal turns out to be proportional to the relevant branching ratio combination,

the number of events can be simply weighed by w = σ(pp → ν̃ℓν̃
∗
ℓ )× L/Ntot where L is the

integrated luminosity and Ntot is the total number of event generated. We set L = 100 fb−1,

the ultimate goal that is expected at the LHC. Even though the current reach of LHC center

of mass energy is 7TeV, we use 14TeV in the numerical study, which maximizes the reach

in the parameter space.
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FIG. 3. The 6ET , Esum
T , and ŝ

1/2
min(0) distributions of the 0ℓ+ 6ET signal at 14TeV with integrated

luminosity L = 100 fb−1, for the three scenarios in both MSSM and the secluded U(1)′ model.

1. The Missing Energy Signal: 0ℓ+ 6ET

The distributions of 6ET , Esum
T , and ŝ

1/2
min(0) are depicted in Fig. 3 for the three scenarios

LM1′,LM2′ and LM6′ as well as the three benchmarks for the MSSM. In general the LM6′

scenario has the largest event pass the cuts, with similar results for the LM2′, while the

LM1′ has the lowest. In fact about 80% of the events pass the cuts in LM2′ and LM6′
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but only 60% do so for the LM1′. In all three scenarios, 100% of the events pass the 6ET

cut so that we are only losing 20% to 40% of them by employing the meff cut. This is

because the direct LSP decay modes of the scalar neutrinos (both the left handed and right

handed one) are either not available or suppressed for the LM1′, so that the 0ℓ+ 6ET signal

would emerge from indirect decay channels through χ̃0
2 or χ̃0

4 decays, with smaller branching

ratio combinations. This can be understood from details provided earlier. The distributions

for the secluded U(1)′ model dominate the ones for the MSSM since basically the total

production cross section in the secluded U(1)′ model is much bigger.

The background distributions for the D-Y and ZZ processes are also included in the 6ET

and Esum
T graphs. The rate of success for the D-Y events passing both of the cuts are only

about eight in 106. To give an idea how effective the meff cut is, the success rate of events

was about a bit more than 3% before implementing the meff cut. The situation is even more

drastic for the ZZ case. While the almost 100% of them passed the 6ET cut, this number

goes down to 0.3% with the meff cut.

We included the ŝ
1/2
min(0) graphs in the second row of Fig. 3 to estimate the mass scale of

the parent particles, i.e., the left handed and right handed scalar neutrinos. The graph on

the bottom right panel is nothing but the zoom-in version of the one left handed side for

the secluded U(1)′ model. We cannot say anything about the MSSM case since the sum of

the parent particle masses are varying in the 300GeV to 600GeV range, so that the ŝ
1/2
min(0)

peak is washed out due to the meff cut at 750GeV. Indeed, for the secluded model we should

expect two different peaks, one for the production of the left handed scalar neutrinos and

the other one for the right handed ones. The peak for the left-handed sneutrinos which are

much lighter are also washed out. We will see the picture clearer for the 4ℓ+ 6ET signal.

In the right panel, we also indicated the positions of the peaks, which are correlated to

the masses of the right handed scalar neutrinos. Of course, in reality to determine the peak

position by fitting the data, a better job is needed . We just want to prove a point here.

The peak position is related to the mass of ν̃ℓR (since we produce them in pair)

mν̃ℓR
≈ 1

2

(
ŝ
1/2
min(0)

)
peak

. (21)

From the peak positions in the graph we can estimate the average right handed sneutrino

masses mν̃ℓR
∼ (530, 565, 600)GeV for the (LM1′,LM2′,LM6′), respectively, while the real

average values should read (460, 563, 654)GeV from Table IV. One source of error is not
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knowing the mass of the LSP (though we find out that this is not significant here since the

LSP mass is rather light and around 100GeV) and the other is lack of a real fitting to the

data to pin down the location of the peaks. The estimated values are still fairly good. We

should also note that the method works better for signals with more visible particles.
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FIG. 4. The 6ET and Esum
T distributions of the 2ℓ+ 6ET signal at 14TeV with integrated luminosity

L = 100 fb−1 for all three scenarios in the MSSM and secluded U(1)′ model.

