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Abstract 
In this study, we develop an interactive algorithm to converge to the most preferred 

alternative of a decision maker (DM) among a set of discrete alternatives. The algorithm 
presents a limited number of alternatives to the DM and collects preference ranking of them 
iteratively. The preferences are modeled by a flexible and realistic preference function. To 
improve the performance, the alternatives presented are determined by a filtering method. We 
compare our algorithm with benchmark algorithms on numerous data sets from Quacquarelli 
Symonds, a higher education marketing company that reports annual rankings of universities 
under different categories. The results show that our algorithm outperforms the benchmark 
algorithms. 
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1. Introduction 
In many real-life decision making problems, the decision maker (DM) has 

multiple concerns. There are numerous criteria that have to be addressed 
simultaneously, and these criteria generally conflict with each other. As a result, 
there is no single optimal solution. In Multiple Criteria Decision Making (MCDM) 
problems, the focus is on efficient solutions instead. For efficient solutions, the 
value of a criterion cannot be improved unless at least one other criterion is 
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worsened. Different DMs may have different preferences for the criteria and as a 
result, each can choose a different efficient solution as her/his best solution. In fact, 
theoretically, for each efficient solution, there can be a DM who will prefer it above 
all others. In such problem settings, MCDM methods come forward as appropriate 
and useful solution procedures.  

Among areas that MCDM methods have been applied to, some examples are 
country rankings, economics, energy, environmental issues, healthcare, 
sustainability in social issues and education.  Munda and Nardo (2009), for 
example, ranked 146 countries with respect to numerous criteria related to 
environmental sustainability like pollution, natural resource depletion, and ability 
to respond to environmental challenges. They employed a nonlinear aggregation 
technique to obtain scores for the countries. Nuuter et al. (2015) evaluated the 
sustainability of housing markets with respect to six criteria that reflected economic, 
social and environmental issues. In their applications, they used a popular MCDM 
method, COPRAS, to rank European countries. Kadzinski and Tervonen (2013) 
applied their additive ranking approach to evaluate 20 European countries with 
respect to the quality of their universities. Criteria were reflecting the number of 
universities in the top ranks of world rankings, the number of leading universities, 
and economical position of the country. As an example of studies in the energy 
sector, Karagiannidis and Perkoulidis (2009) used Electre III, which is one of the 
most popular MCDM techniques, to assess and rank anaerobic digestion 
technologies. The criteria used are greenhouse gas emission, energy recovered, 
material recovered, and operating cost. Thokala and Duenas (2012) explored the 
use of a variety of multiple criteria techniques in health technology assessment. 
They reviewed certain MCDM methods and applied some of them to a case study 
of assessing the performance of different drugs as treatment options. MCDM 
methods have also been applied for performance evaluation. As an example, Yalcin 
et al. (2012) used different MCDM methods to assess the financial performance of 
Turkish manufacturing firms in different industries. They employed fuzzy AHP to 
determine the weights of criteria used and then applied TOPSIS and VIKOR to 
obtain a ranking of the firms. They considered traditional accounting-based 
financial performance measures as well as new value-based financial performance 
measures. One can see Mardani et al. (2015) for a review of several MCDM 
techniques and their applications for the years 2000-2014. They reported the most 
prevalent methods, and indicated that energy, environment and sustainability are 
the most widely studied areas. 

When the MCDM problem involves a large number of efficient solutions that 
the DM should choose from, it is difficult for the DM to make a decision. In this 
paper, we propose an interactive algorithm designed to converge to the most 
preferred solution of the DM among a set of discrete solutions. Our algorithm 
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contributes to the literature by guiding the DM in reaching a final solution with 
considerably low number of iterations. In addition, the final solution is either the 
true best solution of the DM or a very close solution to it. We model the preferences 
of the DM with weighted Lα functions. These functions minimize the weighted Lα 
distance from the ideal vector of the best values in all criteria. Lα functions are 
capable of representing different preference structures of DMs with different 
criteria weight vectors and distance metrics (Karakaya et al., 2018). Through 
successive iterations, we present the DM small subsets of solutions and ask her/him 
to provide a ranking of them. Using the preference information gathered, we 
perform preference parameter estimations and eliminate solutions that cannot be the 
best for the DM. We apply a filtering approach in the selection of the solutions that 
will be presented to the DM in order to converge to the most preferred solution 
faster. We apply our algorithm to several problem sets that consist of different 
numbers of universities and criteria. We test the performance of our algorithm 
extensively using numerous preference parameters to simulate DM preferences. We 
also compare our algorithm with benchmark algorithms.  

The paper is organized as follows: Section 2 contains the literature review on 
preference representation and elicitation in MCDM problems. In Section 3, we 
present our approach. Section 4 introduces the test problems and reports the results 
of experiments. In Section 5, we conclude our work with discussions of results and 
future studies.  

