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Abstract: Burridge and Knopoff proposed a mass-spring model to explore interface dynamics 
along a fault during an earthquake. The Burridge and Knopoff (BK) model is composed of a 
series of blocks of equal mass connected to each other by springs of same stiffness. The blocks 
also are attached to a rigid driver via another set of springs that pulls them at a constant 
velocity against a rigid substrate. They studied dynamics of interface for an especial case with 
ten blocks and a specific set of fault properties. In our study effects of Coulomb and rate-state 
dependent friction laws on the dynamics of a single block BK model is investigated. The 
model dynamics is formulated as a system of coupled nonlinear ordinary differential equations 
in state-space form which lends itself to numerical integration methods, e.g. Runge-Kutta 
procedure for solution. The results show that the rate and state dependent friction law has the  
potential of triggering dynamic patterns that are different from those under Coulomb law. 
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1. Introduction 
 
Burridge and Knopoff proposed a mass-spring model to explore interface dynamics along a fault 
during an earthquake [1]. The Burridge and Knopoff (BK) model is composed of a series of blocks of 
equal mass connected to each other by springs of same stiffness. The blocks also are attached to a rigid 
driver via another set of springs that pulls them at a constant velocity against a rigid substrate. In their 
study of interface dynamics an especial case with ten blocks and specific proper-ties is studied. A 
numerical model of the system is constructed to investigate statistics of the shocks on the fault. Energy 
of the system is also of interest as a measure of shock magnitude. The applied velocity weakening 
friction law, considers both seismic radiation and viscosity of the fault.  

Stability of steady state slipping of a single block BK model is investigated within small perturbation 
theory by Rice and Ruina [2]. Using a one-state variable friction law, an analytic expression for 
minimum spring stiffness for stick-slip instability is obtained.  

A detailed analysis of dynamics of a symmetric BK model with two mass blocks is performed in [3]. 
Later an asymmetric BK model with two mass blocks (with a different frictional force for each block 
due to velocity-weakening friction) was investigated in [4] also a cellular automata model is applied to 
investigate the symmetric BK model with two mass blocks [5].  
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Carlson and Langer [6] simulated a BK model including up to 200 mass blocks with a velocity 
weakening friction law by a coupled system of differential equations and noticed manifestation of the 
purely empirical Gutenberg-Richter law (known from 1950s). They proposed their continuum 
dynamical system as an alternative to the cellular automaton models for representing self-organized 
criticality (SOC) in earthquakes [7,8,9,10]. The concept of SOC argues that the statistically stationary 
state of dynamical many body systems is scale free [8], i.e. these systems drive themselves to a critical 
state in which no characteristic length, time or energy scale does exist [7] and avalanches occur in all 
sizes and scales. An analysis of criticality in BK models with velocity weakening friction law is also 
done in [11]. A study of dynamics of BK models (both single block and multi-block) is done in [12]. 
Transition from small scale events to large scale events is investigated for both velocity weakening 
and rate and state friction laws. Another study of dynamics of BK model using both discrete equations 
(ODEs) and continuum formulation (PDE) is given in [13].  

 

2. Problem definition and the model 
 
In our study a single block BK model is considered (Figure 1). Mass of the model is assumed to be 1 
kg and the stiffness is 10 kN. Note that the spring with stiffness “k” does not have a physical length, 
i.e. it cannot be compressed. Therefore the spring experiences tension only and compression is not 
possible. Then, when the mass is right below the attachment point of the spring and the driver (AP), no 
spring force is exerted on it. Also the spring is not capable of pushing the block away. Often instead of 
a coil spring, the spring connecting each mass to the driver is shown as a leaf spring in the literature. 
 

 
Figure 1: The single block BK model, mass of the block is represented by “m”. “k” stands for 

stiffness of the coil spring and the driver moves with a speed “v” to the right. 