2. The Dilepton Signal: 2ℓ+ 6ET

We analyze the 2ℓ+ 6ET signal in a similar fashion to the 0ℓ+ 6ET one in the previous

subsection. The results are shown in Fig. 4 and Fig. 5. The main background is from WW

and ZZ. The D-Y does not contribute due to the transverse missing energy cut. After

all the cuts, about 0.2% and 0.4% of the events pass for the WW and ZZ backgrounds,

respectively. The rates were about 7% and 19%, respectively, before the meff cut. The

situation for the (LM1′,LM2′,LM6′) scenarios after all the cuts signal is (0.9%, 50%, 50%)

survival, but 100% in each cases before the meff cut. For the MSSM, only the LM2 gives

2ℓ+ 6ET signal since, for the other two scenarios, the ν̃ℓLχ̃
0
1 are the only final staes. The

number of events past the cuts for the LM2 decreases to 15% from 100% after inclusion of

the meff cut.
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FIG. 5. The pT (ℓ),Mℓ+ℓ− ,∆Rℓ+ℓ− and ∆ηℓ+ℓ− distributions of the 2ℓ+ 6ET signal at 14TeV with

integrated luminosity L = 100 fb−1 for all three scenarios in both MSSM and secluded U(1)′ model.

Here, ℓ1 represents the hardest lepton.

We depicted the pT spectra of both leptons ordered with respect to their hardness in

Fig. 5. As expected the MSSM leptons are softer, and the distribution for ones from the

LM2′ and LM6′ are very similar. The LM1′ scenario is somewhere in between. In the

invariant mass of the leptons, the LM2′ and LM6′ curves peak at around 60GeV and from

the mass spectra in Table IV, the mass difference mχ̃0
2
−mχ̃0

1
is between 75GeV to 80GeV.
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The 2ℓ+ 6ET signal mainly goes through χ̃0
2. For the LM1′ the mass difference is 3GeV and

not visible. The ZZ peaks at around Z boson mass as expected.

In Fig. 5, we also include the ∆Rℓ+ℓ− and ∆ηℓ+ℓ− distributions. It is seen that for both the

MSSM and the secluded U(1)′ model more leptons emerge with smaller separation, unlike

the WW case the peak is at the point where the others have minimum. The background

can be reduced further by adjusting the Meff cut value. The leptons peak when they have

the same pseudorapidity.

3. The Tetralepton Signal: 4ℓ+ 6ET

As we mentioned earlier, the 4ℓ+ 6ET signal is practically background-free. The ZZ

background disappears after the 6ET cut. Taking into account having relatively few 4ℓ+ 6ET

events, we relaxed the pT and ∆R cut values. It is also true that MSSM scenarios LM1,

LM2 and LM6 do not yield a 4ℓ+ 6ET type of signal. For the LM1′, only 2% of the events

pass the cuts and among them 1% of these are 2e2µ, while the rest of the events are shared

between 4e and 4µ. The situation is different for the LM2′ and LM6′. The events which

pass the cuts are around 68% for both cases and again half of them are the 2e2µ type and

the rest is shared equally between 4e and 4µ. In fact, there are more 4ℓ+ 6ET events in the

LM1′ scenario as compared to the other two scenarios (about 7.5% of Ntot = 4 × 106 for

LM1′ but only 0.1% and 0.4% for LM2′ and LM6′, respectively). The reason is that the

signal goes through χ̃0
2 which is the dominant mode for the LM1′ but not for the LM2′ or

LM6′. However, the cuts reduce the LM1′ events very significantly. Again the reason is the

fact that χ̃0
2 and χ̃0

1 are almost degenerate for LM1′, which leads to very soft leptons.

In Fig. 6, 6ET , Esum
T , and ŝ

1/2
min(0) distributions of the 4ℓ+ 6ET signal at 14TeV with

integrated luminosity L = 100 fb−1 are shown for the three scenarios in the secluded U(1)′

model. As promised, we include a ŝ
1/2
min(0) graph with the peak correlated with the ν̃ℓL ν̃

∗
ℓL

production as well as the ν̃ℓR ν̃
∗
ℓR

production (no meff cut). We can roughly tell the positions

of the peak without doing a serious fitting. For the LM1′, the first peak is around 250GeV

and the second one is around 950GeV. For the LM2′, they are at (470GeV, 1070GeV) for

the first and the second peaks, respectively. For the LM6′, the peak positions are close to

the LM2′ case, i.e., they are at (490GeV, 1110GeV). Then we can estimate the masses for

LM1′/LM2′/LM6′
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FIG. 6. The 6ET , Esum
T and ŝ

1/2
min(0) distributions of the tetralepton (4ℓ+ 6ET ) signal at 14TeV with

integrated luminosity L = 100 fb−1, for all three scenarios in the secluded U(1)′ model.

•
(
mν̃ℓL

, mν̃ℓR

)
est.

