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Reactive Planning and Control of Planar
Spring–Mass Running on Rough Terrain

Ömür Arslan, Student Member, IEEE, and Uluç Saranlı, Member, IEEE

Abstract—An important motivation for work on legged robots
has always been their potential for high-performance locomotion
on rough terrain. Nevertheless, most existing control algorithms
for such robots either make rigid assumptions about their environ-
ments or rely on kinematic planning at low speeds. Moreover, the
traditional separation of planning from control often has negative
impact on the robustness of the system. In this paper, we intro-
duce a new method for dynamic, fully reactive footstep planning
for a planar spring–mass hopper, based on a careful character-
ization of the model dynamics and the design of an associated
deadbeat controller, used within a sequential composition frame-
work. This yields a purely reactive controller with a large domain
of attraction that requires no explicit replanning during execu-
tion. We show in simulation that plans constructed for a simplified
dynamic model can successfully control locomotion of a more com-
plete model across rough terrain. We also characterize the perfor-
mance of the planner over rough terrain and show that it is robust
against both model uncertainty and measurement noise without
replanning.

Index Terms—Footstep planning, reactive control, robust con-
trol, sequential composition, spring–mass running.

I. INTRODUCTION

L EGGED morphologies have always been considered nec-
essary to achieve robust and autonomous traversal of com-

plex, outdoor terrain. Despite effective behaviors and perfor-
mance demonstrated by tracked vehicles [46] and flexible mul-
tiwheeled platforms [43], behaviors realizable with such mor-
phologies remain limited due to restricted directions in which
forces can be applied to the robot body. Even leg/wheel hy-
brid designs and active suspension systems [22] suffer from
the requirement of sustained contact with the ground, making
traversal of broken terrain with holes or large obstacles infeasi-
ble. On the other hand, while legged designs, particularly those
capable of dynamic dexterity, do not suffer from such limita-
tions [32], [42], [45], their robust and maneuverable control on
complex terrain is still a largely unsolved problem. Traditional

Manuscript received March 29, 2011; revised September 4, 2011; accepted
November 23, 2011. Date of publication December 23, 2011; date of current
version June 1, 2012. This paper was recommended for publication by Associate
Editor T. Murphey and Editor J.-P. Laumond upon evaluation of the reviewers’
comments. This work was supported in part by the Scientific and Technological
Research Council of Turkey under Project 109E032.
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Fig. 1. Spring–mass hopper running over rough terrain.

approaches that separate planning and control perform well only
when slow, quasi-static movement patterns are adopted [28],
[29], [33], [39], with decreasing applicability in the presence of
model uncertainty and measurement noise resulting from dy-
namic behaviors. In contrast, reactive control methods, which
rely on control policies with large domains rather than local
stabilization of time trajectories, promise to address problems
with model inaccuracies but often lack any formal performance
and stability guarantees, make rigid assumptions about their
environment, and do not offer the scalability necessary for de-
ployment on more realistic settings [24].

In this paper, we propose a novel algorithm to address these
issues for the specific but widely applicable problem of purely
reactive footstep planning and control of a planar spring–mass
hopper running on rough terrain with large height variations,
such as the one illustrated in Fig. 1. Our focus on planar hop-
ping is founded on the success of the well-known spring-loaded
inverted pendulum (SLIP) model [44] both in accurately de-
scribing runners in nature [5] and in providing morphological
inspiration and a high-level control interface to many robot run-
ners [2], [20], [26], [37]. Consequently, our robust control and
planning framework for this model promises to be applicable
to a variety of robot morphologies ranging from monopedal
and bipedal runners to hexapedal robots. This paper exclusively
focuses on monopedal locomotion and its natural extension to
bipedal running [37], acknowledging that the kinematics of foot
placement for multilegged platforms, and the generalization of
deadbeat control strategies are further challenges that need to
be addressed for applicability to more complex morphologies.

II. RELATED WORK

A large body of work in the literature that is related to legged
traversal of rough terrain focuses on kinematic trajectory plan-
ning and control of slow moving platforms [4], [30], [32]. Re-
sulting simplifications in the control problem hence admit the
investigation of both structural properties of trajectories them-
selves such as their static margins of stability [29], [39] and
orthogonal issues such as energy efficiency, minimization of
body undulations [48], or high-level decision making [13], [34].
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Nevertheless, such quasi-static planning methods often necessi-
tate relatively inefficient, fully actuated, and slow robot designs
since they rely on the suppression of second-order dynamics
through either velocity limits or explicit cancellation.

In contrast, exploiting second-order dynamics to achieve in-
direct controllability without explicit actuation was shown to en-
able much more efficient and capable robot morphologies [37],
with behavioral capabilities far above those offered by quasi-
static platforms [11], [36], [42]. However, their complex dy-
namics make it difficult to design locomotion controllers with
any performance guarantees even on flat ground. Consequently,
existing work on the traversal of rough terrain with such dy-
namically dexterous platforms relies mostly on scenario-specific
heuristics or manual tuning, with only a few recent results on
formal inquiries on stability and performance [31], [47].

In this context, an important line of research focuses on dy-
namic walking with the compass-gait model, which was intro-
duced in [21] as the simplest model to capture the dynamics
of walking. Initial intuitive controllers for complex terrain [15]
were followed by more careful consideration of walking dynam-
ics [38], leading to optimal control methods for rough terrain
traversal [7], [27]. Recent results in this area recognize that tra-
jectory stability on rough terrain is difficult to define [8] but
exploit reduced dimension projections of walking dynamics to
coordinate frames to which desired trajectories are transversal
to achieve formally established stability properties [18], [31].
Similar ideas were also explored for more complex walking
machines [14], with recent progress of extensions to rough ter-
rain [47].

In contrast, running behaviors, generally modeled through
the SLIP model, pose additional challenges due to their more
complex dynamics, as well as the practical necessity to only
use intermittent, once-per-step control actions [41], [44]. Initial
attempts at rough terrain traversal with this morphology were
largely based on intuitive control and planning strategies [24],
[37], [49] that were sensitive to modeling uncertainty due to
their separation of planning and execution, relying on explicit
replanning when necessary. However, unlike quasi-static legged
platforms where such nonreactive planning strategies may suc-
ceed [10], [12], [19], [25], [28], [29], [35], reactivity, which is
achieved through control policies with large domains of attrac-
tion, is necessary for systems that must rely on their second-
order dynamics.