2. Preference modeling and elicitation in the literature 
Many studies in MCDM literature assume that preferences of the DM can be 

represented through certain functions. These functions are referred to as 
preference/value/utility functions. Using quantitative evaluations of solutions with 
respect to each criterion, these functions serve to obtain an overall preference 
measure for a given solution. It is assumed that the DM can compare and choose 
between available solutions using this overall measure. As stated in Roy (2016), 
decision making problems in multiple criteria analysis can be categorized into three 
groups: (i) the choice problem, where the best solution or a small set of best 
solutions are sought, (ii) the sorting problem, where the solutions are grouped into 
classes and these classes are preference ordered and (iii) the ranking problem, 
where solutions are listed in the order of preference. In this paper, we work on the 
choice problem where we aim to find the most preferred solution of the DM.  

Linear, additive, quasiconcave, and general monotone functions are among 
the commonly used preference functions. The additive form is a classical and 
widely-used preference function; its foundations can be seen in Keeney and Raiffa 
(1976) and Wakker (1989). The Interactive Weighted-Sums/Filtering Method of 
Steuer (1986) assumed a weighted additive preference function and reduced the 
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feasible weight space using DM preferences gathered through iterations. Jacquet-
Lagrèze and Siskos (1982) proposed the popular UTA method that aims to find 
additive utility functions compatible with DM preferences. After the UTA method, 
which has been the start of the ordinal regression paradigm in MCDM, preference 
functions of different forms have also been studied (a review of these studies is 
available in Siskos et al., 2016). In traditional ordinal regression based approaches, 
after utility functions in line with DM preferences are derived, one of these 
functions is selected according to some decision rules. In robust ordinal regression, 
however, all functions that obey DM preferences are considered and accounted for 
(Greco et al., 2008). Angilella et al. (2004) claimed that the assumptions of the UTA 
method about the utility function can make the problem infeasible and proposed a 
fuzzy integral framework with nonadditive functions that can take into account any 
interactions between criteria. Marichal and Roubens (2000) also worked with 
interacting criteria and fuzzy integrals using partial rankings of criteria and 
alternatives. Benabbou et al. (2015) argued that nonlinear aggregation functions 
bring flexibility to the preference elicitation process by allowing for interactions 
between criteria. They estimated the parameters of these functions with a mini-max 
regret approach.  

Several researchers developed methods to handle uncertainties and 
incomplete information in the preference elicitation process. Salo and Hämäläinen 
(2001) accepted partial preference statements of the DM and derived information 
from these. Sarabando and Dias (2010) considered a setting where only rankings of 
criteria weights and rankings of alternatives in individual criteria are present. They 
estimated the parameters of the aggregation model using Monte Carlo simulation 
and then obtained a ranking of the alternatives. A comparison of studies where only 
ranking information of the weights is present (as opposed to cardinal values) can be 
found in Ahn and Park (2008). In some cases, the DM can be indifferent between 
some alternatives and may not be able to choose among them. Considering this 
situation, Branke et al. (2015) proposed the use of indifference thresholds in robust 
ordinal regression. Again using the concept of thresholds, Branke et al. (2017) 
proposed several heuristics to decrease the level of interaction with the DM to find 
the preferred solution. One can see Pirlot and Vincke (2013) for a general discussion 
on the use of indifference thresholds in preference models.  

A number of studies claim that preferences of humans can be represented with 
quasiconcave preference functions when objectives are to be maximized 
(Silberberg and Suen, 2001; Nicholson and Snyder, 2008). Ulu and Köksalan 
(2014) provided an example application of these preference functions for a multiple 
criteria sorting problem. Lokman et al. (2018) assumed three nondecreasing 
quasiconcave preference functions in their study and aimed to find the preferred 
solution of the DM with a specified level of accuracy. Özpeynirci et al. (2017) also 
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worked with quasiconcave preference functions in a multiple criteria choice 
problem. They estimated the likelihoods that one alternative would be preferred to 
another and used this information to ask the DM fewer questions. When the 
objectives are of minimization type, quasiconvex preference functions prevail as 
appropriate and useful representations. In this paper, we assume a weighted Lα 
preference function which is a member of the set of quasiconvex preference 
functions. Tuncer Şakar and Karakaya (2018) also worked with a quasiconvex 
preference function in an interactive choice problem. Working in an iterative 
manner, they presented the DM sets of alternatives for her/him to select the most 
preferred one.  