≈ (125GeV, 475GeV) / (235GeV, 535GeV) / (245GeV, 555GeV)

while the theoretical average values obtained, including three flavors

•
(
mν̃ℓL

, mν̃ℓR

)
theo.

≈ (132GeV, 460GeV) / (230GeV, 563GeV) / (258GeV, 654GeV)

We suspect that the deviations are mainly responsible for not determining the peak position

after fitting the data to a curve. Also, simple averaging is not quite right. One should
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FIG. 7. The pT distribution of the 4e+ 6ET and 2e2µ+ 6ET signals at 14TeV with integrated

luminosity L = 100 fb−1 for all three scenarios in the secluded U(1)′ model. The 4µ+ 6ET case is

similar. Also the hardness of the leptons are in decreasing order.

include a relative weight based on the relative contributions from different flavor channels.

The pT distributions of the 4e+ 6ET and 2e2µ+ 6ET for LM6′ are given in Fig. 7. The 4µ

case is very similar to 4e. The leptons seem slightly more energetic for the 2e2µ case than

in the other cases. LM1′ and LM2′ have less energetic leptons and we do not include them

here. Fig. 8 displays two-lepton invariant mass distributions for various possibilities. As

expected only Opposite Sign Same Flavor (OSSF) distributions have peaks at the expected

locations since both leptons originate from the same parent unlike the other cases, Same

Sign Same Flavor (SSSF), Same Sign Opposite Flavor (SSOF) or Opposite Sign Opposite

Flavor (OSOF). The next figure, Fig. 9, has four-lepton invariant mass distributions for 4e

and 2e2µ cases. The last two figures, Fig. 10 and Fig. 11, are devoted to the ∆RSB(OB)

and ∆ηSB(OB) distributions of the 4ℓ+ 6ET and 2e2µ+ 6ET signals. The subscript ‘SB(OB)’

stands for the Same Branch (Opposite Branch) and indicates where the leptons are coming

from. We see that the distributions are very similar for 4ℓ and 2e2µ. If we compare ∆RSB

and ∆ROB, the former peaks at small ∆R while the latter peaks larger distances. For the

pseudorapidity, even though the shape of the distributions changes, they both peak when
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FIG. 8. Various invariant mass distributions of the 4ℓ+ 6ET signal at 14TeV with integrated

luminosity L = 100 fb−1 for all three scenarios in the secluded U(1)′ model.

the leptons have the same pseudorapidity.

IV. CONCLUSION

We presented a thorough and complete analysis of the scalar neutrino production and

decays in a U(1)′ model endowed with a secluded sector. This model has several attractive
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FIG. 9. Four lepton invariant mass distributions of 4ℓ+ 6ET , ℓ = e, µ and 2e2µ+ 6ET signals at

14TeV with integrated luminosity L = 100 fb−1 for all three scenarios in the secluded U(1)′ model.

features as compared to the MSSM. First, it extends the gauge symmetry to include an ex-

tra neutral gauge boson, allowing for the presence of right handed neutrinos. Neutrinos are

Dirac particles in this model, and masses are provided through an effective neutrino Yukawa

coupling which is naturally suppressed by the U(1)′ invariance. This model generates the µ

term dynamically, through the VEV of a singlet scalar field. The secluded sector consists of

three chiral superfields in addition to Ŝ, and generates correct Z ′/Z mass hierarchy without

affecting the µ parameter. Previous studies have provided extensive phenomenological anal-

yses of this model, and notably, have provided a novel way to explain the excess positron

flux in cosmic rays.

The model has three right-handed scalar neutrinos, in addition to the three left-handed

states from the SM/MSSM spectrum. Cross sections are considerably enhanced compared to

the ones estimated in MSSM, even though for most of the parameter space studied, the signal

is dominated by production of left handed sneutrinos, predicted to be lighter. To perform a

through analysis, we concentrate on three MSSM benchmark parameter points, denoted by

LM1, LM2 and LM6 and define correspondingly three U(1)′ parameter points, denoted by

LM1′, LM2′, LM6′, specified in such that the common parameters with MSSM are identical.