One of the most successful methods in integrating deliberate
planning with reactivity for dynamically dexterous robots is se-
quential composition, which was first introduced in the context
of juggling [6] and later applied to other platforms such as pla-
nar mobile robots with different actuation modalities [16], [17]
and the Minifactory [40]. Sequential composition characterizes
dynamic behaviors for a robotic system through their invariant
domains and goal sets in their state space, ensuring proper acti-
vation order through a prioritization combined with reactive de-
cision making. The “backchaining” principle that underlies this
method has also been applied to planar dynamic walking [47]
with recent work extending into 3-D through the use of dynamic
locomotion primitives [23].

Fig. 2. General structure and definitions for monopedal running behaviors.

An important necessity in using the sequential composition
framework is the availability of behavioral controllers whose
correctness and stability properties have been established. Even
though experimental characterization of control laws is always
possible [6], model-based controller design and analysis can
lead to abstractions that are more generally applicable [16].
Fortunately, recent results provide us with simple but accurate
analytic tools for the SLIP model [9], [41], supporting the design
of effective controllers as well as their analytic characterization
[1]. The reactive footstep controller that we introduce in this
paper for the SLIP model benefits from these results.

Our planning framework closely follows the sequential com-
position formalism but deviates in our representation of behav-
ioral primitives and associated invariant domain and feasible
goal sets. Among primary contributions of our paper are the
formulation of a general framework for discrete, per-step appli-
cation of sequential composition to a loosely constrained family
of hopping robots, as well as the application of resulting ideas
to both a simplified, analytically tractable running model and
the much more relevant SLIP model. Some of the ideas in this
paper were previously presented in [3], albeit with no analytic
derivation for the ball-hopper (BHop) model, applications to the
SLIP model or extensive simulations under noise.

III. FRAMEWORK AND PROBLEM STATEMENT

A. Running Behaviors on Rough Terrain

In this paper, we seek to construct a robust running con-
troller for a planar, monopedal runner traversing rough terrain.
In contrast with milder interpretations of roughness, we consider
rough terrain to mean that the ground has substantial irregulari-
ties with magnitudes comparable to the leg length as exemplified
by Fig. 1. Consequently, finding suitable footholds during lo-
comotion and sequencing of dynamic running strides for their
realization are the two central problems that are addressed in
this paper.

Generally, running trajectories for planar monopedal or
bipedal runners exhibit a common structure: As shown in Fig. 2,
they alternatingly go through flight and stance phases, separated
by touchdown and liftoff events as the foot comes into contact
with, and leaves the ground, respectively. A minimal state vector
for such systems can be defined in an inertial world frame W as

X := [ y, z, ẏ, ż ]T . (1)
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Fig. 3. Stride policy template for a single step using a ground segment of
length 2l as a foothold. Also shown are the policy domain D(Φ) and feasible
goal Gf (Φ) regions that are associated with the policy template Φi .

An apex event that is associated with the highest point of the
center of mass (COM) is also defined during flight with ż = 0.
In this and the next few sections, we establish a definitional
framework that captures common structural aspects of such
gaits, making as few assumptions as possible about the un-
derlying system beyond this structure in order to ensure general
applicability of our reactive planning framework.

In modeling rough terrain, we assume that a planar legged
platform is locomoting on a supporting surface described by
a piecewise constant elevation function h : R → R, possibly
with a number of “holes” where no foot placement is possible.
During flight, we assume that the robot COM follows a ballistic
trajectory, whereas during stance, its dynamics are determined
by its leg morphology and control, which we leave unspecified
for the time being.

A very useful abstraction for the analysis and control of such
systems is obtained through a Poincaré section at apex points,
defining a reduced dimension discrete state vector as

Z := [ y, z, ẏ ]T . (2)

We assume that gait control is achieved with per-step control
inputs uk selected at each apex, allowing independent but pos-
sibly limited control of all three degrees of freedom for the next
apex. Depending on the exact leg morphology, these controls
may be realized either discretely or throughout the entirety of
the following flight and stance phases. Nevertheless, they give
rise to a controlled apex return map

Zk+1 := fa(Zk ,uk ). (3)

Note that these definitions are applicable to most planar monope-
dal or bipedal morphologies, including complex, multijointed
leg designs.

B. Discrete Abstraction of Running Strides

In general, locomotory dynamics are symmetric with respect
to positional variables. Consequently, we focus on a sufficiently
expressive, discrete abstraction of a single running stride using
a ground segment of length 2l as a foothold, as shown in Fig. 3.

To this end, we define a stride policy template Φ as a triple

Φ = [RE , RV , U ] (4)

where RE ⊂ R and RV ⊂ R, respectively, determine the initial
apex energy and forward velocity ranges for which this policy
may be invoked, and U indicates the set of control inputs that
can be used by this policy. We, hence, define the domain that is
associated with a policy as

D(Φ) := {Z | ẏ ∈ RV (Φ);E ∈ RE (Φ)

∀u ∈ U(Φ). yf,td(Z,u) ∈ [−l, l])} (5)

representing all apex states with admissible velocity and energy
values from which the horizontal foot position at touchdown
yf,td falls within the ground segment for all choices of allowable
control inputs u ∈ U(Φ). This definition currently constrains
our framework to systems with only a single point of ground
contact.

Our abstraction of a controlled stride also incorporates a feasi-
ble goal region Gf (Φ) that consists of points reachable through
admissible controls from any point within the domain. More
formally, we define

Gf (Φ) := {Z′|∀Z ∈ D(Φ). ∃u ∈ U(Φ). Z′ = fa(Z,u)} .
(6)

The primary motivation behind requiring accessibility from all
domain points is to achieve runtime robustness against environ-
mental and sensory noise, which might perturb system trajecto-
ries away from the predicted outcome of a step. In such cases,
feasible control inputs should still exist to bring the system to
the desired goal point as long as the previous state is in the
domain of the policy. An illustration of both the domain and
feasible goal regions is given in Fig. 3.

These definitions can be used for any planar monopedal or
bipedal runner. The number of stride policy templates that are
appropriate for a specific system will depend on the shapes and
sizes of the domain and feasible goal regions corresponding to
different energy, velocity, and control input ranges. We define
the set of policy templates as

P := {Φi | i = 1, . . . , N } . (7)

Even though this is left as a design choice at the current level
of generality, we will give more specific guidelines and obser-
vations in the context of specific running models in subsequent
sections.

