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Abstract
This study presents a crack phase-field approach for anisotropic continua to model, in particular, fracture of fiber-reinforced
matrix composites. Starting with the variational formulation of the multi-field problem of fracture in terms of the deformation
and the crack phase fields, the governing equations feature the evolution of the anisotropic crack phase-field and the balance
of linear momentum, presented for finite and small strains. A recently proposed energy-based anisotropic failure criterion is
incorporated into the model with a constitutive threshold function regulating the crack initiation in regard to the matrix and
the fibers in a superposed framework. Representative numerical examples are shown for the crack initiation and propagation
in unidirectional fiber-reinforced polymer composites under Mode-I, Mode-II and mixed-mode bending. Model parameters
are obtained by fitting to sets of experimental data. The associated finite element results are able to capture anisotropic crack
initiation and growth in unidirectional fiber-reinforced composite laminates.

Keywords Fracture · Failure · Fiber-reinforced polymers · FRP composites · Crack phase-field model · Anisotropic failure
criterion

1 Introduction

Since the introduction of composite materials in the 1960’s
such as glass–polyester and carbon–epoxy, great success
has been achieved in estimating the effective micromechan-
ical properties of composites, the respective homogenized
response and the plate theories for laminates. However, the-
ories pertaining to the fracture of composite materials are
not on par with the afore–mentioned theories in terms of
their applicability and accuracy. Although a lot of efforts
have been made over five decades, the prediction of com-
posite failure still remains largely unsolved with plenty of
uncertainties, as reviewed by Talreja [46].
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Regarding fiber-reinforced polymers (FRPs), the failure
mechanisms are, in general, related to (i) the mechanical
behavior of the individual lamina and laminate as a whole
and (ii) the direction of the loading. Compared with steel
and other more conventional materials, the failure mech-
anism of FRP composites is much more complex and its
prediction presents a tremendous challenge for engineers and
researchers as they possess an inherent heterogeneity with
distinct interfaces in their structure. The model approaches
for the crack initiation and progression in composite mate-
rials can be divided into two categories: one is based on
strength criteria (i.e. failure at a material point) and the other
one is based on energy criteria (i.e. surface formation), see,
e.g., Talreja and Singh [45].

According to strength-based criteria, micro-cracks form
when the local stress (strain) state in a ply reaches a criti-
cal level. To date, several strength-based failure criteria that
are rooted in metal fracture have been proposed for compos-
ite materials namely, Tsai and Hill [6,22], Tsai and Wu [47],
Hashin [20] andCuntze [13], just tomention a few.Expressed
by quadratic polynomials, they involve strength values as
material constants that need to be determined from experi-
mental data. In principle, failure manifests when the elastic
response in any combination of the stress components that
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exceed a threshold given by the respective criterion. Unlike
the early maximum stress and strain criteria, the theories by
Tsai–Hill, Tsai–Wu and Hashin take into account the possi-
ble stress interactions at failure. However, their use also leads
to other issues. The Tsai–Hill criterion is based on the Hill
criterion, which is basically an anisotropic extension of the
von Mises [49] yield theory developed for isotropic materi-
als such as metals. The predicted yield stress therein is the
same in tension and compression, an appropriate conclusion
for orthotropic metal sheets; however, such an assumption
is far-fetched in regard to unidirectional composites as the
mechanisms characterizing the failure under tension and
compression are quite different from each other. In fact, a
cluster of failed fibers in a cross-section is involved under
tension and accompanied by some splits of fibers linking the
neighboring cross-sections, whereas a local kink band facil-
itated by the micro-buckling deformation modes results in
the failure of the composite under compressive loads, see,
e.g., Argon [5]. Tsai-Wu account for unequal strengths in
tension and compression that evokes the Bauschinger effect.
This criterion assumes a scalar-valued function of stress com-
ponents in regard to the failure surface characterized by an
ellipsoid. The problem associatedwith this criterion is how to
determine the inclination of the ellipsoid as the biaxial com-
ponents of the strength tensor do not have a unique value, but
hinge on the stress state. To overcome this difficulty, Hashin
suggested many piece-wise smooth surfaces, each represent-
ing a distinct failure mode. In fact, the fiber failure in the
criterion is decoupled from the matrix failure. Yet the prob-
lem of ascertaining the strength constants for compressive
modes render the theory rather impractical. Later, Puck and
Schürmann [37] proposed a more justifiable failure theory in
the sense of model constants.

All of the afore-mentioned criteria regard the failure as a
single event and consider composites as homogeneous solids.
Besides, the failure plane is not explicitly influenced by the
existence of fibers, i.e. the crack does not cut across the fibers.
Nor do the distribution of fibers (uniform or nonuniform) and
the nature of the matrix-fiber bond alter the critical tractions
and the orientation of the crack surface. Furthermore, they
are created on the basis of the traditional strength of themate-
rials approach from the structural design aspect, and can only
impart knowledge about the critical design points where the
failure may occur. They fall short of describing differences
in the crack initiation (as a material point failure process)
and the crack propagation (as a surface growth process). As
a consequence, the effect of ply thickness on the transverse
cracking cannot be properly accounted by such criteria.Other
problems are the impossibility of analytical characterization
of local stress states except for a few cases and the conflict
between the experimental data and the strength-based esti-
mations, see Talreja and Singh [45].

Energy-based criteria originate from linear elastic fracture
mechanics where the crack starts to grow when the energy
release rate G reaches a critical value Gc expressed by the
equilibriumG = Gc, as introduced byGriffith [16]. In amul-
tiple cracking of a composite laminate, the progression of a
crack located in between the plies is arrested at the interface
and any further input of energy to the laminate leads to the
formation of more ply cracks occurring elsewhere. In such a
case, the conventional fracture mechanics approach requires
modifications, e.g., the concept of finite fracture mechanics
and variational stress analysis, which was among others pre-
sented by Hashin [21] and Nairn [32]. Aside from that, a
strain energy-based failure criterion was suggested byWolfe
and Butalia [51] for a wide variety of unidirectional and sym-
metric laminates under biaxial loading.