 

The Coulomb friction law is very straightforward: when moving, dynamic coefficient of friction is 
constant; if not moving, there is a shear force threshold which when exceeded the block have to start 
moving. However, there are friction laws in the literature according to which the dynamic coefficient 
of friction is not a constant, but changes in rather complicated ways. The rate and state dependent 
friction law which is used here is adopted from the seminal works of Dieterich [14] and Rice and 
Ruina [2]. Dealing with test results for rocks sliding on each other, it has founded out that friction can 
be described more accurately by considering the effects of not only speed of sliding (rate) but also the 
history of evolution of this speed (state). It is assumed that the coefficient of friction is a multiplication 
of two functions f = f(ẋ)  where  ẋ  is velocity of the block (slip rate) and  g = g(θ),  where θ is called 
internal state variable: 

 

𝜇(𝑥̇ , 𝜃) = 𝑓(𝑥̇). 𝑔(𝜃) (1) 

where 
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and 

𝑔(𝜃) =
𝜇ௗ + (𝜇௦ − 𝜇ௗ)exp [− ቀ

௅బ/ఏ

௩భ
ቁ

௣
]
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 (3) 

 
Note that the evolution of state variable is found from a first order ODE which is called evolution law 
and is given below:  
 

𝜃̇ = 𝐵 ൬1 −
𝑥̇𝜃

𝐿଴
൰ (4) 

 
The evolution law can be analytically integrated to give an algebraic expression for the state variable 
to be substituted in the expression for 𝑔(𝜃): 
 

𝜃(𝑡) = ൬𝜃௡ −
𝐿଴

𝑥̇
൰ exp ൤൬

𝑥̇

𝐿଴
൰ 𝐵(𝑡௡ − 𝑡)൨ +

𝐿଴

𝑥̇
 (5) 

 
 
The parameters of the above formula for sliding between rock plates are given in table 1.  
 
 
 

Table 1. The adopted parameters of rate and state 
dependent friction law 
  

     Parameter        Value 

𝜇௦ 0.6 

𝜇ௗ 0.5 

𝑣଴          100 

𝑣ଵ 111110.001 

p 1.2 

m 0.001 

𝐿଴ 2e-5 

B 4.6 

 
 
 
To have an idea about the coefficient of friction as it obtained from the above relations and how does 
it differ from Coulomb’s coefficient of friction, the proposed model is plotted for an especial case of 
abrupt changes of sliding velocity. In figure 2, coefficient of friction is plotted as a function of slipped 
distance for two step changes in the speed of two sliding plates. Initially (in region A), the sliding 
speed is 1 mm/s then it suddenly jumps up to 10 mm/s (region B) and then again suddenly it drops 
down back to 1 mm/s (region C). The higher the sliding velocity is, the lower is the steady state 
dynamic friction coefficient. Note that the minimum steady state friction happens in region B (where 
the velocity is the highest among A, B and C). Note also that however after a jump to a higher 
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velocity, a reduction in dynamic coefficient of friction (COF) is expected (due to what is called 
velocity weakening nature of the friction), the expected reduction starts only after a sudden rise (a 
spike) in the value of dynamic COF. In addition, when it is expected to increase, it decreases initially. 
Both spikes happen at the very beginning of the abrupt change in sliding velocity of the plates. The 
spike can even exceed the static coefficient of friction, but all of the dynamic steady state friction 
values are below the static coefficient of friction. 
 

 
 
Figure 2: Coefficient of friction according to rate and state dependent friction law against 
nondimensionalized sliding distance. Sliding velocity of the plates are 1 mm/s in region A, 10 mm/s in 
region B and finally 1 mm/s again, in region C. 

 

3. The equations of motion 
 
Presence of the friction force makes the equation of motion (EOM) nonlinear. The first manifestation 
of this non-linearity is that direction of the friction must be opposite to that of the block velocity. Note 
that the velocity is obtained by solving the equation of motion and is not known a priori. Thus the 
solution for velocity is to be monitored continuously to switch the friction sign in opposition. It must 
happen any time the velocity passes through zero. The second manifestation is that when the block 
stops (sticks) the static friction (which is exactly equal and opposite to the spring force) starts to 
accumulate. Then the next stage of slipping is to be solved by considering motion of the driver. The 
block can stick and slip intermittently.   
  