C. Situated and Instantiated Stride Policies

Deterministic footstep planning must inevitably take into ac-
count the layout of the ground surface, which we assume to be
known, or at least mapped sufficiently ahead of time. In order
to make use of the stride policy templates that are defined in
Section III-B, we discretize the elevation profile with a piece-
wise constant cover of ground segments of fixed length 2l, each
centered at a point pj ∈ R

2 . Assuming that there are M such
segments, we then “situate” all stride policy templates Φi on
each ground segment j such that their origin coincides with pj ,
resulting in a set of situated ground policies

PS =
{
Φpj

i | i = 1, . . . , N ; j = 1, . . . ,M
}

(8)

with the domain and goal regions shifted accordingly.
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Fig. 4. Spring-loaded inverted pendulum model.

Domain regions that are associated with policies in PS de-
termine which policies can be used for the stride following an
initial apex state. However, the corresponding feasible goal re-
gions Gf (Φpj

i ) still leave a continuum of possibilities for which
apex state to aim for. Planning for footsteps using a sequential
composition approach, our framework will “instantiate” these
situated policies with specific goal points from within the feasi-
ble set to yield the set of instantiated stride policies

PI :=
{
Φpj

i [Zg ] | Zg ∈ Gf (Φpj

i )
}

∀i, j. (9)

Note that our framework would also allow partitioning of
the ground cover in segments of differing lengths, using cor-
responding policy template definitions. Our experiments show
that a suitably chosen segment length 2l allowing at least two
segments in each contiguous ground region provides enough
flexibility to construct policies with sufficiently large domains
of attraction. In light of these observations, and to keep the dis-
cussion focused, we only use a fixed ground segment length for
the entire terrain in this paper.

In the following sections, we describe two models that are
compatible with this formulation: first, the SLIP model as a
realistic embodiment of running behaviors, and then, a “BHop”
model as a simplification of SLIP dynamics, admitting analytic
derivations for effective computation of its domain and feasible
goal sets.

IV. DYNAMIC RUNNING MODELS

A. Spring-Loaded Inverted Pendulum Model

1) System Dynamics: The SLIP model, which is illustrated
in Fig. 4, consists of a point mass m, connected to a massless
telescoping leg with compliance k. Running trajectories for the
SLIP model have the same structure as the model that is shown
in Fig. 2. However, the stance dynamics of this model

[
mρ̈

mρ2 θ̈

]
=

[
mρθ̇2 − k(ρ − ρ0) − mg cos θ

(−2mρρ̇θ̇ + mgρ sin θ)

]
(10)

are nonintegrable but, fortunately, admit accurate approximate
solutions that are previously presented in the literature [41].
Three discrete, once-per-step control inputs are available to this
model: the leg angle at touchdown θtd and two separate spring
constants, i.e., kc and kd , during the compression and decom-
pression portions of the stance phase.

2) Position-Aware Deadbeat Control of Spring-Loaded In-
verted Pendulum Running: The execution phase of the reactive

Fig. 5. Monotonic dependence of the liftoff angle θlo on the touchdown angle
θtd for the SLIP model.

planning framework that we propose in this paper relies on the
presence of a reliable controller for individual steps during run-
ning. This controller should be capable to find control inputs u
to correctly realize any desired apex state in the feasible goal set
for a policy Z∗ ∈ Gf (Φ) when invoked from initial states within
the associated domain Z0 ∈ D(Φ) such that Z∗ := fa(Z0 ,u).
However, all existing gait controllers for the SLIP model only
focus on two of the three apex states: forward velocity and hop-
ping height. However, footstep planning also requires control
over the horizontal position at apex. In this section, we present
such a “position-aware” single-step deadbeat controller for the
SLIP model that is based on the inversion of its apex return map.

Our controller design is based on the approximate analytic
return map for the SLIP model proposed in [41], which is defined
as

[ya , za , ẏa ]T = f̂a([y0
a , z0

a , ẏ0
a ]T , [θtd , kc , kd ]T ). (11)

Even though analytic inversion of these approximations is still
not possible, the monotonicity of components in this return map
admits the decomposition of the problem into two nested numer-
ical optimization problems. Given θtd and kc , the decompression
spring constant can be computed using the energy balance

kd = kc +
m(ẏ∗2 − ẏ2

a) + 2mg(z∗ − za)
(ρb − ρ0)2 (12)

based on the energy input at the bottom instant through an
approximate analytic computation of the maximal spring com-
pression ρb [44]. Given this relation, the angular momentum
of the SLIP system and the associated liftoff leg angle θlo are
monotonic functions of the touchdown angle, as illustrated by
Fig. 5. Consequently, given kc and kd , we can choose the touch-
down angle that minimizes the horizontal apex position through
the 1-D minimization

θ∗td = argmin (C1(θtd)) (13)

C1(θtd) := w1dlo(Z0 , [θtd , kc , kd ])2 + w2(ẏa − ẏ∗)2 (14)

of a cost function with the liftoff position error dlo(Z0 ,u) and
the apex velocity error weighted by w1 and w2 , respectively.

This “inner” optimization yields the best touchdown angle
solution for a given compression spring constant kc . Another
1-D, “outer” optimization can now be used to solve for kc as

k∗
c = argmin (C2(kc)) (15)

C2(kc) := w3 ‖ [ya , za ] − [y∗
a , z∗a ] ‖2 +w4(ẏa − ẏ∗)2 (16)
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Fig. 6. BHop model.

where the cost function C2 captures the apex position and hori-
zontal velocity errors with gains w3 and w4 , respectively. These
nested numerical optimizations yield the desired single-step
deadbeat controller that can simultaneously achieve all three
components of the desired apex state while still being computa-
tionally feasible.

B. Ball-Hopper Model

1) System Dynamics: Despite the availability of simple ana-
lytic approximations for the apex return map of the SLIP model,
they still do not admit analytic formulations of the domain and
feasible goal regions that are defined in Section III-B. Conse-
quently, we propose a new model that captures essential features
of the SLIP model, including analogous control inputs, while
being sufficiently simple to admit analytic representations of the
domain and feasible goal regions.