The cohesive zone modeling (CZM) appears to be one of
the most prevalent approaches used to mimic the mechanical
failure of laminae which was presented by many including
Turon et al. [48], Yang and Cox [52], Naghipour et al. [33]
and Zhao et al. [54] for uni- and multi-directional composite
laminates in Mode-I and Mode-II fracture. Likewise, there
have been several successful applications of the extended
finite element method (XFEM) by, e.g., Grogan et al. [17],
Wang andWaisman [50] andYazdani et al. [53] on the delam-
ination of composite materials. Recent revelations by Dal et
al. [14], Reinoso et al. [39], Alessi and Freddi [2] and Arte-
rio et al. [4] highlight an alternative approach, namely the
crack phase-field modeling to predict damage and failure of
composite laminates. In contrast to CZM and XFEM, the
crack phase-field approach utterly ignores the realization of
discontinuities as the 2D crack surface smears out in a vol-
ume domain in 3D, which is determined by a specific field
equation alongside the balance of linear momentum describ-
ing the elasticity of the solid. The well-known limitations of
the classical fracturemechanics, e.g., curvilinear crack paths,
crack kinking, branching angles, and multiple cracking are
surmounted through a variational principal of the minimum
energy, see Francfort and Marigo [15]. The thermodynam-
ically consistent and algorithmically robust formulations of
phase-field models were introduced in the seminal works by
Miehe et al. [27,28]. The approach is modular and can be
applied to non-standard solids exhibiting complex cracking
mechanisms undermultiphysics phenomena, see, e.g.,Miehe
et al. [29–31]. Ductile failure of elastoplastic materials is
treated in Ambati et al. [3] and Borden et al. [8]. Anisotropic
crack phase-field evolution has recently been considered by,
e.g., Li et al. [25] and Teichtmeister et al. [44], which is
based on the extended Cahn-Hilliard model, see Cahn and
Hilliard [10], to account for the anisotropic surface energy
emanating from the preferred directions in materials. Apart
from that Clayton and Knap [11] and Nguyen et al. [36] pro-
posed anisotropic phase-field models for polycrystals. The
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Fig. 1 Nonlinear deformation of a solid. The reference configuration
B ∈ R

3 and the spatial configuration S ∈ R
3; ϕ : B × T �→ S is

the nonlinear deformation map which maps the material point position
X ∈ B onto the spatial position x = ϕ(X, t) ∈ S, at time t ∈ Rt . The
deformation gradient F maps a Lagrangian line element dX onto its

Eulerian counterpart dx = FdX . The anisotropic micro-structure of
the material point X is rendered by unidirectional fibers with the unit
vector f 0. Likewise, the anisotropic micro-structure of the spatial point
x is described by f , as the spatial counterpart of f 0

approach of Schreiber et al. [40] uses an anisoptropic geo-
metric resistance to failure in the sense of Gültekin et al. [18].

Formaterials such as soft biological tissues and composite
laminates, the anisotropic fracture is not only a geometrical
phenomenon but also a mechanical event arisen from the
fibrous content embedded in an otherwise isotropic matrix
material, necessitating the use of an anisotropic crack driving
force apart from directional geometric resistance. Hence, the
current study follows the footsteps of the previous contribu-
tions byGültekin et al. [18,19] in which the anisotropic crack
phase-field at finite strains was introduced. Incorporated was
also a novel energy-based failure criterion based on the dis-
tinction of fibrous and matrix contributions to the elastic
mechanical response. The current study, however, examines
the fracture of the FRPs composed of a polymer matrix rein-
forced with fibers.

The article is organized as follows. Section 2 outlines the
primary field variables with the corresponding finite strain
kinematics and the diffusive features of the anisotropic crack
phase-field. Section 3 is concerned with the variational for-
mulation of the multi-field problem of fracture resulting in
the coupled balance equations. Section 4 focuses on the
anisotropic hyperelastic constitutive response reflecting the
elastic mechanical behavior of the composite in the Eulerian
framework. A brief account of the energy-based anisotropic
failure criterion is also provided. In sect. 5, the representa-
tive numerical examples exhibit the capabilities of the model
with regard to a standard problem of a transversely isotropic
single edge-notched specimen under Mode-I and Mode-II
loading scenarios and a realistic test case for a unidirectional
laminate withstanding mixed-mode bending. Finally, Sect. 6
summarizes the article.

2 Basics of themulti-field problem of
fracture

This section lays bare the primary field variables, namely the
crack phase-field d and the deformationmapϕ governing the
diffusive crack evolution and thebalanceof linearmomentum
in a coupledmanner. The framework is provided for the finite
and small-strain settings which cover both the mechanical
and phase-field problems.

2.1 The primary field variables

Let us consider a continuum body at time t0 ∈ T ⊂ R,
which we refer to as the reference configuration, as desig-
nated by B ⊂ R

3, with the material point X ∈ B. Similarly,
the deformed body at current time t ∈ T ⊂ R, which we
refer to as the spatial configuration, is denoted by S ⊂ R

3

with the spatial point x ∈ S mapped via the deformation
field ϕ, see Fig. 1. Thus,

ϕt (X) :
{
B × T → S,

(X, t) �→ x = ϕ(X, t).
(1)

Along with the deformation field given in (1), the basic geo-
metric mapping for the crack phase-field d is expressed by

d :
{
B × T → [0, 1],
(X, t) �→ d(X, t),

(2)

which interpolates between the intact (d = 0) and the rup-
tured (d = 1) state of the material.
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Fig. 2 Multi-field problem: a
mechanical problem of
deformation along with
Dirichlet and Neumann-type
boundary conditions, that is
ϕ = ϕ and P · N = T ,
respectively; b evolution of the
crack phase-field problem with
the Neumann-type boundary
condition L∇d · N = 0

(a) (b)

2.2 Kinematics of themechanical problem

We start with the description of the deformation gradient, i.e.