In this study, we make our experiments with data from Quacquarelli Symonds 
(QS), which is a higher education marketing company that provides annual rankings 
of universities from all over the world in different categories. Ranking of academic 
programs is a popular issue and the periodical lists are awaited with interest. Besides 
QS, publications such as Times Higher Education, US News & World Report and 
Financial Times also provide rankings of universities and MBA programs. In these 
rankings, criteria that are considered to be important in the evaluation of academic 
programs and their weights are predetermined. When determining the criteria, 
various factors such as education quality, the quality and the quantity of 
publications, international diversity of students and academic staff, their female 
ratios, the occupations and income of the alumni are considered. One can refer to 
Millot (2015) for a comparison of the ranking methods applied to universities and 
other higher education systems. Hazelkorn (2015) provided detailed and general 
information about these rankings. Some researchers developed their own ranking 
methods using published criteria values of academic institutions (Köksalan and 
Tuncer, 2009; Köksalan et al., 2010). However, these studies are not related to 
preference elicitation and guiding the DM towards preferred solutions. Our 
approach takes the universities in QS rankings as alternatives and uses their scores 
in the criteria considered as the data set. It does not use the aggregation 
methodology or the specific criteria weights of QS.  

3. An interactive ranking-based algorithm with filtering 
To structure and develop our algorithm, we modify the interactive choice 

algorithm of Tuncer Şakar and Karakaya (2018). That algorithm is also developed 
to aid the DM in arriving at a single preferred solution among a set of discrete 
solutions, and the preferences of the DM are assumed to be consistent with a 
weighted Lα preference function. The DM is again presented with a set of solutions 
determined with filtering in each iteration, but instead of ranking them, she/he 
selects the most preferred one. That algorithm was shown to produce good results 
in finding the most preferred solution(s) of the DM. Specifically, the advantages of 
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determining the presented solutions with a filtering method rather than random 
selection were extensively shown. In addition, it provided more favorable 
convergence speed performance as opposed to another choice algorithm from the 
literature, the algorithm by Korhonen et al. (1984). Here in this study, we focus on 
developing a more effective way of eliciting preference information from the DM 
after the solutions to be presented are determined. By asking the DM to provide a 
preference ranking, we aim to obtain better convergence to the most preferred 
solution of the DM. In addition, we anticipate to obtain more accurate parameter 
estimates for the preference function. Instead of just guiding the DM towards a final 
solution, we plan to obtain good preference parameter estimates that can be used in 
similar problems for the DM. If our algorithm estimates the distance metric 
parameter α and the criteria weights vector w well, these can be used directly for 
other similar problems without running the algorithm.  

We compare our algorithm with two benchmark algorithms from the 
literature. The first one is the interactive choice algorithm of Tuncer Şakar and 
Karakaya (2018), which was shown to outperform the widely-used algorithm by 
Korhonen et al. (1984). The second benchmark algorithm is the Interactive 
Weighted-Sums/Filtering Method of Steuer (1986). Similar to our algorithm, this 
algorithm guides the DM to reach a final solution through successive iterations of 
collecting preference information. It also uses filtering to determine the set of 
solutions to present the DM. It starts with a set of random weight vectors and they 
are filtered to obtain representative ones. For representative weight vectors, the 
corresponding best solutions are found with weighted sum linear programs and 
these solutions are also filtered to further reduce the search region. The resulting 
solutions are presented to the DM and the DM selects the best one. Then, the 
algorithm proceeds with new random weight vectors generated around the weight 
vector of the best solution and continues for a predetermined number of iterations. 
At each iteration, the ranges for the random weight vectors are tightened. The best 
solution of the last iteration is the final solution. 

3.1. Preliminaries 
Filtering refers to the process of choosing a small representative subset from 

a large but limited number of points. It is desired that the resulting filtered subset 
contains points that are different from each other so that they will be able to 
represent the whole set well. The filtering method that we use is the method of first 
point outside the neighborhoods (Steuer, 1986, pp. 314-318). Given a list of data 
points, this method selects the first point and puts it in the filtered set that will 
contain the representative ones. Then, starting with the second point and continuing 
down as necessary, it looks for the first point that is significantly different from the 
point in the filtered set. This point is also put into the filtered set. Proceeding down 
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the list one by one, the next point to be retained must be significantly different from 
both of the points in the filtered set. Continuing in this manner, each point retained 
must be significantly different from all the points in the filtered set.  

The method of first point outside the neighborhoods is given in Algorithm 1. 
X is the set of solutions to be filtered, F is the set of solutions retained by the filter, 
d is the distance parameter used to test significant difference, and p is the desired 
number of filtered solutions to obtain. At the start of Algorithm 1, there is no fixed 
rule to order the points in set X, the points can be ordered randomly. However, the 
first point in the list will necessarily be filtered. Similarly, there is no fixed d value. 
One can try different values for d until the desired value of p is reached. The reader 
is referred to Steuer (1986, pp. 316-318) for a systematic approach to shorten this 
trial-and-error process. 