At this point, it is convenient to give a couple of remarks on the scenarios adopted here. As
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FIG. 10. The ∆Rℓ+ℓ− and ∆ηℓ+ℓ− distributions of the 4ℓ+ 6ET signal at 14TeV with integrated

luminosity L = 100 fb−1 for all three scenarios in the secluded U(1)′ model. Here and in what

follows, ‘SB’ is short-hand for ‘Same Branch’ and ‘OB’ for ’Opposite Branch’.

we mentioned earlier, a U(1)′ model with one singlet and right handed sneutrinos [8] can

explain the excess positron flux observed by various satellite experiments. However, this

requires a rather special mass spectrum. Indeed, it turns out that the LSP must one of the

right handed scalar neutrinos with a mass around 100GeV, and the next-to-LSP must also

be a right handed scalar neutrino weighing at the TeV scale. All the other SUSY particles
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FIG. 11. The ∆Rℓ+ℓ− and ∆ηℓ+ℓ− distributions of the 2e2µ+ 6ET signal at 14TeV with integrated

luminosity L = 100 fb−1 for all three scenarios in the secluded U(1)′ model.

have to be heavier. One might ask why we did not consider such a scenario here. There

are a couple of reasons. First of all, excess positron flux observation doesn’t need to have

an explanation coming from particle physics, only. Secondly, the signal for such a scenario

would be mainly just missing transverse energy since all the SUSY particles other than the

LSP are above the TeV scale so that the cross section for left-handed sneutrino production

would be much smaller. Practically, missing energy signal with no visible particle is not
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useful experimentally. Finally, in this work, we focused on only low-scale SUSY scenarios

which would be discovered with the early LHC data at 14 TeV.

After producing and decaying the sneutrinos, we identify three final-state signals: 0ℓ+ 6ET ,

2ℓ+ 6ET and 4ℓ+ 6ET and proceed to analyze them at LHC, for 14TeV center-of-mass energy

and with integrated luminosity L = 100 fb−1. We compare these signals with the 0ℓ+ 6ET

and 2ℓ+ 6ET signals in MSSM, and discuss the SM background (coming from Drell Yan,

ZZ and WW production) for each. While 0ℓ+ 6ET is the strongest, it has to compete with

MSSM and suffers from considerable background suppression, while the 4ℓ+ 6ET signal has

no MSSM equivalent, is practically background free, but has few events.

We analyze the signals and suggest cuts to distinguish it from the background. In partic-

ular Esum
T ≡ meff , the scalar sum of the lepton transverse momenta and the missing energy

is found to be high for the signal, thus a cut on meff will likely reduce the background.

Additionally a new parameter ŝ
1/2
min is found to be useful for estimating the mass of parent

particles in hard scattering. (The peak in ŝ
1/2
min gives the mass threshold of left and right

handed sneutrinos in the decay process). Using these considerations, we can estimate the

production cross section, the products of decay and estimate the sneutrino masses. The

MSSM production differs both in the number of events expected, cross section, Esum
T , ŝ1/2min,

in the 0ℓ+ 6ET case; and additionally in the pT spectra of leptons (for 2ℓ+ 6ET case). The

4ℓ+ 6ET case has no MSSM equivalent and little, if any, background, so the U(1)′ is clear

there; however the number of events, especially after passing detector cuts, is small.

In conclusion, our extensive analysis shows significant enhancement of U(1)′ signal over

the MSSM signal in sneutrino production and decays, and indicates how the two models

can be distinguished from each other and the background. This provides a distinct collider

signal for the secluded U(1)′ model at the LHC.
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Appendix A: The Lagrangian

In this Appendix, we present the complete Lagrangian of the U(1)′ model and highlight

the differences between this and the MSSM Lagrangian. Although parts of this formulation

have appeared elsewhere [7, 15, 25], we include the complete model information for con-

sistency, and to help future studies. The total Lagrangian incorporates kinetic terms and

various interaction terms among the fields. We discuss below the distinct pieces separately.

The kinetic terms of the Lagrangian are given by

LKinetic
U(1)′ = LKinetic

MSSM − 1

4
Z ′µνZ ′

µν + (DµS)
†(DµS) + Z̃ ′†iσµ∂µZ̃

′ + S̃†iσµDµS̃

+ (DµSj)
†(DµSj) + S̃†

j iσ
µDµS̃j + (DµÑ)†(DµÑ) (A1)

where j = 1, 2, 3. The interactions of the gauge fields with the rest (fermions, sfermions,

gauginos, Higgs and Higgsino fields) are contained in the piece

Lgauge
U(1)′ = Lgauge

MSSM

(
gY

YX

2
Bµ → gY

YX

2
Bµ + gY ′Q′

XZ
′
µ

)
, (A2)

where X runs over the fields charged under U(1)′. In (A1), Z ′µν is the field strength tensor

of Z ′
µ, and DµSj = (∂µ + igY ′Q′

Sj
Z ′

µ)Sj for j = 1, 2, 3.