F = ∇ϕt (X), (3)

which maps the unit Lagrangian line element dX onto its
Eulerian counterpart dx = FdX . The gradient operators
∇(•) and ∇x (•) denote the gradient operator with respect to
the reference X and the spatial x coordinates, respectively.
The determinant of F, i.e. the Jacobian J := detF > 0,
characterizes the map of an infinitesimal reference volume
element onto the associated spatial volume element. The right
and left Cauchy–Green tensors read

C = FT gF, b = FG−1FT , (4)

which measure the deformation in the Lagrangian and Eule-
rian configurations, respectively. Furthermore, we adopt the
formalism in the sense of Marsden and Hughes [26] and
equip the two manifolds, namely B and S with the covariant
reference and spatial metric tensors G = δI J E I ⊗ E J and
g = δi j ei ⊗ e j , respectively, where δI J and δi j are simply
evaluated as the Kronecker deltas in the Cartesian coordinate
system. The energy stored in a hyperelastic isotropicmaterial
is characterized by the three invariants

I1 = trb, I2 = 1

2

[
I 21 − tr(b2)

]
, I3 = det b. (5)

The anisotropic response of a unidirectional FRP composite
requires the description of an additional invariant. To this end,
we introduce a reference unit vector f 0 for the fiber orienta-
tion in the reference configuration and its spatial counterpart

f = F f 0, (6)

which idealizes the micro-structure of the unidirectional
FRP composite. We can express the related Lagrangian and
Eulerian forms of the structure tensors A and A f as fol-
lows

A = f 0 ⊗ f 0 and A f = f ⊗ f . (7)

The physically meaningful additional fourth-invariant

I4 = f · g f , (8)

measures the square of the stretch along the mean fiber direc-
tion in the unidirectional FRP composite.

2.3 Kinematics of the phase-field problem

The deformable domain for the concerning problem is asso-
ciated with the deformation field as given in Fig. 2a. For a
non-deformable domain, the gradient operator can simply be
taken as ∇x (•) = ∇X (•) = ∇(•). A sharp crack surface
topology at a frozen time t is defined by Γ (d) ⊂ R

2 in
the solid B through a surface integral Γ (d) = ∫

Γ
dA. The

hallmark of the crack phase-field approach is that it circum-
vents the cumbersome task of tracking such discontinuities
and it approximates the surface integral by a volume integral,
thereby creating a regularized crack surface Γl(d), see also
Fig. 2b such that

Γl(d) =
∫
B

γ (d,∇d)dV where

γ (d,∇d) = 1

2l
(d2 + l2∇d · ∇d) , (9)

designates the isotropic crack surface density function,which
satisfies the conditionγ (d, Q∇d) = γ (d,∇d),∀Q ∈ O(3).
The tensor variable Q denotes the rotations in the orthog-
onal group O(3), containing rotations and reflections. The
length-scale parameter l controls the breadth of the crack.
This approximation can be extended to a class of anisotropic
materials as

Γl(d) =
∫
B

γ (d,∇d;L)dV , where

γ (d,∇d;L) = 1

2l
(d2 + ∇d · L∇d) , (10)
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(a) (b) (c)L = l2I L = l2(I + e1 ⊗ e1) L = l2(I + f0 ⊗ f0)

e1 f 0

d0 1

Fig. 3 Damage field on a square block: a isotropic damage field, b anisotropic damage field with fiber orientation θ = 0◦ stated by the unit base
vector e1, c anisotropic damage field with fiber orientation θ = 45◦ given by the unit vector f 0

is the anisotropic crack surface density function with the
condition γ (d, Q∇d) = γ (d,∇d), ∀Q ∈ G ⊂ O(3), where
G designates a symmetry group as a subset of O(3). The
second-order anisotropic structure tensor L is given as

L = l2(I + ωf0 f 0 ⊗ f 0), (11)

which aligns the crack with the orientation of fibers in the
continuum, see Fig. 3. Therein, the anisotropy parameter ωf0
regulates the transition from weak to strong anisotropy. For
isotropic solids ωf0 = 0, whereas for a general anisotropic
continuum, it must lie in an open range, i.e. −1 < ωf0 <

∞ in order to satisfy the ellipticity condition for Γl(d), see
Gültekin et al. [19] for an elaborate discussion.

2.4 Euler–Lagrange equations of the phase-field
problem

From a purely geometrical perspective, the boundary of the
domain under interest can be decomposed into Dirichlet and
Neumann-type boundaries such that ∂B = ∂Bd ∪ ∂Bq and
∂Bd ∩ ∂Bq = ∅. By considering (10), we can state the min-
imization principle as

d(X) = Arg

{
inf

d∈W
Γl(d)

}
, (12)

along with the Dirichlet-type boundary constraint

W = {d | d(X) ∈ B ∧ d = d̂ on ∂Bd} . (13)

Whilst an already existing crack is given by d̂ = 1, the intact
state is described by d̂ = 0. Although the boundary value

problem admits any meta-states d̂ ∈ [0, 1] on ∂Bd , we con-
fine ourselves for the two ideal states. The Euler-Lagrange
equations are obtained after employing the minimization
principle. Thus,

1

l
[d − Div(L∇d)] = 0 in B,

L∇d · N = 0 on ∂Bq , (14)

where the divergence term interpolates d between the intact
and the ruptured state of the material. In (14)2, N denotes
the unit surface normal oriented outward in the reference
configuration. Solving only the phase-field problem in the
purely geometrical context, a 2-D square block with d̂ = 1
at the single centroidal point and L∇d = 0 on the sides
of the block leads to damage fields depicted in Fig. 3 for
various structure tensors L associated with different fiber
orientations.

In order to demonstrate the influence of wf0 , four repre-
sentative cracks for two different anisotropy factors, namely
wf0 = 0 in Fig. 4a, c and wf0 = 10 in Fig. 4b, d are depicted.
The introduced centroidal cracks (d̂ = 1) are vertical in the
first and horizontal in the second row. When the anisotropy
parameter equals to zero, i.e. wf0 = 0, the crack smears
isotropically so that the geometric resistance to crack prop-
agation is identical in all directions. However, wf0 = 10
smears the crack considerably more in the transverse plane
towards the fiber direction e1, see Fig. 4b, whereas the mini-
mum smearing occurs around the cracks parallel to the fiber
direction, see Fig. 4d, as observed in the second column. This
means that cracks propagating across the fibers are penalized
and the crack propagating along the fibers are favored. This is
due to the fact that the energy threshold for the cracks propa-
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Fig. 4 Damage field on a square
block with a single fiber family
whose orientation is
characterized by the unit base
vector e1: a, b for a vertical
centroidal crack; c, d for a
centroidal horizontal crack
where wf0 = 0 in the first
column and wf0 = 10 in the
second column

(a) (b)

(c) (d)

e1e1

e1e1

wf0 = 0

wf0 = 0

wf0 = 10

wf0 = 10

d0 1

gating across the fibers are higher for wf0 > 0. The converse
applies for −1 < wf0 < 0.