Using d’Alambert’s principle: 
 
𝑚𝑥̈ = 𝑘(𝑣𝑡 − 𝑥) − 𝑠𝑖𝑔𝑛(𝑥̇) ∗ 𝑓    
 
or: 
 

𝑥̈ =
1

𝑚
[𝑘(𝑣𝑡 − 𝑥) − 𝑠𝑖𝑔𝑛(𝑥̇) ∗ 𝑓] 
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gives a rather incomplete picture of the dynamics of the mass under dry friction. It can also be 
misunderstood easily since according to the definition of the sign function:  sign(0) = 0, while it is 
not obviously the case for the stick state. Therefore the equation of motion is split to two cases; 
namely: 
 
Case (1): motion towards right (positive velocity direction) 
  

𝑥̈ =
1

𝑚
[𝑘(𝑣𝑡 − 𝑥) − 𝑓] 

 
Case (2): motion towards left (negative velocity direction) 
 

𝑥̈ =
1

𝑚
[𝑘(𝑣𝑡 − 𝑥) + 𝑓] 

 
Putting into state space form by defining: 
 
𝑥ଵ = 𝑥 
𝑥ଶ = 𝑥̇ 
 
(Which implies  𝑥̇ଵ = 𝑥ଶ) 
 
In case (1): 
 

൤
𝑥̇ଵ

𝑥̇ଶ
൨ = ൥

0 1

−
𝑘

𝑚
0

൩ ቂ
𝑥ଵ

𝑥ଶ
ቃ + ൥

0
1

𝑚
(𝑘𝑣𝑡 − 𝑓)

൩ 

 
In case (2): 
 

൤
𝑥̇ଵ

𝑥̇ଶ
൨ = ൥

0 1

−
𝑘

𝑚
0

൩ ቂ
𝑥ଵ

𝑥ଶ
ቃ + ൥

0
1

𝑚
(𝑘𝑣𝑡 + 𝑓)

൩ 

 
Thus the strategy for developing the code is to make the algorithm choose between the different cases 
that may occur according to the outcome of the previous step and advance in a piecewise manner.  
 

4. On the algorithm and the code 

The mass can be either in stick state or in slip state (and slipping can occur in the right or left 
directions). The algorithm is to recognize whether the mass is stuck or it is slipping in every time step. 
It seems simple: to look at the velocity and if it zero then it is in stick state.  Since it is hardly possible 
to detect the exact zero (if any) in the numerical solution of velocity, “zero velocity” is accepted to 
happen right at the beginning of the time increment in which the block changes sign  
 
The loop syntax selected to perform this kind of piecewise solution of the EOM was at first written 
using a “for” command. But, the MATLAB ode23 function (which applies 4th order Runge-Kutta 
scheme for integration) automatically refines the given time step of the loop to even finer increments, 
it is quite possible that “the passing through zero” happen within the specified time step of the loop 
(and therefore missed). However, a “for” loop does not allow alternation of the loop variable (here, 
time) within itself. This fact makes it impossible to capture the “zero velocity” moment by a “for”  
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Figure 3: The part of the flowchart which determines the state of the block in each time step: Is it 
stuck? Does it continue being stuck? Will it slip to the right or to the left? Does it continue slipping?  

 
loop. Then the proper loop command specified as “while”. As a subsequence, the conditions for stick 
and slip became more straightforward. The flowchart for the code is shown in Figure 3. 
 
As can be seen in figure 3, there is no bridge between slipping to the right and slipping to the left since 
the block has to pass through zero velocity point (i.e. stick state) and it is reasonable. In the case of 
zero initial conditions, the block is stuck at t=0. Figure 2 also specifies the very conditions for entering 
or exiting a stick or slip state. In each of these states the block is checked to see if it continues to 
remain in that state or it is to depart. 

5. Results 

Besides kinematics of the block motion, i.e. solution of the EOM (or what is called dynamic response 
of the block), kinetics of the motion (here we imply friction) is represented for a range of different  
𝜇ௗ   values. Note that while for Coulomb law this quantity is the value of dynamic COF, it becomes a 
parameter in the rate and state dependent friction law. The other parameters of rate and state dependent 
friction law are as given in the table 1. The driver velocity is fixed to 1 mm/s. Mass of the block is sat 
to 1 kg, stiffness of the coil spring is 10 kN/m. The static COF is 0.6.  
 
Effects of  𝜇ௗ   via the constitutive law of friction, eqn. (1), are investigated for three cases. In case (A) 
𝜇ௗ is sat to 0.1, in case (B) it is sat to 0.5 and in case (C) it is equal to 0.6, meaning that the dynamic 
COF is equal to the static threshold of friction. 
 