Our “BHop” model summarizes the stance dynamics of the
SLIP model with an instantaneous, controllable transition. As
shown in Fig. 6, the model consists of a point mass m, which
comes into contact with a “virtual” ground positioned at z = ρ0
during its descent phase. During flight, the system obeys simple
ballistic flight equations

[
ÿ

z̈

]
=

[
0
−g

]
. (17)

In contrast, the stance phase is summarized as the transition
function

Xlo = Fs(Xtd) := AXtd + B (18)

with

A :=

⎡

⎣
I2×2 02×2

02×2 R(θ)
[

1 0

0 −k

]
R(−θ)

⎤

⎦ (19)

=

⎡

⎢
⎢
⎢
⎣

1 0 0 0

0 1 0 0

0 0 1 − (1 + k) sin2 θ 0.5(1 + k) sin 2θ

0 0 0.5(1 + k) sin 2θ 1 − (1 + k) cos2 θ

⎤

⎥
⎥
⎥
⎦

(20)

B := [ Δy, 0, 0, 0 ]T . (21)

This transition map incorporates three controllable parameters
that are designed to closely match those available to the SLIP
model.

1) Touchdown angle θ: It corresponds to the SLIP touchdown
angle and primarily controls the direction of the liftoff
velocity.

2) Velocity gain k: It corresponds to the ratio kd/kc of de-
compression and compression spring constants in the SLIP
model and controls energy gain during stance by summa-
rizing radial SLIP dynamics.

3) Horizontal shift Δy: It corresponds to the average spring
stiffness for the SLIP model and controls the horizontal
displacement during stance.

Under these definitions, the apex return map for the BHop
model can be formulated as the composition of the descent,
stance, and ascent maps to yield

Fa := Fu ◦ Fs ◦ Fd (22)

where ballistic trajectories yield the descent and ascent maps as

Fd(Xa) :=
[
ya + ẏa

√
2za/g, 0, ẏa ,−

√
2gza

]T
(23)

Fu (Xlo) :=
[
ylo + ẏlo żlo/g, zlo + ż2

lo/(2g), ẏlo , 0
]T

. (24)

2) Deadbeat Control of Ball-Hopper Running: In this sec-
tion, we present a deadbeat controller for the BHop model sim-
ilar to the controller that is presented in Section IV-A2 for the
SLIP model.

The invertible ascent map, combined with the descent map,
reduces the inversion problem to only the stance map as

u = F−1
s (Fd(X0

a), F−1
u (X∗

a)). (25)

The horizontal shift control parameter is easily computed as

Δy = y∗
lo − y0

td . (26)

The remaining control parameters only effect the velocity states
through the last two rows of (18). Inspection of the fourth row
reveals

1 + k =
ż∗lo − ż0

td

0.5ẏ0
td sin(2θ) − ż0

td cos2 θ
. (27)

Subsequent substitution in (18) yields

− ẏ∗
lo − ẏ0

td

ż∗lo − ż0
td

= − sin θ

cos θ

(
−ẏ0

td sin θ + ż0
td cos θ

ẏ0
td sin θ − ż0

td cos θ

)
= tan θ

(28)
whose solution for θ, in conjunction with (27), yields the solu-
tion for k through the identity tan2 θ + 1 = 1/ cos2 θ as

k =
(ż0

td − ż∗lo)
2 + (ẏ0

td − ẏ∗
lo)

2

ż0
td(ż

0
td − ż∗lo) + ẏ0

td(ẏ
0
td − ẏ∗

lo)
− 1. (29)

These derivations yield a single-step deadbeat controller for the
BHop model capable of reaching any point in the feasible goal
set from any initial point within the domain.

V. REACTIVE PLANNING FRAMEWORK

A. Sequential Composition of Stride Policies

The discrete abstraction for running steps defined in
Section III-B, applied to either the BHop or the SLIP model, can
be used as the basic building block to construct a plan of footstep
choices to reach a given apex goal state through backchaining.
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However, such a simplistic, offline sequence of footsteps can
seldom be exactly realized in the presence of sensor or model
noise as well as other large disturbances. Fortunately, the se-
quential composition framework [6], [17] provides a way in
which backchaining can be combined with reactivity to elimi-
nate the need for replanning.

Our application of sequential composition for footstep plan-
ning differs from its earlier uses in two important aspects. First,
behavioral policies in our domain are discrete in nature, sum-
marizing the actions of a single step. Second, these single-step
policies are parametric in their choice of goal states, requiring
the planner to choose appropriate goal states from within the
feasible sets.

Given the set of situated policies PS as defined in (8), we
capture the feasibility of backchaining two policies with the “can
prepare” relation �c⊆ PS × PS , which is defined as follows.

Definition 1: A situated policy Φp i

i can prepare another pol-
icy Φpj

j , which is denoted by Φp i

i �c Φpj

j , iff the following
condition holds:

Gf (Φi) ∩ D(Φj ) �= ∅. (30)

This relation also forms the basis for instantiating stride poli-
cies with specific goal choices that lie within the intersection
of the domain and feasible goal regions. More formally, we
can obtain the set of instantiated stride policies through the
construction

PI = {Φp [Zg ]|∃Φ̄p̄ ∈ PS .Φp �c Φ̄p̄

Zg ∈ Gf (Φp) ∩ D(Φ̄p̄)} (31)

where Zg , for which there are infinitely many choices, can be
selected according to a number of different criteria considering,
for example, how “safe” the choice of the goal state would be in
the presence of noise. The selection of this particular goal point
in this intersection has no effect on the prepares relation and
does not change policy ordering in any way. Nevertheless, this
choice impacts the robustness of the algorithm during runtime
since inaccuracies in the deadbeat controller’s ability to reach
this goal point may result in apex states falling outside D(Φ̄p̄),
leading to a different sequencing of policies during runtime.
Our criterion to choose these “intermediate” goal points is to
maximize their distance to the boundary of the domain of the
policy being prepared, computed through a sufficiently dense
sampling of domain/goal intersections.

Subsequently, once the set of instantiated stride policies
is defined, the prepares relation � ⊆ PI × PI is defined as
follows.

Definition 2: An instantiated policy Φp i

i [Zi ] ∈ PI prepares
another instantiated policy Φpj

j [Zj ] ∈ PI , which is denoted by
Φp i

i [Zi ] � Φpj

j [Zj ], iff the following condition holds:

Zi ∈ D(Φj ). (32)

The prepares graph G that results from Definition 2 captures
all relevant sequencing constraints between instantiated stride
policies. Its construction also provides a consistent criterion to
choose specific goal settings for each policy. At this point, the set
of instantiated policies PI , together with the prepares relation

�, are sufficient to build a global, reactive control policy through
sequential composition.