3 Governing equations of the anisotropic
fracture

This section deals with the coupled equations of the elastic-
fracture problem for finite and small strains, where the
classical balance of linear momentum is accompanied by the
evolution equation of the crack phase-field; the strong forms
of the boundary-value problem are presented.

3.1 Rate-dependent variational formulation based
on power balance

3.1.1 Finite-strain setting

As a point of departure, we introduce the viscous rate-type
potential Πη as

Πη = E + Dη − P. (15)

The first term E on the right-hand side of (15) represents the
rate of energy storage functional, i.e.

E(ϕ̇; ḋ) =
∫
B
(P : Ḟ − f ḋ)dV , (16)
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where the work conjugate variables to ϕ and d are the first
Piola–Kirchhoff stress tensor P and the scalar energetic force
f , respectively, i.e.

P = ∂FΨ (g, F, A f ; d), f = −∂dΨ (g, F, A f ; d).

(17)

The free-energy function Ψ defined in (17) characterizes a
degrading continuum with

Ψ (g, F, A f ; d) := g(d)Ψ0(g, F, A f ), (18)

where Ψ0 is the effective free-energy function of the hypo-
thetically intact solid. In (18), a monotonically decreasing
quadratic degradation function, i.e.

g(d) := (1 − d)2, (19)

describes the degradation of the solid with the evolving crack
phase-field parameter d together with the following growth
conditions:

g′(d) ≤ 0 with g(0) = 1, g(1) = 0, g′(1) = 0. (20)

The first condition ensures degradation, while the second and
third condition set the limits for the intact and the ruptured
state, and the final condition ensures the saturation at d → 1.
The second termDη on the right-hand side of (15) is a viscous
regularized dissipation functional due to fracture, i.e.

Dη(ḋ, β; d) =
∫
B

[
βḋ − 1

2η
〈χ(β; d,∇d)〉2

]
dV , (21)

where the artificial viscosity η ≥ 0 regulates the scalar vis-
cous over-stress χ , which reads

χ(β; d,∇d) = β − gc[δdγ (d,∇d;L)]. (22)

The Macaulay brackets in (21) filter out the positive values,
χ > 0, while gc in (22) stands for the critical fracture energy.
Finally, the last termP on the right-hand side of (15) denotes
the (classical) external power functional acting on the body
according to

P(ϕ̇) =
∫
B

ρ0γ · ϕ̇dV +
∫

∂Bt

T · ϕ̇dA, (23)

where ρ0, γ and T represent the material density, the pre-
scribed body force and the surface traction, respectively.
Now, with the rate-type potential Πη at hand, we propose
a mixed variational principle of the evolution problem as fol-
lows

{ϕ̇, ḋ, β} = Arg

{
inf

ϕ̇∈Wϕ̇

inf
ḋ∈Wḋ

sup
β≥0

Πη

}
, (24)

with the admissible domains for the primary variables

Wϕ̇ = {ϕ̇ | ϕ̇ = 0 on ∂Bϕ},
Wḋ = {ḋ | ḋ = 0 on ∂Bd}. (25)

Afterwards, the variation of the potential Πη with respect to
the fields {ϕ̇, ḋ, β} along with simple algebraic manipula-
tions via elimination and substitution of the respective terms
(see Gültekin et al. [19] for more details) results in the strong
form of the field equations, i.e.

1: Div P + ρ0γ = 0,
2: ηḋ = 2(1 − d)H − d + Div (L∇d).

(26)

The first equation in (26) simply describes the balance
of linear momentum, whereas the latter states the evolution
equation for the crack phase-field in which H indicates the
crack driving source term such that

H = Ψ0

gc/l
. (27)

The evolution of the phase-field parameter can be recast into
the form

ḋ = 1

η
[2(1 − d)H̄ − d + ∇d · L∇d], (28)

3.1.2 Small-strain setting

The displacement field u = x − X is described at a material
point X ∈ B ⊂ R

3 and at time t ∈ T , i.e.

u(X, t) :
{
B × T → R

3,

(X, t) �→ u(X, t).
(29)

The rate of energy storage functional E on the right-hand side
of (15) in the small-strain setting reads

E(u̇; ḋ) =
∫
B
( σ : ε̇ − f ḋ )dV , (30)

where the stress tensor σ is the work conjugate variable of
the small-strain measure ε = sym∇u. In (30), the energetic
force f appears as the work conjugate of the damage variable
d. The stress tensor σ and the scalar energetic force f are
then expressed as

σ = ∂εΨ (ε, A; d), f = −∂dΨ (ε, A; d). (31)
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The term f can also be interpreted as the local crack driving
force. The free-energy function Ψ in (31) characterizes a
degrading continuum with

Ψ (ε, A; d) := g(d)Ψ0(ε, A), (32)

where Ψ0 is the effective free-energy function of the hypo-
thetically intact solid. The regularized dissipation functional
(21) and the scalar viscous over-stress function (22) remain
unchanged. Finally, the (classical) external power functional
P stated on the right-hand side of (15) can now be written in
the form

P(u̇) =
∫
B

ρ0γ · u̇dV +
∫

∂Bt

T · u̇dA, (33)

where ρ0, γ and T represent the material density, the pre-
scribed body force and the surface traction, respectively.With
the expressions for the rate-type potentialΠη at hand,we pro-
pose a mixed variational principle of the evolution problem
as follows

{u̇, ḋ, β} = Arg

{
inf

u̇∈Wu̇

inf
ḋ∈Wḋ

sup
β≥0

Πη

}
, (34)

with the admissible domains for the primary variables

Wu̇ = {u̇ | u̇ = 0 on ∂Bu},
Wḋ = {ḋ | ḋ = 0 on ∂Bd}. (35)

Afterwards, the variation of the potential Πη with respect to
the fields {u̇, ḋ, β} and substitution of the respective terms
(see Miehe et al. [27] for more details) we obtain the strong
form of the field equations, i.e.