The part of the U(1)′ Lagrangian spanned by the F–terms is given by

LF−term
U(1)′ = −

∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

= LF−term
MSSM (µ → hsS)− h2

s|Hu ·Hd|2

−
(
huQ̃

∗Ũ∗ + h∗
sS

∗H∗
d

) hν

MR

S1L̃Ñ

− hν

MR

S∗
1L̃

∗Ñ∗
(
huQ̃Ũ + hsSHd +

hν

MR

S1L̃Ñ

)

−
(
heH

∗
dẼ

∗
) hν

MR
S1HuÑ

− hν

MR
S∗
1H

∗
uÑ

∗
(
heHdẼ +

hν

MR
S1HuÑ

)

− h2
ν

M2
R

S2
1 |L̃ ·Hu|2
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− h2
ν

M2
R

|L̃ ·Hu|2Ñ2 − h̄2
sS

2
2S

2
3

− hν

MR

L̃∗ ·H∗
uÑ

∗h̄sS2S3 − h̄sS
∗
2S

∗
3

hν

MR

L̃ ·HuÑ

− h̄2
sS

2
1S

2
3 − h̄2

sS
2
1S

2
2 (A3)

where φi is the scalar component of the i–the chiral superfield in the superpotential.

The D–term contributions to the Lagrangian are given by

LD−term
U(1)′ = −1

2

∑

a

DaDa = LD−term
MSSM

− g2Y ′

2

(
Q′

QQ̃
∗Q̃+Q′

U Ũ
∗Ũ +Q′

DD̃
∗D̃ +Q′

LL̃
∗L̃+Q′

EẼ
∗Ẽ

+ Q′
Hd
H∗

dHd +Q′
Hu

H∗
uHu +Q′

NÑ
∗Ñ +Q′

SS
∗S +Q′

S1
S∗
1S1

+ Q′
S2
S∗
2S2 +Q′

S3
S∗
3S3

)2
(A4)

The soft-breaking sector of the U(1)′ Lagrangian is

LSoft
U(1)′ = LSoft

MSSM(µ → 0)−m2
SS

∗S −m2
S1
S∗
1S1 −m2

S2
S∗
2S2 −m2

S3
S∗
3S3 −m2

N Ñ
∗Ñ

− [hsAsSHu ·Hd +
hν

MR

AνS1L̃ ·HuÑ + Ah̄s
h̄sS1S2S3 + h.c.]

+
1

2

(
MZ̃′Z̃ ′Z̃ ′ + h.c.

)

+ (m2
SS1

SS1 +m2
SS2

SS2 +m2
S1S2

S∗
1S2 + h.c.) (A5)

where MZ̃′ is U(1)′ gaugino mass defined below in (C2), and As is the extra trilinear soft

coupling.

Finally, the part of the Lagrangian describing the fermion-sfermion-ino interactions, as

well as the Higgs-Higgsino-Higgsino interactions, is given by

Lino−f−φ
U(1)′ = Lino−f−φ

MSSM (µ → 0) + i
√
2gY ′[Q′

QQ
†Z̃ ′Q̃ +Q′

Uu
†
RZ̃

′ũR

+ Q′
Dd

†
RZ̃

′d̃R +Q′
LL

†Z̃ ′L̃+Q′
Eℓ

†
RZ̃

′ℓ̃R +Q′
Hd
H̃†

dZ̃
′Hd

+ Q′
Hu

H̃†
uZ̃

′Hu +Q′
SS̃

†Z̃ ′S +Q′
Sj
S̃†
j Z̃

′Sj +Q′
Nν

†
RZ̃

′ν̃R + h.c.]

+ [hsSH̃u · H̃d + hsS̃Hu · H̃d + hsS̃H̃u ·Hd + h.c.]. (A6)

All parts of the the U(1)′ model Lagrangian listed above are described in the current

basis. Eventually, the fields must be transformed into the physical basis where each field

obtains a definite mass. The neutral gauginos and Higgsinos form the neutralino sector

whose physical states are expressed as in (C1), after diagonalizing the mass matrix (C2).
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Unlike the neutralino sector, the structure of the chargino sector is essentially the same as

in the MSSM with the replacement µ → hsvs/
√
2. A detailed analysis of the Higgs and

chargino sectors of the U(1)′ model has been given in [7].