Algorithm 1 
Filtering 

procedure Filter 
 list all points in X in an order as x1, x2, …, xk where 𝑘𝑘 = |X|; 

p← initial value, d← initial value, 𝐹𝐹 = { }; 
while |F| ≠ p do 
𝐹𝐹 = { }, t = 1, F← F ∪{xt} and t← t+1; 

while t  ≤ k do 
for each xi ∈ F do 

calculate dti, the distance of xt from xi; 
end for 
if min

𝑖𝑖 ∋ 𝑥𝑥𝑖𝑖∈ 𝐹𝐹
𝑑𝑑𝑡𝑡𝑖𝑖 ≥ 𝑑𝑑 then  

F← F ∪{xt}; 
end if 
t← t+1; 

end while 
if |F| < p then 

decrease the value of d; 
else if |F| > p then 

increase the value of d; 
end if 

        end while  
        return F; 

end procedure 
 

For the weighted Lα preference function, when the weight vector is denoted 
as w (wj >0, ∑ wjj =1), the representation becomes Lα

w. In Lα
w functions, weighted Lα 
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distance of a point from the ideal point is calculated. The ideal point, 𝒛𝒛∗ ∈ Rn is 
defined as the point that has the best value in each criterion. It is a utopian point 
that does not really exist but is used as a reference point. The weighted Lα distance 
of vector 𝒛𝒛 ∈ Rn to 𝒛𝒛∗ in the presence of n criteria is calculated as in Eqn. 1:  
 

Lαw(|𝒛𝒛∗-𝒛𝒛|) =

{
 

 (∑ (wj|zj
*-zj|)

αn

j=1
)
1/α

                      if 1 ≤ α <∞

   max
j=1,…,n

{wj|zj
*-zj|}                                 if α = ∞        

 (1) 

 
When a DM with this preference function is presented with the solutions to 

be ranked, she/he places the solution with the smallest Lαw value in the first position, 
the solution with the next smallest Lαw value in the second position and so on. Lαw 
function is a flexible and realistic preference function that can simulate the behavior 
of various DMs with different choices for the values of α and w.  

3.2. The proposed algorithm 

Let Z be the set of available efficient solutions,  𝒛𝒛𝒊𝒊𝒊𝒊𝒊𝒊 be the incumbent solution 
(the most preferred solution found by the algorithm so far), k be the number of 
solutions presented to the DM in each iteration, r be the iteration counter, Fr be the 
set of filtered solutions in iteration r, Sr be the set of solutions presented to the DM 
in iteration r, 𝑃𝑃𝑃𝑃 be the preference set formed by all selections of the DM so far, 
𝑃𝑃𝑃𝑃={(𝒛𝒛𝒎𝒎,𝒛𝒛𝒑𝒑):u(𝒛𝒛𝒎𝒎)<u(𝒛𝒛𝒑𝒑)} where 𝑢𝑢(∙) represents the true preference function 
value of the DM. Finally, let αr and wr be the estimated parameters of the preference 
function in iteration r. The pseudocode of our algorithm is shown in Algorithm 2 
as follows: 
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Algorithm 2 
The proposed algorithm 

procedure Proposed algorithm 
 list all points in Z in an order as 𝒛𝒛𝟏𝟏, 𝒛𝒛𝟐𝟐, …, 𝒛𝒛|𝒁𝒁|; 

r = 1, Sr = { }, 𝑃𝑃𝑃𝑃 = { }; 
select k solutions from Z with Algorithm 1, and place them in set Sr;  
while |Z| ≥ k do 

ask the DM to rank the k solutions in Sr in order of preference; 
label the first solution in the order as 𝒛𝒛𝒊𝒊𝒊𝒊𝒊𝒊; 
update 𝑃𝑃𝑃𝑃, Z←Z \ Sr; 
if termination condition is not satisfied then 

r←r+1; 
using all preference information gathered so far, 𝑃𝑃𝑃𝑃, update αr and wr; 
find the inferior solutions in Z, eliminate them, and update Z;  
if |Z| < k then 

Sr= Z ∪{𝒛𝒛𝒊𝒊𝒊𝒊𝒊𝒊}; 
ask the DM to rank the solutions in Sr in order of preference; 
update 𝒛𝒛𝒊𝒊𝒊𝒊𝒊𝒊 as the first solution in the order; 

else 
find the best solution in Z \{𝒛𝒛𝒊𝒊𝒊𝒊𝒊𝒊} according to the estimated 
preference function; 
put this solution in the first order and make a list of the points in Z; 
select k-1 solutions from Z with Algorithm 1 and put them in Fr; 
Sr= Fr ∪{𝒛𝒛𝒊𝒊𝒊𝒊𝒊𝒊}; 

end if 
end if 

end while 
        return 𝒛𝒛𝒊𝒊𝒊𝒊𝒊𝒊; 

end procedure 
 

To initialize Algorithm 2, we list the solutions in Z as stated in Section 3.1 
and select filtered solutions. At each iteration, we present Sr to the DM and ask 
her/him to rank the solutions in order of preference. The most preferred solution 
among these becomes the incumbent solution. The other solutions evaluated are 
removed from Z and they are not presented to the DM again in later iterations. Using 
all past preferences of the DM, we estimate the parameters of the Lα

w function with 
the mathematical model defined by Eqn. 2-6 (for details, see Karakaya et al., 2018). 
In this model, α is the estimated parameter of the Lα

w function, zij is the jth criterion 
value of solution i and zj* is the ideal value of criterion j. Decision variables wj and 
ε stand for the weight of criterion j and the minimum difference between the 
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preference function values of the solutions that the DM provides a ranking of, 
respectively. 
 