1: Div σ + ρ0γ = 0,
2: ηḋ = 2(1 − d)H − d + Div (L∇d).

(36)

3.2 A note on the weak formulation and numerical
implementation

On the numerical side, a canonical Galerkin-type finite ele-
ment procedure renders the weak forms of the coupled
balance equations given in (26). The nonlinearities due to the
geometry and the constitutive law, as subsequently described,
necessitates a linearization process employed on the weak
forms. Afterwards, an identical temporal and spatial dis-
cretization scheme is employed for the deformation map
and the crack phase-field. The field variables are appropri-
ately discretized with isoparametric shape functions so as

to transform the continuous integral equations of the non-
linear weighted-residuals and their linearizations to a set
of coupled, discrete algebraic equations. Finally, this set of
algebraic equations is solved by a one-pass operator-splitting
algorithm in a Newton-type iterative solver that successively
updates the history field described by the failure criterion,
the crack phase-field and the deformation field. For a more
elaborate numerical treatment of the respective problem, the
readers are referred to, e.g., Gültekin et al. [18,19].

4 Constitutive equations of themulti-field
problem

In this section,we elucidate: (i) the constitutive equations that
capture the nonlinear anisotropic response of a unidirectional
FRP composite and (ii) the related energy-based anisotropic
failure criterion capturing the state of the material at which
the cracking starts/propagates.

4.1 The constitutive model for the unidirectional
FRP composites

The free-energy function of isotropic solids can be modeled
through the three invariants I1, I2, I3, which constitute the
integrity basis of the deformation tensors C or b, see e.g.,
Spencer [43]. For incompressiblematerials the two invariants
I1 and I2 are enough to describe the isotropic deformation.

For transversely anisotropic solids, one can introduce the
additional set of invariants I4 and I5 with the help of the
structural tensors that satisfy the objectivity requirement
under superimposed rigid body rotations, see e.g., Betten [7],
Boehler [9] and Schröder and Neff [41]. In unidirectional
fiber-reinforced materials, the stored energy can be obtained
in terms of a free energy of the unreinforced base matrix with
the arguments I1 and I3 augmented by a storage function that
involves the fourth invariant I4 related to the fiber stretch.
The latter function is also known as the standard reinforcing
model, see Qiu and Pence [38]. A similar approach can be
adopted for the modeling of soft biological tissues, see, e.g.,
Holzapfel et al. [24].

To characterize the local anisotropic mechanical response
of a unidirectional FRP composite, the free-energy function
can be stated as

Ψ0(g, F, A f ) := Ψ iso
0 (J , I1) + Ψ ani

0 (I4). (37)

For the isotropic part of the mechanical response of the com-
pressible polymer matrix we adopt the generic compressible
neo-Hookean free-energy function. Thus,

Ψ iso
0 (J , I1) := λ

2
(lnJ )2 + μ

2
(I1 − 2lnJ − 3). (38)
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For the anisotropic part we use the standard reinforcing
model in the sense of Qiu and Pence [38], i.e.

Ψ ani
0 (I4) := μf

4
(I4 − 1)2. (39)

In (38), λ denotes the Lamé’s first constant, whereas μ

denotes the Lamé’s second constant or the shear modulus. In
the anisotropic term (39), μf stands for a stress-like material
parameter associated solely with the fibrous content.

Let us now exploit the Coleman–Noll procedure on the
Clausius–Planck inequality, and use the form of the free-
energy function Ψ , as introduced in (18), so that we can
retrieve the Kirchhoff stress tensor τ as

τ := PFT = 2∂gΨ = g(d)τ 0, τ 0 = 2∂gΨ0. (40)

Therein, g(d) is a monotonically decreasing quadratic degra-
dation function as provided in (19). For the relevant nonlinear
continuummechanics used see, e.g., Holzapfel [23]. By sub-
stituting (37) along with (38) and (39) into the definition
(40)2 we get the stress expression for the intact material, i.e.

τ 0 = λlnJ g−1 + μ(b − g−1) + 2ψ4 f ⊗ f , (41)

where we have introduced the (deformation-dependent) con-
stitutive function ψ4 by

ψ4 := ∂I4Ψ0 = μf

2
(I4 − 1). (42)

The change in the Kirchhoff stress tensor is provided by the
elasticity tensor here given in the spatial form as

C := 4∂2ggΨ = g(d)C0, C0 = 4∂2ggΨ0, (43)

for which the effective elasticity tensor C0 has the explicit
expression

C0 = λg−1 ⊗ g−1 + 2(μ − λlnJ )Ig−1 + 4ψ44M, (44)

where the symmetric fourth-order identity tensor Ig−1 has
the index representation (Ig−1)i jkl = (δikδ jl + δilδ jk)/2. In
addition, the constitutive function ψ44 reads

ψ44 := ∂I4ψ4 = μf

2
, (45)

and the fourth-order structure tensor takes on the following
form

M := f ⊗ f ⊗ f ⊗ f . (46)

4.2 Linearization of the constitutive model:
small-strain setting

The linearized form of the free-energy function (37) can be
represented as

Ψ0(ε, A) := Ψ iso
0 (ε) + Ψ ani

0 (ε, A). (47)

The isotropic and the anisotropic parts take on the simple
quadratic forms

Ψ iso
0 (ε) := λ

2
(trε)2 + μ(ε : ε),

Ψ ani
0 (I4) := μf(ε : A)2. (48)

The linear stress tensor σ o := ∂εΨ0 of the intact solid can
then be derived from (48), i.e.