The kinematics of case (A) is given in figure 4. The plots of position and velocity of the block (and the 
driver) against time are superimposed for both Coulomb and rate and state dependent friction laws are 
presented in figure 4. Note that the driver passes the block nearly at t=1s. Both of the friction laws 
trigger the stick-slip instability. Note that the driver passes the block nearly at t=1s. While the 
Coulomb law causes symmetric spikes of slip rate (the black line), under rate and state dependent law 
(the red line), those spikes are asymmetric, higher and sparser in time and start smoothly and end 
abruptly.  
 
The kinetics of case (A) is represented in figure 5. The plots of shear divided by normal force 
(apparent COF) for both Coulomb and rate and state dependent friction laws are presented. While 
there is no transition from the stick state to the slip state under Coulomb law (the black line), there 
exist a smooth transition from stick to the slip for the rate and state dependent friction law (the red  
 

9th International Conference on Tribology (Balkantrib’17)                                                                IOP Publishing
IOP Conf. Series: Materials Science and Engineering 295 (2018) 012031    doi:10.1088/1757-899X/295/1/012031

6



 
 
 
 
 

 
 

 
Figure 4: Case (A), for dynamic COF of 0.1, position (top) and velocity (bottom) of the mass block 
subjected to Coulomb law (in black), subjected to rate and state dependent friction law (in red) and the 
driver (in grey) against time for a constant driver velocity of 1 mm/s.  
 

 
 
Figure 5: Case (A), for dynamic COF of 0.1, friction force (shear) divided by normal force (the block 
weight), conventionally called apparent COF is presented for Coulomb law (top) and rate- state 
dependent law (bottom) against time for a constant driver velocity of 1 mm/s.  

 
line). The velocity weakening property of rate and state dependent friction law shows up in the 
concave shape of the COF in the slipping regions. 
 
The kinematics of case (B) is given in figure 6. The plots of position and velocity of the block (and the 
driver) against time are superimposed for both Coulomb and rate and state dependent friction laws are  
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Figure 6: Case (B), for dynamic COF of 0.5, position (top) and velocity (bottom) of the mass block 
subjected to Coulomb law (in black), subjected to rate and state dependent friction law (in red) and the 
driver (in grey) against time for a constant driver velocity of 1 mm/s.  

 

 
Figure 7: Case (B), for dynamic COF of 0.5, friction force (shear) divided by normal force (the block 
weight), conventionally called apparent COF is presented for Coulomb law (top) and rate- state 
dependent law (bottom) against time for a constant driver velocity of 1 mm/s.  

 
presented in figure 6. Note that the driver never passes the block in this case, however, both of the 
friction laws trigger the stick-slip instability again. The spikes of slip rate have become more frequent 
and shorter it height. 
 
The kinetics of case (B) is represented in figure 7. The plots of shear divided by normal force 
(apparent COF) for both of the laws are presented. The concave shape of drop in apparent COF has 
become more apparent, and well below the value of dynamic COF, 0.5.  
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Figure 8: Case (C), for dynamic COF of 0.5999, position (top) and velocity (bottom) of the mass 
block subjected to Coulomb law (in black), subjected to rate and state dependent friction law (in red) 
and the driver (in grey) against time for a constant driver velocity of 1 mm/s.  
 
 

 
Figure 9: Case (C), for dynamic COF of 0.5999, friction force (shear) divided by normal force (the 
block weight), conventionally called apparent COF is presented for Coulomb law (top) and rate- state 
dependent law (bottom) against time for a constant driver velocity of 1 mm/s.  
 
 

The kinematics of case (C) is given in figure 8. The plots of position and velocity of the block (and the 
driver) against time are superimposed for both Coulomb and rate and state dependent friction laws are 
presented in figure 8. Note that the driver does not pass the block. While the motion under Coulomb is 
oscillatory, stick-slip motion still happens for the rate and state- governed mass and the trend of 
increase in frequency and decrease in the height of slip rate spikes continues. 
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The kinetics of case (C) is represented in figure 9. The plots of shear divided by normal force 
(apparent COF) for both Coulomb and rate and state dependent friction laws are presented. While 
under Coulomb law (the black line), there exist a constant slip and therefore constant COF, rate and 
state dependent friction still causes decrease and increase of friction force during the slip period. 