Max 𝜀𝜀   (2) 

[∑ (wj(zj
*-zpj))

α
n

j=1

]
1/α

≥ [∑ (wj(zj
*-zmj))

α
n

j=1

]
1/α

+ ε     ∀ (𝒛𝒛𝒎𝒎,𝒛𝒛𝒑𝒑) ∈ PS    (3) 

wj ≥ ε     ∀ j  (4) 

∑ wj =1
n

j=1
  (5) 

ε ≥ 0       (6) 

    
We incorporate all preference information provided by the DM into the model 

in Eqn. 3 using the estimated preference function. At each iteration, the DM 
evaluates k solutions and ranks them in order of preference. To enter this 
information to the model, we use as few constraints as possible. We write a 
constraint to ensure that the first ranked solution is better than the second in terms 
of preference value by at least ε. We write a similar constraint for solutions ranked 
second and third, and continue until the rank list is exhausted. We keep writing such 
constraints so long as new preference information is collected at each iteration. The 
aim of objective function (Eqn. 2) is to find wj values that suit the preferences of the 
DM for the estimated α value with the largest ε. Eqn. 4 ensures that the wj values 
found are centralized weights in the sense that they are as far as possible from the 
closest constraint. This helps to restrict the weight region in a reasonable way 
without concentrating on extreme regions (Köksalan, 1984). Eqn. 5 normalizes wj 
weights so that their sum is 1. Eqn. 6 restricts ε to be nonnegative.  

We assume α to take integer values and at the beginning of Algorithm 2, we 
set the estimated value of α=1. We solve the above model for the current value of 
estimated α. In case the model is not feasible for the current α value, we increase its 
value iteratively, in unit increments, until the model becomes feasible. The main 
purpose is to find the smallest α value that supports the preferences of the DM so 
that we decrease computational complexity and refrain from dealing with rounding 
errors due to high α values. During Algorithm 2, we eliminate the inferior solutions 
using the approach of Karakaya et al. (2018). This enables us to speed up the 
algorithm by eliminating redundant questions to the DM.  

METU STUDIES IN DEVELOPMENT 27 

If the number of solutions remaining in the solution set drops below the 
number of solutions presented to the DM in any iteration (k), all the solutions in the 
set and the incumbent solution are presented to the DM for the final time. The most 
preferred solution among these becomes the final solution and Algorithm 2 stops. 
On the other hand, if the cardinality of the solution set is above k, past preference 
information of the DM is utilized and the best solution in this set with respect to the 
estimated preference function is found. The inclusion of this solution amongst the 
set to be presented to the DM in the next iteration is expected to improve the 
algorithm. Therefore, we place it at the top of the filtering list. The solutions that 
we present to the DM at each iteration include the incumbent solution, so Algorithm 
2 keeps the best solution found so far.  

There are different termination conditions that can be applied in Algorithm 2. 
For example, the DM can choose to end the process with the current incumbent 
solution without exhausting the whole solution set or the DM and/or the analyst can 
determine the maximum number of iterations for the algorithm before the start. 
However, these termination conditions are not appropriate for simulation without 
real DMs. As a result, to be able to apply a consistent and objective rule, we choose 
to end Algorithm 2 when the improvements become insubstantial. We stop it 
whenever in two consecutive iterations the incumbent solution and the estimated α 
value do not change, and the maximum difference of the weight values in the 
estimated w vector is below some threshold. Even though we implement this 
termination condition, the progress of Algorithm 2 after the condition is also studied 
and reported in Section 4.  

When the DM is to provide a ranking of solutions, we allow for indifference. 
It is possible that the DM will not be able to give a complete ranking; i.e., some 
solutions could have equal rank. In this case, we do not force the DM and use only 
the information that she/he can provide. Eqn. 3 is written only for the pairs that the 
DM is comfortable with. In experiments, we simulate this situation through the use 
of an indifference threshold. If the preference function values of two solutions do 
not differ by at least this threshold, we assume that the DM is indifferent and do not 
force a constraint. If there is a tie between the solutions in the first rank, one of them 
can randomly be selected as the incumbent solution. As another special case, 
inconsistent DMs can be observed. The preferences of a DM may not be in line with 
her/his preferences in previous iterations. This situation may result in infeasibility 
when the preference function parameters are to be estimated. To handle this issue, 
approaches explained in Chinnek (2008) to deal with infeasibility can be applied. 
For instance, the oldest DM responses that cause infeasibility can be deleted or the 
constraints that cause the maximum level of infeasibility may be removed.  
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4. Experimental studies 
In this section, first we introduce the data set that we use in our experiments. 