In the gauge boson sector, spontaneous breakdown of the product group SU(2)L⊗U(1)Y ⊗
U(1)′ via the Higgs VEVs

〈Hu〉 =
1√
2


 0

vu


 , 〈Hd〉 =

1√
2


 vd

0


 , 〈S〉 = vs√

2
, 〈Si〉 =

vsi√
2

(A7)

generates one massless state (the photon) and two massive states (the Z, Z ′ bosons) via

orthonormal combinations of W 3
µ , B′

µ and Bµ gauge bosons. The W 1
µ and W 2

µ linearly

combine to give W±
µ , as the only charged vector bosons in the model. In contrast to the

MSSM, the Z boson is not a physical state by itself since it mixes with the Z ′ boson. This

mass mixing arises from the fact that the Higgs doublets Hu,d are charged under each factor

of SU(2)L ⊗ U(1)Y ⊗ U(1)′, and the associated mass-squared matrix is given by [25, 26]

M2
Z−Z′ =


M2

Z ∆2

∆2 M2
Z′


 , (A8)

in the
(
Zµ, Z

′
µ

)
basis. Its entries are

M2
Z =

1

4
G2

Z

(
v2u + v2d

)
,

M2
Z′ = g2Y ′

(
Q′ 2

Hu
v2u +Q′ 2

Hd
v2d +Q′ 2

S v2s +
3∑

i=1

Q′ 2
Si
v2si

)
,

∆2 =
1

2
GZgY ′

(
Q′

Hu
v2u −Q′

Hd
v2d
)
, (A9)

where G2
Z = g22+g2Y . The physical neutral vector bosons, Z1,2, are obtained by diagonalizing

M2
Z−Z′:


 Z1

Z2


 =


 cos θZ−Z′ sin θZ−Z′

− sin θZ−Z′ cos θZ−Z′




 Z

Z ′


 , (A10)

where

θZ−Z′ = −1

2
arctan

(
2∆2

M2
Z′ −M2

Z

)
, (A11)

is their mass mixing angle, and

M2
Z1(2)

=
1

2

[
M2

Z′ +M2
Z − (+)

√
(M2

Z′ −M2
Z)

2
+ 4∆4

]
, (A12)
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are their masses-squared . The collider searches at LEP and Tevatron plus various indirect

observations require Z–Z ′ mixing angle θZ−Z′ to be at most a few 10−3 with an unavoidable

model dependence coming from the Z ′ couplings [26–31]. This bound requires either MZ2 to

be large enough (well in the TeV range) or ∆2 to be sufficiently suppressed by the vacuum

configuration, that is, tan2 β ≡ v2u/v
2
d ∼ Q′

Hd
/Q′

Hu
. Which of these options is realized

depends on the U(1)′ charge assignments and the soft-breaking masses in the Higgs sector

( see [7] for a variant for reducing the Z–Z ′ mixing).

Appendix B: The Scalar Fermions

Given rather tight FCNC bounds, we neglect all the inter-generational mixings, and con-

sider only intra-generational left-right mixings, though these turn out to be totally negligible

for the sfermions in the first and second generations. The 2×2 scalar fermion mixing matrix

can be written as

M2
f̃a =




M2
f̃a
LL

M2
f̃a,b
LR

M2†
f̃a,b
LR

M2
f̃a
RR


 , a 6= b = u, d , (B1)

where

M2
f̃α
LL

= M̃2
f̃L

+
1

2
h2
fαv2ακ

2
s +

1

4

[
g2Y Yfα

L
− (+)

g2

2

]
(v2u − v2d)

+
1

2
g2Y ′Q′

fα
L
(Q′

Hu
v2u +Q′

Hd
v2d +Q′

Sv
2
sρs) (B2)

M2
f̃α
RR

= M̃2
f̃R

+
1

2
h2
fαv2ακ

2
s +

1

4

[
g2Y Yfα

R

]
(v2u − v2d)

+
1

2
g2Y ′Q′

fα
R
(Q′

Hu
v2u +Q′

Hd
v2d +Q′

Sv
2
sρs) (B3)

M2
f̃α,β
LR

= (M2
f̃α,β
RL

)∗ =
hfακs

2
√
2
(±2A∗

fαvα +
√
2hsvβvs + 2

√
2ξs) (B4)

where κs =
vs1√
2MR

and ξs =
h̄svs2vs3vu

2vs1
for sneutrinos and κs = 1 and ξs = 0 for the others.