6. Conclusions 

The rate and state dependent friction laws essentially proposed for modelling earthquakes and 
therefore rock plate sliding with abrupt change in their relative slip rate. Our study tried to detect 
differences in dynamics of a single block Burridge-Knopoff (BK) model under to Coulomb and rate 
and state dependent friction laws. During the slip period, instead of the step change of sliding velocity 
of the block an impulse of slip rate happen. This causes the apparent COF not to exactly imitate the 
behavior expected in figure 2. The velocity weakening nature of the law can be observed in the results. 
Increasing dynamic COF made slip spikes more frequent and less strong but could not eliminate stick-
slip motion in the rate and state dependent law case. However, it caused a steady oscillatory motion in 
the Coulomb law - governed case.  
 
 

References 

 
1. Burridge R. and Knopoff L., Model and Theoretical Seismicity, Bulletin of the Seismological 

Society of America 57(3), 341-371, 1967. 
 

2. Rice J. R. and Ruina A. L., Stability of Steady Frictional Slipping, Journal of Applied 
Mechanics 50(2), 343-349, 1983. 
 

3. Nussbaum J. and Ruina A., A Two Degree-of-Freedom Earthquake Model with 
Static/Dynamic Friction, Pure and Applied Geophysics 125(4), 629–656, 1987. 
 

4. Huang J. and Turcotte D. L., Chaotic Seismic Faulting with a Mass-Spring Model and 
Velocity-Weakening Friction, Pure and Applied Geophysics, 138(4), 569-589, 1992. 
 

5. Narkounskaia G. and Turcotte D. L., A Cellular Automata Slider Block Model for 
Earthquakes I. Demonstration of Chaotic Behaviour for a Low Order System, Geophysical 
Journal International, 111(2), 250-258, 1992. 

 
6. Carlson J. M. and Langer J. S., Properties of Earthquakes Generated by Fault Dynamics, 

Physical Review Letters 62(22), 2632-2635, 1989. 
 

7. Bak P. and Tang C., Earthquakes as a Self-Organized Criticality, Journal of Geophysical 
Research, 94(B11), 15635-15637, 1989). 
 

8. Olami Z., Feder H. J. S. and Christensen K., Self-Organized Criticality in a Continuous 
Nonconservative Cellular Automaton Modeling Earthquakes, Physical Review Letters, 68(8), 
1244-1248, 1991. 
 

9. Nakanishi H., Cellular Automaton Model of Earthquakes with Deterministic Dynamics, 
Physical Review A, 41(12), 7086-7089, 1990. 

9th International Conference on Tribology (Balkantrib’17)                                                                IOP Publishing
IOP Conf. Series: Materials Science and Engineering 295 (2018) 012031    doi:10.1088/1757-899X/295/1/012031

10



 
 
 
 
 

 
 

 
10. Huang J., Narkounskaia G. and Turcotte D. L., A Cellular Automata Slider Block Model for 

Earthquakes II. Demonstration of Self-Organized Criticality for a 2-D System, Geophysical 
Journal International, 111(2), 259-269, 1992. 
 

11. Clancy I. and Corcoran D., Criticality in the Burridge-Knopoff Model, Physical Review E, 
71(4), 046124, 2005. 

 
12. Clancy I. and Corcoran D., State-variable Friction for the Burridge-Knopoff Model, Physical 

Review E, 80(1), 016113, 2009. 
 

13. Erickson B. A., Birnir B. and Lavallee D., Periodicity, Chaos and Localization in a Burridge-
Knopoff Model of an Earthquake with Rate and State Friction, Geophysical Journal 
International, 187(1), 178-198, 2011. 
 

14. Deitrich, J. H., Modeling of Rock Friction: 1. Experimental Results and Constitutive 
Equations, Journal of Geophysical Research 84(NB5): 2161-2168, 1979.  

9th International Conference on Tribology (Balkantrib’17)                                                                IOP Publishing
IOP Conf. Series: Materials Science and Engineering 295 (2018) 012031    doi:10.1088/1757-899X/295/1/012031

11