In practice, the complexity to compute the prepares graph is
primarily associated with finding intersections between domain
and goal sets and selecting specific goal instances to maximize
the desired safety criteria. The former can be done rapidly when
analytic representations of domain and feasible goal sets, such
as those presented in Appendices A and B for the BHop model,
are available. Even without such analytic representations (e.g.,
when body–ground collisions are also considered), the local-
ized nature of policies in the horizontal direction (see Fig. 9)
limits the number of necessary pairwise comparisons, making
algorithm complexity linear in the terrain length. For example,
with 36 758 policy instances for a BHop running on the rough
terrain in Fig. 1, a simple initial bounding box check reduces
the number of domain/goal comparisons to fewer than 350 for
each policy instance.

In contrast, the complexity to select goal instances strongly
depends on the choice of safety criteria and whether it can be
formulated analytically. In this paper, we maximize the distance
of the selected goal to the boundary of the domain–goal inter-
section through dense sampling, incurring high computational
cost. As such, the generation of the prepares graph for the SLIP
model on the terrain in Fig. 10 takes approximately 30 min
to compute with our inefficient prototype implementation in
MATLAB on a modern desktop PC. This could be reduced
through a more optimized implementation and a less strict but
analytically feasible safety criterion. Note, also, that the pre-
pares graph is fixed for a given terrain and can be reused for
different goal choices. Consequently, it can be computed of-
fline and efficiently stored in sparse matrix form, as shown in
Fig. 12.

B. Policy Deployment and Execution

Given a global apex state goal Zg to be reached, the principal
idea behind our application of sequential composition is to con-
vert the prepares relation into a total order for policy instances,
starting from policies that can reach the global goal in a single
step, extended with backchaining through the prepares relation.
During execution, when the robot finds itself in a particular apex
state, the controller goes through the policy in this total order,
checking whether the apex state falls within the domain of any
policy. If such an instantiated policy Φp [Zi ] is found, a single-
step deadbeat controller is invoked to reach the corresponding
intermediate goal Zi , and the process is repeated. Absent noise,
this process is guaranteed to reach the goal state if the total or-
der respects the sequencing constraints that are captured in the
prepares graph [6].

Fig. 7 illustrates the details of the deployment algorithm for
our footstep planner. Functionalities of subroutines within this
algorithm are as follows.

1) findGoalPolicies(): finds situated stride policies whose
feasible goal sets include the desired global goal Zg ;

2) instantiatePolicies(): instantiates all situated policies with
specific goal points, as described in Section III-C;
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Fig. 7. Algorithm for the instantiation and deployment of stride policies to-
ward a global goal Zg .

3) buildPreparesGraph(): computes prepares relations be-
tween pairs of instantiated policies and builds the asso-
ciated graph;

4) pickbest(): selects the best available policy from the
queue based on a safety criterion (examples given in
Section VI-B);

5) findUnusedPrepares(): processes the prepares graph to
locate currently unused policies that prepare the current
selection.

At the beginning, a priority queue, PolicyQueue is initialized
with goal policies and used to identify the next policy to add
to the total order maintained in PolicyList. Backchaining is
accomplished by extending the queue with preparing policies
through findUnusedPrepares().

Note that there is substantial freedom in how the pickbest()
function chooses the next policy instance to be placed in the total
order without compromising the correctness of the deployment.
Different heuristics can be used to prioritize available policies
including their safety with respect to unexpected collisions with
the ground and the corresponding depth of the plan. We explore
some of these heuristics in subsequent sections.

Because of the positional locality of policies, the method
findGoalPolicies() has negligible computational cost and re-
turns only a small number of policy instances that are inde-
pendent of the terrain length. For instance, only 321 situated
policies were found to prepare the goal state in the example in
Section VI. The cost associated with extending a precomputed
prepares graph with such a small number of goal policy in-
stances is negligible since domain/goal comparisons that must
be performed for each are also limited by the positional local-
ity of each policy as noted in Section V-A. Once the updated
prepares graph is finalized, backchaining involves straightfor-
ward following of links in the prepares graph and can be done
efficiently with the use of appropriate data structures.

Once the ordered list of policies is obtained through the de-
ployment algorithm, execution proceeds by invoking the stride
controller that is given in Fig. 8. At every apex, the state of the
system Za is measured, compared against the domains of all
instantiated policies in the order they are deployed, and the goal
associated with the first match is targeted through a deadbeat

Fig. 8. Reactive execution controller for the deployed policy ordering invoked
at each apex Za to compute control inputs for the next stride.

controller. In contrast with offline footstep planners with sep-
arate planning and execution, this scheme integrates planning
with control, resulting in robust reactive control while still en-
suring proper sequencing of footstep choices. Note, also, that
this scheme does not explicitly prescribe and patch together
system trajectories and hence does not necessitate additional
measures to ensure continuity. The computational complexity
of the reactive execution controller is minimal since it only per-
forms domain inclusion tests, which are supported by bounding
box checks as well as the relative ease in which analytic bound-
aries for policy domains can be computed through ballistic flight
equations.

VI. RUNNING WITH THE BALL-HOPPER MODEL

In this section, we apply our reactive planning framework
to running with the BHop model across rough terrain. All our
results that are presented later use the analytic region derivations
for the BHop model which are detailed in Appendices A and B,
respectively.

A. Simulation Environment and Policy Templates

All BHop simulations in subsequent sections were obtained
through numerical integration of the BHop dynamics detailed
in Section IV-B1 using the ode45 function of MATLAB with
m = 80 kg and ρ0 = 1 m. Twenty different policy templates
were constructed, using combinations of different velocity and
energy ranges

RV ∈ {[−2.5,−1], [−1, 0], [0, 1], [1, 2.5]}
RE ∈ {[120, 160], [160, 240]

[240, 400], [400, 640], [640, 1120]} (33)

in MKS units. The ground segment length was chosen as 2l =
0.15 m, and the energy gain control input was constrained with
k ∈ [0.7, 1.4]. For policy templates with RV < 0, the remaining
control inputs were constrained as θ ∈ [−π/2, π/3] and Δy ∈
[−0.25, 0], whereas for policy templates with RV > 0, they
were chosen as θ ∈ [−π/3, π/2] and Δy ∈ [0, 0.25]. Domain
and feasible goal regions for these templates are illustrated in
Fig. 9.

B. Rough Terrain Traversal

The rough terrain that is illustrated in Fig. 1 features
a rich collection of challenges, including substantial height
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Fig. 9. Domain (left) and feasible goal (right) regions for all 20 BHop policy
templates in apex state coordinates. One of the stride policy templates with
RV = [−1, 0] m/s and RE = [640, 1120] is highlighted for clarity. The patch
at the bottom illustrates the ground segment with 2l = 0.15 m.