Here M̃2
f̃L,R

are the soft mass-squared of the sfermions, vu,d,s,s1,s2,s3 are the VEVs of the Higgs

fields, Yfa(T3L) is the U(1)Y (SU(2)L) quantum number, Q′
fa is the U(1)′ charge, and Afa

are the trilinear couplings. The mixing matrix can be diagonalized, in general, by a unitary

matrix Γf such that Γfa† · M2
f̃a

· Γfa ≡ Diag(M2
f̃a
1

,M2
f̃a
2

).‡ The rotation matrix Γfa

can be

‡ We note that unlike mixings in other sectors, Γfa

is defined differently, that is, (f̃a
L,R)i = Γfa

ij f̃
a
j , where

f̃a
j represent the mass eigenstates.
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written for quarks and charged leptons in the 2× 2 {f̃a
L, f̃

a
R} basis as

Γfa

=


 cos θf̃a − sin θf̃a

sin θf̃a cos θf̃a


 , (B5)

where θf̃a =
1

2
arctan 2(−2M2

f̃a
LR

,M2
f̃a
RR

−M2
f̃a
LL

) and arctan 2(y, x) is defined as

arctan 2(y, x) =





φ sign(y), x > 0

π
2
sign(y), x = 0

(π − φ) sign(y), x < 0

(B6)

with y being non-zero, and φ taken in the first quadrant such that tanφ = |y/x|.

For the sfermions in the first and second generations, the left-right mixings are exceedingly

small as they are proportional to the corresponding fermion mass. Therefore, the sfermion

mass matrix (B2) is automatically diagonal. However, one has to remember that the sfermion

masses, for fixed values of mf̃2
L,R

, are different in the MSSM than in the U(1)′ models due

to the additional D-term contribution in the latter.

Appendix C: Gauge and Higgs Fermions

Although the U(1)′ model possesses no new charged Higgsinos and gauginos it possesses

five new fermion fields in the neutral sector: the U(1)′ gauge fermion Z̃ ′ and four singlinos

S̃, S̃1, S̃2, S̃3. In total, there are 9 neutralino states χ̃0
i (i = 1, . . . , 9) [7]:

χ̃0
i =

∑

a

N0
iaG̃a , (C1)

where the mixing matrix N0
ia connects the gauge-basis neutral fermion states G̃a ∈

{
B̃, W̃ 3,

H̃0
d , H̃

0
u, S̃, Z̃

′, S̃1, S̃2, S̃3

}
to the physical neutralinos χ̃0

i . The neutralino masses Mχ̃0
i

and

the mixing matrix N0
ia are determined via the diagonalization condition N0MN0 T = Diag{

Mχ̃0
1
, . . . , Mχ̃0

9

}
for the neutral fermion mass matrix
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MỸ 0 −MỸ H̃d
MỸ H̃u

0 MỸ Z̃′ 0 0 0

0 MW̃ MW̃ H̃d
−MW̃ H̃u

0 0 0 0 0

−MỸ H̃d
MW̃ H̃d

0 −µ −µHu
µ′
Hd

0 0 0

MỸ H̃u
−MW̃ H̃d

−µ 0 −µHd
µ′
Hu

0 0 0

0 0 −µHu
−µHd

0 µ′
S 0 0 0

MỸ Z̃′ 0 µ′
Hd

µ′
Hu

µ′
S MZ̃′ µ′

S1
µ′
S2

µ′
S3

0 0 0 0 0 µ′
S1

0 − h̄svs3√
2

− h̄svs2√
2

0 0 0 0 0 µ′
S2

− h̄svs3√
2

0 − h̄svs1√
2

0 0 0 0 0 µ′
S3

− h̄svs2√
2

− h̄svs1√
2

0




(C2)

where certain entries are generated by the soft-breaking sector while others follow from the

SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)′ breaking. The U(1)Y gaugino mass MỸ , the SU(2)L

gaugino mass MW̃ , and the U(1)′ gaugino mass

MZ̃′ =
MỸ ′

cos2 χ
− 2

tanχ

cosχ
MỸ Ỹ ′ +MỸ tan2 χ , (C3)

as well as the mixing mass parameter between U(1)Y and U(1)′ gauginos

MỸ Z̃′ =
MỸ Ỹ ′

cosχ
−MỸ tanχ , (C4)

all follow from the soft-breaking sector. Through the mixing of the gauge bosons, MZ̃′ and

MỸ Z̃′ exhibit an explicit dependence on the masses of the U(1)Y and U(1)′ gauginos, and

their mass mixing. MỸ Ỹ ′ is the soft-breaking mass that mixes the U(1)Y and U(1)′ gauginos.

In the numerical analysis, we set the mixing mass parameter MỸ Z̃′ = 0 since we neglect the

kinetic mixing (tanχ → 0) thus MỸ Ỹ ′ → 0. For convenience we also define RY ′ ≡ MỸ ′/MỸ .