σ 0 = λ(trε)1 + 2με + 2μf(ε : A)A. (49)

The related elasticity moduli C0 = ∂εσ 0 of the intact solid
can be derived as

C0 = λ1 ⊗ 1 + 2μI + 2μf A ⊗ A. (50)

Therein, the fourth order symmetric identity tensor I has the
following index representation (Ii jkl = (δikδ jl + δilδ jk)/2.
The proposed Ansatz is the simplest form of transverse
isotropy with only one additional material parameter μf to
describe the axial reinforcement due to unidirectional fibers.
This particular choice assumes identical shear response in
the planes including the fibers and the transverse plane. It
also excludes the coupling effect between the bulk response
and the fiber reinforcement.

4.3 Energy-based anisotropic failure criterion

Following Gültekin et al. [18,19], we start with the assump-
tion that two distinct failure processes govern the cracking
of the ground matrix and the fibers, whereby the anisotropic
structure tensor L in (11) is additively decomposed as

L = Liso + Lani with

Liso = l2 I, and Lani = l2ωf0 f 0 ⊗ f 0. (51)

Next we introduce giso
c and gani

c corresponding to the critical
fracture energies attributed to the ground-matrix (isotropic)
and the fibrous content (anisotropic) of FRP, respectively,
which homogenize the distinct mechanical resistance of the
respective interactions against rupture. Hence, the crack driv-
ing source term (27) can be decomposed as

Hiso = Ψ iso
0

giso
c /l

, Hani = Ψ ani
0

gani
c /l

. (52)
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For the rate-independent case for which η → 0, the expres-
sions (51) and (52) engender distinct evolution equations of
the crack phase-field in relation to the ground-matrix and the
fibrous content, i.e.

2(1 − d)Hiso = d − Div (Liso∇d),

2(1 − d)Hani = d − Div (Lani∇d). (53)

What remains is to superpose the two distinct failure pro-
cesses (53), which leads to the rate-independent evolution
equation of the phase-field, i.e.

(1 − d)H = d − 1

2
Div(L∇d), (54)

along with the specific form of the dimensionless crack driv-
ing source term

H(t) = max
s∈[0,t]

[〈H(s) − 1〉] ,

H = Hiso + Hani
.

(55)

Relation (55) indicates an irreversible andpositive crack driv-
ing source term such that the maximum positive value of
H(s) − 1 is tracked down for the entire deformation history
s ∈ [0, t]. The Macaulay brackets filter out the positive val-
ues for H(s) − 1 and keeps the solid intact until the failure
surface is reached, which denotes the energetic criterion pro-
posed by Gültekin et al. [18,19]. Finally, in view of (54), we
specify the rate-dependent case, i.e.

ηḋ︸︷︷︸
Crack evolution

= (1 − d)H︸ ︷︷ ︸
Driving force

−
[

d − 1

2
Div (L∇d)

]
︸ ︷︷ ︸

Geometric resistance

, (56)

where the evolution of the crack is characterized by the
balance between the crack driving force and the geomet-
ric resistance to the crack, see Miehe et al. [29]. A closer
examination of (56) shows that the geometric resistance is
directional dependent. In Fig. 4, for instance, the energy
threshold ratio of the crack in the direction f 0 to that in
the transverse direction to f 0 is G‖/G⊥ = L11/L22 =
(wf0 + 1)/1 leading to an isotropic crack resistance for
wf0 = 0.

5 Representative numerical examples

In this section we demonstrate the utility of the proposed
diffusive fracture model for FRP composites. The model is

20

20

20

40

F

F

F

F

(a)

(b) (c)

Fig. 5 Single edge-notched specimen with Mode-I and Mode-II load-
ing: a dimensions of the specimen with a notch; bMode-I load case; c
Mode-II load case. All dimensions are in millimeter

capable of capturing anisotropic fracture, which is illustrated
for a spectrum of benchmark problems such as single edge-
notched specimens with various fiber orientations subjected
to Mode-I and Mode-II loadings (Sect. 5.1). Although the
strain levels remain small until the onset of cracking, thefinite
strain version of the theory is adopted in order to consider (i)
the geometrical nonlinearities during the crack propagation
phase, and (ii) the large strains observed around the crack tip.
Finally a (more) realistic test case of a unidirectional lami-
nate with an initial notch undergoing mixed-mode bending
(MMB) is examined (Sect. 5.2).

5.1 Mode-I andMode-II tests for single
edge-notched specimens with various fiber
orientations

Consider a rectangular plate with a horizontal notch placed
in the middle of its height starting from the left edge. The
dimensions of the specimen with the notch together with
the Mode-I and Mode-II load cases are depicted in Fig. 5.
For a discretization with 15 000 standard displacement finite
elements, an element size of h = 0.4mm is used over the
whole domain and the length-scale parameter l is chosen to
be 2.5 times the element size. For the analysis, the plane strain
assumption is used, and only one element spans the thickness
of the plate. The anisotropy parameter ωf0 is set to unity. The
material is chosen to be a unidirectional AS4/3501-6 epoxy
lamina with the (reference) fiber direction [ f 0] = [1, 0, 0]
(horizontal fibers). In order to test how the proposed frame-
work captures experimental data, we make use of a set of
data provided by Soden et al. [42], and simulate the model
response at a singleGauss point fromwhich themodel param-
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Table 1 Model parameters λ, μ, μf , giso
c and gani

c with related values
and units

Parameter Value Unit

λ 5.2 × 103 (MPa)

μ 4.04 × 103 (MPa)

μf 64.6 × 103 (MPa)

giso
c 5.5 (MPamm)

gani
c 80.0 (MPamm)

eters are obtained. For the related values and units seeTable 1.
Figure 6 compares the model results with the experimental
data of the AS4/3501-6 epoxy lamina. The numerical results
agree favorably with the experimental data both under tensile
and compressive loads, a gradually diminishing mechanical
response under compression is observed upon reaching the
ultimate stress value.