Subsequently we present and discuss our applications and results.  

4.1. Test problems 
QS marketing company publishes annual rankings of universities from all 

over the world under various categories like World university rankings, Asia 
university rankings, Global MBA rankings and so on (QS Top Universities, 2018). 
For different categories, QS uses different criteria to evaluate the contenders. From 
2018 rankings, we have selected several data sets from different categories to apply 
our method. Firstly, we studied the list of World universities that are evaluated with 
respect to 6 criteria, all of which are to be maximized. These criteria are academic 
reputation, citations per faculty, employer reputation, faculty-student ratio, 
international faculty ratio and international student ratio. Out of this list, we were 
able to identify 50 efficient universities. We name this set W50-6 for our 
experiments. Then, we aimed to obtain a larger set of efficient solutions and found 
100 such solutions from the Engineering and Technology list. The 4 criteria for this 
list are academic reputation, employer reputation, citations per paper and h-index 
citations. We name this set E100-4. As we were not able to obtain other efficient 
sets with 100 solutions or higher, we studied other categories for efficient sets with 
cardinalities between 50 and 100. We identified 70 efficient solutions from Life 
Sciences and Medicine (L70-4) and Arts and Humanities (A70-4) lists that are 
evaluated with respect to the same criteria as E100-4. Lastly, using a different 
region of the Engineering and Technology list (different from E100-4), we found 
another 70 efficient solutions (E70-4). As a result, we have 5 data sets in total: A70-
4, E70-4, L70-4, E100-4, and W50-6. For all these sets, we take the criteria values 
of the corresponding universities published by QS. We do not take the QS weights 
or the rankings into account. 

The parameters of the preference function we use in this study are α and w. 
To be able to test the algorithm for different underlying preference functions, we 
assume various values for these parameters. In our experiments, we use 1, 2, 3, 4, 
5, 6 and infinity for α. In this way, we can model a wide variety of preference 
functions including linear, quadratic, and Tchebycheff forms. We simulate DM 
responses consistent with the assumed preference functions. When determining w 
vectors, we aimed for sets that represent the entire weight space well. For this 
purpose, we used the 50-50 strategy explained in set discretization in Steuer (1986, 
pp. 326-330). As illustrated in this reference, random weight vectors selected from 
the uniform distribution tend to gather around in the center region of the weight 
space, which means the weights are close to each other. On the other hand, weight 



28 Gülşah Karakaya - Ceren Tuncer Şakar 

4. Experimental studies 
In this section, first we introduce the data set that we use in our experiments. 

Subsequently we present and discuss our applications and results.  

4.1. Test problems 
QS marketing company publishes annual rankings of universities from all 

over the world under various categories like World university rankings, Asia 
university rankings, Global MBA rankings and so on (QS Top Universities, 2018). 
For different categories, QS uses different criteria to evaluate the contenders. From 
2018 rankings, we have selected several data sets from different categories to apply 
our method. Firstly, we studied the list of World universities that are evaluated with 
respect to 6 criteria, all of which are to be maximized. These criteria are academic 
reputation, citations per faculty, employer reputation, faculty-student ratio, 
international faculty ratio and international student ratio. Out of this list, we were 
able to identify 50 efficient universities. We name this set W50-6 for our 
experiments. Then, we aimed to obtain a larger set of efficient solutions and found 
100 such solutions from the Engineering and Technology list. The 4 criteria for this 
list are academic reputation, employer reputation, citations per paper and h-index 
citations. We name this set E100-4. As we were not able to obtain other efficient 
sets with 100 solutions or higher, we studied other categories for efficient sets with 
cardinalities between 50 and 100. We identified 70 efficient solutions from Life 
Sciences and Medicine (L70-4) and Arts and Humanities (A70-4) lists that are 
evaluated with respect to the same criteria as E100-4. Lastly, using a different 
region of the Engineering and Technology list (different from E100-4), we found 
another 70 efficient solutions (E70-4). As a result, we have 5 data sets in total: A70-
4, E70-4, L70-4, E100-4, and W50-6. For all these sets, we take the criteria values 
of the corresponding universities published by QS. We do not take the QS weights 
or the rankings into account. 