The remaining entries in (C2) are generated by the soft-breaking masses in the Higgs

sector via the SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)′ breaking. Their explicit expressions are

given by

MỸ H̃d
= MZ sin θW cos β , MỸ H̃u

= MZ sin θW sin β ,

MW̃ H̃d
= MZ cos θW cos β , MW̃ H̃u

= MZ cos θW sin β ,

µHd
= hs

vd√
2
, µHu

= hs
vu√
2
, µ′

Hd
= gY ′Q′

Hd
vd,

µ′
Hu

= gY ′Q′
Hu

vu , µ
′
S = gY ′Q′

Svs , µ
′
Si

= gY ′Q′
Si
vsi , (C5)
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where gY ′ is the coupling constant of U(1)′. For numerical analysis we choose the standard

GUT value for it gY ′ =
√

5
3
g tan θW .

Appendix D: The Compositions of the Neutralinos

In this Appendix we give the Bino, Wino, Higgsino and Singlino compositions of the

physical neutralinos χ̃0
i , i = 1, 2, ..., 9 for the three scenarios LM1′,LM2′ and LM6′. They

are listed in Table VI.
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LM1′ χ̃0
1 χ̃0

2 χ̃0
3 χ̃0

4 χ̃0
5 χ̃0

6 χ̃0
7 χ̃0

8 χ̃0
9

B̃ -0.988 0.046 0.077 0.043 -0.056 0.095 -0.002 0.0 0.0

W̃ 3 0.037 -0.058 0.955 -0.122 0.086 -0.245 0.006 0.0 0.0

H̃0
d -0.126 0.051 -0.245 -0.321 0.692 -0.581 0.014 0.0 0.003

H̃0
u 0.031 -0.205 0.115 0.226 0.698 0.633 -0.033 0.002 -0.040

S̃ 0.057 0.910 0.086 0.362 0.140 0.0 0.048 -0.004 0.087

Z̃ ′ -0.010 -0.180 -0.010 0.212 0.022 -0.092 0.065 0.013 0.953

S̃1 -0.012 -0.148 -0.013 0.492 0.012 -0.276 -0.576 0.555 -0.133

S̃2 -0.006 -0.089 -0.006 0.155 0.008 -0.060 0.778 0.586 -0.120

S̃3 0.018 0.241 0.020 -0.621 -0.023 0.320 -0.232 0.589 0.223

LM2′

B̃ 0.048 -0.994 0.032 -0.009 -0.044 0.076 -0.005 0.0 0.0

W̃ 3 -0.054 0.0101 0.974 0.029 0.067 -0.204 0.014 0.0 0.0

H̃0
d 0.032 -0.088 -0.191 0.135 0.699 -0.666 0.043 0.0 0.001

H̃0
u -0.224 0.013 0.083 -0.062 0.692 0.673 -0.057 0.002 -0.033

S̃ 0.942 0.054 0.075 -0.238 0.152 0.130 0.028 -0.003 0.069

Z̃ ′ -0.119 -0.006 -0.007 -0.190 0.015 -0.019 0.047 0.011 0.972

S̃1 -0.091 -0.007 -0.010 -0.550 0.006 -0.143 -0.585 0.561 -0.100

S̃2 -0.069 -0.005 -0.006 -0.212 0.005 0.013 0.778 0.578 -0.094

S̃3 0.165 0.012 0.016 0.732 -0.013 0.123 -0.206 0.591 0.169

LM6′

B̃ -0.036 -0.995 -0.034 -0.003 0.035 -0.072 0.006 0.0 0.0

W̃ 3 0.041 0.015 -0.978 0.014 -0.054 0.194 -0.017 0.0 0.0

H̃0
d -0.015 -0.080 0.174 0.093 -0.700 0.677 -0.060 0.0 -0.002

H̃0
u 0.196 0.021 -0.089 -0.015 -0.695 -0.680 0.073 0.001 0.031

S̃ -0.936 0.040 -0.057 -0.278 -0.143 -0.114 -0.028 -0.004 -0.073

Z̃ ′ 0.138 -0.005 -0.006 -0.202 -0.012 0.007 -0.046 0.012 -0.967

S̃1 0.116 -0.007 0.010 -0.541 -0.006 0.120 0.593 0.560 0.109

S̃2 0.082 -0.004 0.005 -0.215 -0.004 -0.044 -0.772 0.581 0.101

S̃3 -0.203 0.011 -0.015 0.729 0.012 -0.070 0.197 0.589 -0.185

TABLE VI. The Bino, Wino, Higgsino and Singlino composition of the neutralinos χ̃0
i , i = 1, 2, ..., 9

for the scenarios LM1′,LM2′ and LM6′.
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