The analyses for the Mode-I and Mode-II tests are now
conducted for six different fiber angles namely 0◦, 15◦, 30◦,
45◦, 60◦ and 90◦ (measured from the horizontal direction),
which are shown in Fig. 7. In the Mode-I test, an incremen-
tal load is applied at the beginning for every specimen to
find out the node-specific displacements, which are consid-
ered as the node-specific displacement increments during
the rest of the analysis, thereby retaining the smoothness
of the surfaces on which the displacements are exerted. As
for Mode-II the computations are performed with constant
displacement increments. The crack patterns pertaining to
Mode-I and Mode-II are illustrated in Fig. 7, in which it can
be seen that the propagation of the crack mostly follows the
orientation of the fibers for all cases simulated.

The respective load-displacement curves are depicted in
Fig. 8. The curves attributed to Mode-I (M1) suggest that a
0◦ fiber angle exhibits the highest stiffness response, while a
90◦ fiber angle experiences the highest strength. Part of the
reason for such a distinct behavior may be that the flanks
of the domain act, in a sense, as a cantilever beam under
bending due to Mode-I, thereby leading to a higher stiffness
value for the fiber orientation characterized by 0◦ degree. As
for a 90◦ fiber angle, the branching of the crack upon the
onset probably causes the highest strength among the cases
tested. However, both the stiffness and strength values are in
favor of the 0◦ fiber angle when it comes to theMode-II (M2)
test. The crack needs to rupture more fibers on its way for a
unit vertical distance.

5.2 Mixed-mode bending of a unidirectional CFRP

In this example the emphasis is on a thin rectangular carbon
fiber-reinforced polymer composite (CFRP) with a notch in
the middle subject to MMB. The information regarding the
test apparatus, test procedure and the results are obtained

from Crews and Reeder [12] and Naghipour et al. [35]. In
MMB, the delamination of the CFRP occurs under combined
influence of normal (Mode-I) and shear/sliding (Mode-II)
stresses. MMB tests make it possible to describe the delami-
nation resistance of a CFRP specimen and to account for the
effects of combined stresses by using a single test apparatus.
A geometrical sketch of the testing device consisting of a
load F and a loading lever with length c is shown in Fig. 9a
in the undeformed configuration.

A more detailed illustration of the loading acting on the
hinge supports along with the superposition of the loads
delineatingMode-I andMode-II is shown in Fig. 10. Therein,
a stands for the initial crack length (distance between the
loading direction and the crack tip) acting as a delamination
initiator, whereas L characterizes the specimen half-span. In
particular, the loading position c can be manipulated to gen-
erate a (pure)Mode-II loading casewhere F is directly above
the beam mid-span (c = 0). By removing the loading lever
and pulling up the hinge, one can achieve a (pure) Mode-
I loading scenario. It is worth to note that the relationship
between the deflection δc at the specimen half-span, at the
hinge δhinge and the total displacement δMMB that occurs at
the loading point is

δMMB = δc + c

L
δhinge with δhinge = δc + δMode−I , (57)

where δMode−I is the displacement at the hinge associated
withMode-I loading. For an illustration of the deformed state
see Fig. 9b.

5.2.1 Properties of the test specimen, experiments

The used material for the test specimen is APC2-prepreg,
which is composed of AS4-fibers (60% of the total vol-
ume) embedded in a polyether ether ketone (PEEK) matrix.
Each prepreg layer possesses a thickness of 140μm. In total,
24 carbon/PEEK unidirectional laminae ([0]24) are consid-
ered in the layup yielding a final specimen size of 25mm
width, 150mm length and 3.12mm thickness. Furthermore,
a 50mm film is placed as a delamination initiator in the mid-
plane, as indicated in Fig. 11.

In accordancewith the standards establishedbyASTM[1],
Naghipour [34] conducted mixed-mode experiments by
using the MMB testing device set up according to Fig. 9, and
by applying a cross-head displacement rate of 0.5mm/min.
Therein, different mode mixtures were considered. The
related lengths of the loading lever c for each mode mix-
ture, namely 30% and 50%, are 98.5mm and 65.0mm,
respectively, and the resulting load-displacement (F-δMMB)
behavior of the unidirectional layup is shown as dashed
curves in Fig. 12.
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Fig. 6 Numerical prediction
versus experimental data for an
AS4/3501-6 epoxy
lamina-stress σ versus strain ε

in the 1 (horizontal) and 2
(vertical) direction: a tension in
the 1 direction; b compression
in the 2 direction
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Fig. 7 Evolution of the crack
phase-field d for Mode-I and
Mode-II tests in single
edge-notched specimens with
different fiber angles θ : a
θ = 0◦; b θ = 15◦; c θ = 30◦; d
θ = 45◦; e θ = 60◦; f θ = 90◦
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Fig. 8 Relationships between
load F and displacement u for
Mode-I (M1) and Mode-II (M2)
tests on single edge-notched
specimens with various fiber
angles, namely θ = 0◦, 15◦,
30◦, 45◦, 60◦ and 90◦: a, b
Mode-I; c, d Mode-II
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5.2.2 Numerical simulation

The material properties of the APC2 lamina are obtained at a
Gauss point, which are summarized in Table 2, while the (ref-
erence) fiber direction is [ f 0] = [1, 0, 0] (horizontal fibers).
Figure 13 provides the fitting to the experimental data, i.e.
the in-plane stress values pertaining to the fiber (horizontal)
and transverse (vertical) directions, see Naghipour [34].

In accordance with the loading descriptions characterized
in Fig. 9, an in silico replica of the specimen is made and
then discretized. In order to better resolve the crack pattern
the mesh is refined around the crack tip yielding a discretiza-
tion of 6 000 brick elements with an effective element size
of h = 0.065mm in the refined zone. Appropriate bound-
ary conditions are applied to avoid rigid body motions, see
Fig. 11. In the analyses the plane strain assumption is applied
with a single element used in the direction of the width.
Two sets of analyses are carried out: (i) with the anisotropy
parameter ωf0 = 1 and (ii) with ωf0 = 30. Two different
mode mixtures are taken into account in which the length-
scale l is considered to be 0.15mm satisfying the empirical
requirement that l ≥ 2h. In other words, the length-scale

parameter considered is greater than two times the minimum
element size. The applied load F and the chosen specimen
half-span L are 1N and 62.5mm, respectively, from which
the proportional loads exerted on the specimen are calcu-
lated. Afterwards, the displacement ratios corresponding to
the calculated proportional loads are ascertained, and applied
at the loading points, as depicted in Fig. 10. The lengths
c, the proportional (hinge/middle) loads and the respec-
tive displacement ratios for each mode mixture are listed
in Table 3. As a matter of fact, the analyses are carried out
displacement-driven. The loading speed is 5mm/min with
the time increment Δt = 0.5 that runs until the onset of the
macro-crack. From this point onward, the time increment is
reduced to Δt = 0.05, which is followed by Δt = 0.005
during the crack propagation.