Fig. 10. Global domain coverage for the rough terrain example taking 1200
situated stride policies into account.

Fig. 11. Global feasible goal coverage for the rough terrain example taking
1200 situated stride policies into account.

irregularities and a “dangerous” gap whose size is compara-
ble with the leg length. In this section, we apply our footstep
planning framework to this terrain profile.

As described in earlier sections, the ground map is first dis-
cretized into segments of length 2l, resulting in 240 segments for
this terrain. Stride policy templates are then situated on these
segments, yielding 1200 situated stride policies whose com-
bined domain and feasible goal regions are illustrated in Figs. 10
and 11, respectively. Note that both of these regions could be
extended in the horizontal direction with additional situated
policies, but for the time being we only focus on y ∈ [0, 10] m
for clarity. This yields 36 758 instantiated policies, for which
the resulting prepares relation is illustrated in Fig. 12.

In preparation to handle sensor noise and map inaccuracies,
we use a prioritization of policies within the deployment al-

Fig. 12. Visualization of the prepares relation for the example terrain in Fig. 1.
Policy numbers increase with horizontal position along the terrain. Dots indicate
when the corresponding current policy prepares the next policy.

gorithm through the definition of the pickbest() function. In
particular, we define a scalar “safety” measure for each policy
instance, taking into account how much error can be tolerated in
either the foot placement or the realization of the goal with the
deadbeat controller. More formally, the safety of an instantiated
policy Φp [Zg ] is defined as

h(Φp [Zg ]) := we de(p)3 + wg dg(Zg , ∂D(Φpn
n )) (34)

where de denotes the closest distance to the edge of the flat
ground portion (not the small segment of length 2l but the con-
tiguous ground region on which it resides), and ∂D(Φpn

n ) de-
notes the boundary of the domain of the situated policy Φpn

n be-
ing prepared (i.e., Φp � Φpn

n ). All simulations in subsequent
sections use this safety criterion with manually tuned weights
we = 0.5 and wg = 1.0.

Fig. 13 illustrates two example runs with the BHop model
under our reactive controller, started from two different initial
conditions. The execution algorithm in Fig. 8 reactively selects
the best policy corresponding to each measured apex state, lead-
ing the hopper to the global goal Zg = [9.5, 1.3, 0]. The reactive
controller that results from the policy deployment is correct by
construction and is guaranteed to take the hopper to the goal
state from any state within the domain region that is illustrated
in Fig. 10. Note, also, that the foot safety criteria imposed by
(34) ensure that footholds toward the middle of each contigu-
ous ground region are preferred over other alternatives. In the
next section, we will show the robustness of our algorithm in
the presence of noise, owing both to its reactive nature and its
prioritization of safe policies during deployment.
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Fig. 13. Two example runs for reactive planning with the BHop model, started
from different initial conditions but using the same reactive policy deployment
toward the goal Zg = [9.5, 1.3, 0] with no explicit replanning. Light green and
dark red shaded regions illustrate cross sections of feasible goal and domain
regions at each apex, respectively.

Fig. 14. Performance of our reactive controller under “wind noise.” The top
figure compares locomotion with and without noise using the same control
inputs for each step. The bottom figure compares the no-noise case with our
reactive controller under noise. Wind magnitude is ÿ = −0.2 m/s2 during flight.

C. Robustness Against Sensor Noise and Map Inaccuracy

In this section, we consider the performance of our reactive
planner under three kinds of disturbances: wind noise in the
form of a constant, horizontal acceleration during flight, sensor
noise in apex state measurements, and map inaccuracy in the
terrain height used by the planner.

Fig. 14 illustrates an example run under wind noise. As shown
in the top plot, an offline plan with precomputed control inputs
at each step fails to react to the unexpected foot placement onto
the high platform around y = 2 m. In contrast, our reactive
controller adapts to this unexpected large disturbance at the
subsequent apex by choosing new control inputs with no explicit
replanning.

Similarly, Fig. 15 shows a scenario where the ground heights
perceived by the planner are inaccurate with up to 0.15 m er-
rors in either direction. Once again, this causes unexpected foot
collisions, leading to large disturbances and causing an offline
planner to fail promptly. In contrast, the reactive planner chooses
new policies (e.g., at y = 2.2 m and y = 6.5 m), resulting in
successful convergence to the goal Zg = [9.5, 1.3, 0].

To generalize, Fig. 16 illustrates the effect of wind noise on
the global domain of attraction. More than 99% of the 4352

Fig. 15. Performance of our reactive controller under “ground noise.” The
top figure compares locomotion with and without noise using the same control
inputs for each step. The bottom figure compares the no-noise case with our
reactive controller under noise. Ground heights perceived by the planner are
shown as dashed lines.

Fig. 16. Comparison of the domain of attraction with and without wind noise
for ẏ0 = 0.5 m/s. Light red shaded patches (less than 1% of 4352 initial condi-
tions in the global domain) show where the controller under wind noise fails to
reach the global goal Zg = [9.5, 1.3, 0] shown with a black dot. Darker shades
illustrate the number of steps before reaching the goal.

Fig. 17. Domain of attraction with and without sensor noise (uniformly dis-
tributed in [−5, 5] cm for positional and [−5, 5] cm/s for velocity variables) for
ẏ0 = 0.5 m/s. Light red shaded patches (less than 1% of 4352 initial conditions
in the global domain) show where the controller under sensor noise fails to
reach the global goal Zg = [9.5, 1.3, 0], shown with a black dot. Darker shades
illustrate the number of steps before reaching the goal.

initial conditions (with velocity ẏ0 = 0.5 m/s) in the domain
successfully reach the goal, with failures primarily due to either
a collision with the ground of falling into the hole, showing the
robustness of our reactive planning framework despite substan-
tial modeling inaccuracies.

Finally, Fig. 17 illustrates the global domain of attraction
under sensor noise in apex state measurements, uniformly dis-
tributed in [−5, 5] cm for positional and [−5, 5] cm/s for veloc-
ity variables. The magnitude of this noise is actually larger than
safety margins that are associated with most intermediate goals
and results in the hopper going through sequences of steps that
are different from what the planner had anticipated. This is why
even neighboring states go through different number of steps to
reach the goal. Nevertheless, more than 99% of the 4352 initial
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conditions in the domain successfully reach the goal, showing
that the reactive control strategy is robust to sensor noise.