The parameters of the preference function we use in this study are α and w. 
To be able to test the algorithm for different underlying preference functions, we 
assume various values for these parameters. In our experiments, we use 1, 2, 3, 4, 
5, 6 and infinity for α. In this way, we can model a wide variety of preference 
functions including linear, quadratic, and Tchebycheff forms. We simulate DM 
responses consistent with the assumed preference functions. When determining w 
vectors, we aimed for sets that represent the entire weight space well. For this 
purpose, we used the 50-50 strategy explained in set discretization in Steuer (1986, 
pp. 326-330). As illustrated in this reference, random weight vectors selected from 
the uniform distribution tend to gather around in the center region of the weight 
space, which means the weights are close to each other. On the other hand, weight 

METU STUDIES IN DEVELOPMENT 29 

vectors selected from the Weibull distribution tend to have high values for some 
weights and low values for the others. Selecting 50% of the weights from the 
uniform and the other 50% from the Weibull distribution results in a well-spread 
set of weights. As in Steuer (1986, pp. 326-330), we select the scale parameter of 
Weibull distribution as 0.1 and the shape parameter as 0.3; these parameters 
produce well-dispersed results for our experiments. Furthermore, we eliminate any 
weight vector that has a component less than 0.01 to be more realistic. Since we are 
experimenting with 4- and 6-criteria sets, we need two weight sets. For both cases, 
we generated 500 random weight vectors from uniform and 500 random weight 
vectors from Weibull distributions. We normalized each vector by its L1 norm so 
that the summation of criteria weights is 1. Randomly listing the 1,000 weight 
vectors for both cases, we applied the filtering method of first point outside the 
neighborhoods that was shown in Algorithm 1 in Section 3.1. The resulting 50 
weight vectors for 4-criteria and 6-criteria cases are provided in Tables A1 and A2 
in the Appendix, respectively.  

4.2. Computational results 
In our experiments, we present 5 solutions to the DM in each iteration. This 

parameter allows for adequate preference information elicitation without imposing 
too much cognitive burden on the DM. As proposed in Karakaya et al. (2018), when 
the estimated α value is larger than 4, we accept it as infinity. This is done to avoid 
computing complications and round off errors in execution. The stopping condition 
is applied as follows: in two consecutive iterations, if the incumbent solution and 
the estimated α are the same, and the largest absolute difference between the 
corresponding weights in estimated weight vectors is less than 10-3, we stop. The 
indifference threshold is set to 10-8. Euclidean distance is used for the filtering 
method. We define the ideal point as the point that has the best value in each 
criterion. We then scale the values of the alternatives between 0 and 1.  

The first benchmark algorithm, the interactive choice algorithm of Tuncer 
Şakar and Karakaya (2018) is also executed with the same parameter settings and 
stopping condition. We refer to this benchmark algorithm as the Selection-based 
Algorithm (SA) and our algorithm as the Ranking-based Algorithm (RA). We refer 
to the second benchmark algorithm, the Interactive Weighted-Sums/Filtering 
Method, as IWS. Following the guideline in Steuer (1986, pp. 394-396), we set the 
number of iterations and the number of solutions presented to the DM at each 
iteration to 6 in data set W50-6, and to 5 in all other data sets. Algorithms are coded 
with C++ programming language; all experiments are run on a computer with 
Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz, 8 GB RAM, 64-bit Microsoft 
Windows 10 operating system. The mathematical models are solved with GAMS 
23.9. 
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We have determined several measures to compare RA against SA and IWS. 
For each problem setting, we run the algorithms with 50 weight vectors and report 
the overall performances. Average absolute deviation calculates the average 
difference between the true preference function values of the solutions found with 
the algorithms and the true best solution for 50 weight vectors. For average 
proportional deviation, we calculate the ratio of absolute deviation measure to the 
preference function value difference of true best and worst solutions for each weight 
vector and report the average values. This metric gives rate information about the 
error in the algorithms’ final solution values. In each problem setting with 50 
different weight vectors, we report the number of times the algorithms fail to find 
the true best solution (at the termination condition) with number best not found. If 
the algorithms find the true best solution until the termination condition, this metric 
takes a value of 0. If for example, they cannot find the true best solution with 4 
weight vectors, it becomes 4. Average iteration reports the average number of 
iterations until the termination condition is met. Average best found gives the 
average number of iterations it takes for the algorithms to find the true best solution. 
RA and SA guarantee to find the true best solution if the whole solution set is 
exhausted; so for these two algorithms, this measure reports the average 
performance in all 50 weight vectors. IWS, on the other hand, cannot find the true 
best solution for some weight vectors. For IWS, we report the average number of 
iterations to reach the true best solution among the weight vectors where the true 
best solution could be found. Lastly, average eliminated represents the average 
number of solutions eliminated throughout RA and SA because they are in 
dominated regions defined by DM responses. Since IWS does not eliminate 
solutions throughout its execution, we do not report this measure for IWS. Table 1 
contains the comparison of RA, SA and IWS with respect to these measures.   