To obtain the corresponding load-displacement (F-δMMB)
curve from the points on which the loads are applied, the
values of the displacements at the hinge δhinge and the middle
δc of the specimen together with the related reaction forces
are stored during each analysis. The applied load F is then
calculated via the balance of moment with respect to the
mid-point of the lever, i.e. F = FhingeL/c, for every time
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Fig. 9 a Geometrical sketch of the MMB testing device with the specimen in the undeformed configuration; b in the deformed configuration with
the corresponding displacements (reconstructed from Crews and Reeder [12]

increment, where Fhinge is the reaction force at the hinge. In
addition, (57) is exploited so as to compute the corresponding
values of δMMB.

5.2.3 Results and discussion

The anisotropic phase-field approach is examined for unidi-
rectional composite laminates by comparing the experimen-
tal data with the finite element results for the two different
mode mixtures namely 30% and 50%, see Fig. 12a, where a
slight anisotropy is incorporated into the phase-field model
(ωf0 = 1). A close examination indicates an agreement
between the experimental and numerical results for the two
mode mixtures. The largely linear initial response of the uni-
directional laminate precedes with a rather abrupt decline,
leading the fracture process zone to grow. The growth shows
an inclined pattern towards the top of the specimenwhile rup-
turing several laminae on its way, as presented in Fig. 14a.

The simulations performed for ωf0 = 30 are primarily
in line with those conducted for ωf0 = 1 during the initial
phase of macro-cracking, giving rise to a sharp reduction in
the load bearing capacity, as indicated in Fig. 12b. Neverthe-
less, the material tends to sustain a constant amount of load
as the crack propagates further, while damaging the inter-
laminar medium between the laminae. The crack path starts
to better trail the direction along which the reinforcing fibers
are embedded, see Fig. 14b, which stands in sharp contrast
to the former, i.e. ωf0 = 1.

If we are to assess the discrepancy created when a rela-
tively strong anisotropic geometric resistance to cracking is
assumed (ωf0 = 30), it is evident that the crack no longer
cut across the laminae located on the top of each other, but
starts to evolve at the interface between the laminae towards
the right end of the specimen, thereby resembling peel tests,
see, e.g., Gültekin et al. [19], where a relatively constant load
drives the peeling of the specimen parallel to the fibers in the
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Fig. 10 Illustration of loading
of the MMB test specimen
decomposed according to
Mode-I and Mode-II cases
(reconstructed from Crews and
Reeder [12]
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Fig. 11 Dimensions of the specimen with a 50mm film placed in the mid-plane serving as a delamination initiator. Also shown are the boundary
conditions and displacement at the hinge and the middle of the specimen, i.e. δhinge and δc. All dimensions are in millimeters
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Fig. 12 Experimental (dashed
curves) and numerical (solid
curves) results for the
relationship between the load F
and the loading point
displacement δMMB for
unidirectional laminates with
30% and 50% mode mixtures: a
ωf0 = 1; b ωf0 = 30
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Table 2 Model parameters λ, μ, μf , giso
c and gani

c of an APC2 lamina
with related values and units

Parameter Value Unit

λ 5.84 × 103 (MPa)

μ 3.61 × 103 (MPa)

μf 62.0 × 103 (MPa)

giso
c 1.82 (MPamm)

gani
c 33.0 (MPamm)

post-cracking phase. However, in the case of ωf0 = 1 the
crack evolution is driven across the laminate until the top of
the specimen, which eventually results in the failure of one
of the arms. As a consequence, a more abrupt failure of the
entire system occurs, which is seen in Fig. 12a.

6 Conclusion

This study presents one of the few attempts to model fail-
ure of engineered composite materials by making use of an
anisotropic crack phase-field approach. A concise yet critical
outline of previous contributions pertaining to strength-based
and energy-based criteria for failure of composites is given.
Subsequently, the theoretical backbones of the anisotropic
phase-field approach is reviewed which relies on the super-
position of the distinct fracture processes associated with the
matrix and fibrous content. The phase-field model of fracture

Table 3 Lengths c, proportional loads and related displacements for
each mode mixture

Mode mixture 30% 50%

c (mm) 98.5 65.0

Hinge load (N)/displacement (mm) 1.58/2.14 1.04/1.34

Middle load (N)/displacement (mm) 2.58/1.0 2.04/1.0

is essentially modular consisting of two sub-problems ema-
nating from the deformation field ϕ and the crack phase-field
d. The numerical examples and the discussions focus on the
crack initiation via fitting to experimental data and the direc-
tion on which the crack finds its path through relevant tests,
such as Mode-I, Mode-II and MMB. In particular, the first
example scrutinizes the anisotropic fracture of a single-edged
notch plate in response to Mode-I and Mode-II loadings by
altering the orientation of fibers, while the second example
offers an analysis of a unidirectional CFRP laminate under
MMB, touching upon different fracture zones in relation
to the anisotropy parameter. It is noteworthy that the fit of
the anisotropic model shows a satisfactory coherence with
experimental data. The proposed model approach serves a
sound basis for more advanced analyses of crack initiation
and propagation in unidirectional fiber-reinforced polymer
matrix composites.

Fig. 13 Numerical prediction
versus experimental data for an
APC2 lamina-stress σ versus
strain ε in the 1 (horizontal) and
2 (vertical) direction: a tension
in the 1 direction; b
compression in the 2 direction
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Fig. 14 Evolution of the crack
phase-field d with respect to the
mode mixture of 30% (left
panels) and 50% (right panels)
for two anisotropy parameters: a
ωf0 = 1; b ωf0 = 30
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