VII. RUNNING WITH THE SPRING–MASS HOPPER

In this section, we demonstrate how our reactive footstep
planning framework can be used for the biologically and practi-
cally more relevant SLIP model. Surprisingly, we will be able to
use policy deployments for the BHop model for the SLIP model,
relying on the inherent reactivity and robustness of the frame-
work to compensate for the discrepancies between the BHop
and SLIP models.

A. Using Ball-Hopper Plans for the Spring-Loaded Inverted
Pendulum Model

By construction, control inputs that are available to the BHop
closely correspond to those available to the SLIP model de-
scribed in Section IV-A1. We need to, however, make sure that
the allowable control inputsU used for BHop policy templates in
(4) are consistent and feasible for the SLIP deadbeat controller
that is described in Section IV-A2.

The touchdown angle control inputs θ and θtd for the BHop
and SLIP models are already in correspondence with each other.
Similarly, the energy gain input k for BHop can be realized
through the ratio of compression and decompression spring
constants kc and kd for the SLIP model, with k ∈ [0.7, 1.4]
corresponding to the range kd/kc ∈ [0.5, 2]. On the other hand,
the horizontal displacement during the stance phase of the SLIP
model, despite being controllable through kc , cannot be chosen
as freely as the corresponding control input Δy. In particular,
the allowable range for this control input depends on the aver-
age angular momentum for the SLIP model during stance and,
hence, has a much smaller range for low velocities.

We account for this discrepancy between control inputs by
using velocity-dependent limits on the Δy parameter for the
BHop model that roughly capture the constraints of the SLIP
system. In particular, we impose limits on the horizontal shift as

Δy ∈ [h(ẏavg),−h(−ẏavg)] (35)

where ẏavg := (ẏk + ẏk+1)/2 is the average of the current and
next apex velocities, and h(v) is a velocity-dependent function,
which is defined as

h(v) :=
{

Cm (atan(Ca(v + Co))/π − (1 − Co)), if v < Co

Cm (atan(Cb(v + Co))/π − (1 − Co)), if v ≥ Co.

Manual tuning with Cm = 1.11, Ca = 1, Cb = 10, and Co =
−0.1 yields the limits that are shown in Fig. 18, approximately
capturing constraints on the range of horizontal displacement
that can be accomplished by the SLIP model. Even though
this is not, by any means, an exact representation of control
input constraints for the SLIP model, it enables BHop policy
instances to capture the capabilities of a SLIP stride reasonably
accurately, with the reactive nature of our planner compensating
for remaining errors.

In addition to this difference in the horizontal shift control
input, the SLIP model also differs from the BHop model in its
kinematics of touchdown. The horizontal position of the toe

Fig. 18. Adjusted horizontal shift limits for BHop policy templates to be used
for the SLIP model as a function of the average horizontal velocity ẏavg :=
(ẏk + ẏk+1 )/2.

for the SLIP model depends on the touchdown angle control
θtd and is either in front of or behind the body. The policy do-
main derivations of Appendix A must be modified to take this
discrepancy into account. We do this approximately through a
velocity-dependent average adjustment on the horizontal posi-
tion range for the domain as

RSLIP
y (Φ, ẏ, z) :=

[
− l − ẏ

√
2z/g − Y, l − ẏ

√
2z/g − Y

]

(36)

Y := ẏ sin(θavg)/|ẏmax | (37)

where θavg = 0.2 is a manually tuned, average touchdown angle
for the SLIP model running with ẏ = ẏmax . The derivations for
the goal region are adjusted accordingly.

B. Simulation Environment

As in Section VI-A, we compute SLIP trajectories through
numerical integration of its dynamics. At each apex, we use the
execution controller in Fig. 8 on the policy ordering computed
for the BHop model to determine the highest priority stride
policy instance Φp [Zi ] that includes the current apex state. We
then invoke the deadbeat controller for the SLIP model, which is
described in Section IV-A2 to compute the best control input to
reach the associated goal state Zi . This execution loop continues
until either the goal state is reached (up to a certain error margin)
or locomotion failure with a ground collision.

C. Planning Performance With the Spring-Loaded
Inverted Pendulum Model

Fig. 19 shows two example runs with the SLIP model using
a reactive policy deployment based on the BHop model and the
corrections that are described in Section VII-A. These examples
have the same goals and initial conditions as those presented in
Section VI-B for convenient comparison. In both cases, the SLIP
model successfully reaches the global goal, reactively choosing
new policies when the deadbeat controller is not capable of
exactly realizing the intermediate policy goal settings that are
deployed for the BHop model.

As a more general measure of robustness, the top plot in
Fig. 20 shows convergence behavior of the SLIP model under
our reactive planner for initial conditions within the global do-
main region with ẏa = 0.5 m/s. Ninety six percent of all initial
conditions converge to the goal even though the SLIP model
dynamics are significantly different from the idealized BHop
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Fig. 19. Two example runs for BHop reactive plans used for SLIP running,
started from different initial conditions but using the same reactive policy de-
ployment toward the goal Zg = [9.5, 1.3, 0] with no explicit replanning. Light
green and dark red shaded regions illustrate cross sections of feasible goal and
domain regions at each apex, respectively.

Fig. 20. Comparison of the domains of attraction for BHop and SLIP models
without additional noise (top) and ground noise (bottom) for ẏ0 = 0.5 m/s.
Light red shaded patches (top: 4%, bottom: 19% of 4352 initial conditions in
the global domain) show where the SLIP model fails to reach the global goal
Zg = [9.5, 1.3, 0], which is shown with a black dot.

dynamics. This is a direct consequence of the reactive nature of
the planner.

In contrast, the bottom plot in Fig. 20 shows the performance
of the reactive planner under the same ground sensing noise
imposed on the BHop model in Section VI-C. Even under the
large missed foothold disturbances under such ground sensing
noise, 81% of all 4352 initial conditions in the ideal domain
of attraction still converge to the goal, with gaps in the domain
resulting from certain policy sequences leading to unexpected
collisions with the ground.

Finally, Fig. 21 illustrates reactive footstep planning with the
SLIP model across a more challenging terrain profile. Starting
from a deep well, the controller first realizes that it has to step
backward in order to get on top of the hill at y = 4. At every
apex, the policy deployment informs the controller what goal
should be pursued next, with no explicit replanning done, even
though these goals are computed for the BHop model and the
SLIP deadbeat controller can never exactly realize them. De-
spite this purely reactive control strategy, the SLIP model still
undergoes seemingly deliberate stepping patterns such as the
small hesitation steps around y = 6 and y = 10.

Fig. 21. SLIP running across a longer and more challenging terrain with the
reactive planner. Initial and final apex states are marked with an x and a dot,
respectively. We have included a supplementary MPEG file in our multimedia
submission with an animation of the hopper across this surface.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a novel framework for reac-
tive planning and control of planar monopedal running across
rough terrain. Our approach is based on a uniform characteriza-
tion of the preconditions (domain) and postconditions (feasible
goal) of a single running stride, resulting in the definition of
stride policies as sufficiently rich abstractions of running steps.
Our planning framework then uses these policies within a se-
quential composition formalism to create a purely reactive con-
troller that has a large domain of attraction from which the goal
point is guaranteed to be reached.

We have shown the validity and performance of this simulta-
neous planning and control framework through its application
on a running model with simplified stance dynamics that capture
relevant aspects of more accurate but complex models. The re-
sulting controller was shown in simulation to be robust to differ-
ent forms of noise and large disturbances. We have also applied
plans constructed for this simplified model to the much more
complex but accurate SLIP model with only minor modifica-
tions on control input constraints and showed that convergence
to the goal is still achieved with large domains of attraction,
even in the presence of additional noise.

A number of important challenges remain before an experi-
mental realization of the proposed framework becomes possible.
Most importantly, even though the three independent control in-
puts that are required by the ideal SLIP model are accurate
descriptors of natural runners, they are difficult to instantiate in
robot platforms. Most monopedal running robots built to date
have been able to implement two of these three control inputs,
with only Raibert’s pneumatically actuated hoppers and the
BiMASC platforms capable of independent control over all
three. Consequently, such underactuated platforms would need
to rely on a reformulation of the stride abstraction to focus on
only two of these states (only positional variables, for exam-
ple), rather than performing planning on all three, fully actuated
dimensions of apex states. Unfortunately, once full controlla-
bility in apex states is sacrificed, the prepares relation becomes
much more constrained, resulting in a much more sparse dis-
tribution of applicable policies. Nevertheless, we consider both
the construction of a suitable platform and the adaptation of our
framework to lower dimensional stride abstractions to be the
natural continuations of this study.

One of the possible extensions of this planning framework is
the incremental construction of the prepares graph in an online
setting with limited-range sensing of the ground profile. In such
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cases, new policies could be situated as new data are received,
with both the prepares graph and the deployment updated in-
crementally. This would require the deployment algorithm to
rely not only on backchaining, but rather a combination of for-
ward and backward chaining to incorporate new policy instances
ahead of the existing deployment. We foresee realistic applica-
tions of this method to have such an incremental character.

We believe that our contributions in this paper, including
the validity of the BHop model to capture relevant aspects of
SLIP locomotion, as well as the application of the sequential
composition principles to achieve reactive footstep planning,
show that footstep planning for rough terrain traversal and purely
reactive control strategies need not be mutually exclusive. They
can be combined to yield robust control strategies with large
domains of attraction at least within mathematical models that
were shown to be accurate with respect to both natural and
artificial runners.

APPENDIX A

DOMAIN REGIONS FOR THE BALL-HOPPER MODEL

We start the analytic derivation of the domain region for a
stride policy template for the BHop model by assuming that the
velocity and energy ranges are specified as closed, bounded, and
connected intervals of the real line with

RV (Φ) := [ẏD
l , ẏD

u ] and RE (Φ) := [El,Eu ]. (38)

Given a particular forward velocity ẏ ∈ RV (Φ), the energy con-
straint yields boundaries for the apex height as

Rz (Φ, ẏ) := [(El − 0.5mẏ2), (Eu − 0.5mẏ2)]/(mg). (39)

Every height value in this range gives rise to an associated range
in the horizontal position coordinates as

Ry (Φ, ẏ, z) := [(−l − ẏ
√

2z/g), (l − ẏ
√

2z/g)]. (40)

All together, these constraints lead to an analytic formulation of
the policy domain region for the BHop system as

Dbh(Φ) := {Z = [y, z, ẏ]T | ẏ ∈ RV (Φ), z ∈ Rz (Φ, ẏ),

y ∈ Ry (Φ, ẏ, z)}. (41)

APPENDIX B

FEASIBLE GOAL REGIONS FOR THE BALL-HOPPER MODEL

In order to simplify analytic formulation of the feasible goal
region, we first assume that the set of allowable control inputs
has the form

U :=
{
[Δy, θ, k]T | θ ∈ [θl , θu ], k ∈ [kl , ku ],Δy ∈ [dl , du ]

}

(42)
with simple interval constraints for each component. We first
compute the boundaries of the feasible goal region Gf (Φ) in the
velocity dimension. Based on (6), analysis of the liftoff velocity
in (18) and its dependence on both the control inputs and initial
states yield

ẏ
Gf

l = −0.5(1 + ku )
√

2El/m + 0.5(1 − ku )ẏD
l (43)

ẏ
Gf
u = 0.5(1 + ku )

√
2El/m + 0.5(1 − ku )ẏD

u . (44)

Given ẏa ∈ [ẏGf

l , ẏ
Gf
u ], we solve for the touchdown angle

tan(θ) =

(1 + k)żtd +
√

(1 + k)2 ż2
td − 4(ẏa + kẏtd)(ẏa − ẏtd)

2(ẏa + kẏtd)
(45)

and corresponding vertical liftoff velocity

żlo = 0.5(1 + k)
(

2x∗

1 + x∗2 ẏtd − 1 − x∗2

1 + x∗2 żtd

)
+ 0.5(1 − k)żtd

(46)
as functions of k and initial states. Inspection of this solution
and the return map (with some effort) reveals that the lower and
upper boundaries of the goal region coincide with the maximum
and minimum energy levels, respectively, and one of the two
velocity boundaries of the domain region. Consequently, the
height boundaries for the feasible goal region for a given velocity
are given by

z
Gf

l (ẏa) = min(żlo(Eu, ẏD
l ), żlo(Eu, ẏD

u ))/(2g) (47)

z
Gf
u (ẏa) = max(żlo(El, ẏ

D
l ), żlo(El, ẏ

D
u ))/(2g). (48)

Finally, for a given apex velocity and height within the intervals
determined earlier, the horizontal position boundaries for the
feasible goal region can be computed as

y
Gf

l (ẏa , za) = l + ẏa

√
2za/g + dl (49)

y
Gf
u (ẏa , za) = −l + ẏa

√
2za/g + du . (50)
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