In Table 1, the first column shows that in 28 cases out of 35, RA has lower 
average absolute deviation than SA. In 5 cases SA has lower values and in 2 cases 
these two algorithms have equal values. Comparing RA and IWS in that column, 
we see that in all 35 cases, RA has lower values than IWS. RA obtained low 
deviations close to 0 in most of the cases. When we study average proportional 
deviation, we see that for 28 cases out of 35, RA has lower scores than SA, for 5 
cases SA has lower scores, and for 2 cases they are equal. Again in all cases, RA 
has lower values than IWS. Looking at the number of times that the algorithms 
failed to find the true best solution of the DM, we observe that in only 2 cases SA 
has lower values than RA, and in both cases the difference between the algorithms 
is just 1. In 31 cases RA has lower values and in 2 cases SA and RA are equal. For 
all cases, RA has lower values than IWS. For many problem settings, RA is able to 
find the best solution until the termination condition. If we compare the algorithms 
with respect to the average number of iterations until the termination condition, for 
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most cases SA and IWS have slightly lower values than RA. However, termination 
of an algorithm at earlier stages is not a clear indicator of superiority as an algorithm 
may stop without generating a good enough solution. In terms of the average 
number of iterations it takes to find the true best solution, RA has lower values than 
SA for all cases. For RA, the average number of iterations to find the best solution 
ranges from 2.06 to 3.84, considerably low values. IWS has lower values than RA 
in this measure; however, we should note that the values for IWS are calculated by 
taking the average of the cases where it was able to find the best solution. So, the 
performance in the average best found measure should be considered together with 
the number best not found measure. In the last column, we see the average number 
of solutions eliminated from the solution set as a result of DM responses. It can be 
observed that RA is able to eliminate considerably higher number of solutions than 
SA. This shows that RA can obtain more useful information from the DM and thus 
can reduce the solution space more effectively.  

We also conduct statistical tests to compare the performance of RA against 
SA and IWS, we use paired t-test for this purpose. To apply paired t-test, normality 
assumption should be satisfied for the sampling distributions. However, by the 
Central Limit Theorem, for sample sizes of at least 30, the sampling distribution is 
approximately normal regardless of the probability distribution of the sampled 
population (Mendelhall and Sincich, 1996, pp. 36, 60). Since we carry out our 
comparisons with 50 weight vectors, it is appropriate to use paired t-test. We 
calculate the paired differences of absolute deviation, proportional deviation and 
number best not found, and build 95% confidence intervals for these differences. 
SA/IWS value - RA value for 35 test cases are given in Table A3 in Appendix. In 
absolute deviation, RA is superior to SA in 10 cases and superior to IWS in 31 
cases. In no cases the benchmarks are superior to RA. In proportional deviation, RA 
outperforms SA and IWS in 6 and 31 cases, respectively. Again the benchmarks 
never outperform RA. In number best not found, RA is better than SA and IWS in 
15 and 35 cases, respectively; the benchmarks are never better than RA. In iteration 
measure, however, in 9 cases SA has lower values than RA. Between RA and IWS, 
IWS has lower values in 7 cases and RA in 6 cases. Considering Table 1 and A3 
together, we can conclude that the overall performance of RA is superior to the 
benchmarks, especially IWS. 
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Table 1 
Comparison of the performances of RA, SA and IWS 

α Set Algorithm 

Average 
absolute 
deviation 

Average 
proportional 

deviation 

Number 
best not 
found 

Average 
iteration 

Average 
best found 

Average 
eliminated 

1 

A70-4 
RA 0.00000 0.00000 0 4.80 2.24 29.78 
SA 0.00337 0.00582 6 4.94 3.22 23.34 

IWS 0.00182 0.00369 10 5.00 1.98 - 

E70-4  
RA 0.00000 0.00000 0 4.72 2.24 29.80 
SA 0.00000 0.00000 0 4.72 2.54 23.38 

IWS 0.00428 0.00887 8 5.00 1.65 - 

L70-4 
RA 0.00000 0.00000 0 4.68 2.08 31.84 
SA 0.00000 0.00000 0 4.62 2.46 25.00 

IWS 0.00381 0.01166 8 5.00 1.69 - 

E100-4  
RA 0.00000 0.00000 0 5.08 2.30 51.28 
SA 0.00014 0.00043 1 4.90 2.62 42.50 

IWS 0.00172 0.00340 7 5.00 1.53 - 

W50-6 
RA 0.00000 0.00000 0 5.28 2.06 9.14 
SA 0.00003 0.00003 1 5.44 2.22 5.92 

IWS 0.00130 0.00205 6 6.00 1.24 - 

2 

A70-4  
RA 0.00026 0.00064 4 5.12 2.62 34.04 
SA 0.00138 0.00314 8 5.06 3.48 22.66 

IWS 0.00226 0.00792 12 5.00 2.05 - 

E70-4  
RA 0.00000 0.00000 0 5.48 2.78 36.16 
SA 0.00050 0.00174 4 4.86 2.94 22.54 

IWS 0.00496 0.01042 17 5.00 1.62 - 

L70-4 
RA 0.00014 0.00048 2 5.14 2.10 35.08 
SA 0.00007 0.00019 1 4.90 2.36 23.34 

IWS 0.00622 0.02302 18 5.00 2.11 - 

E100-4 
RA 0.00000 0.00000 0 5.86 2.94 58.84 
SA 0.00117 0.00404 8 5.12 3.54 43.20 

IWS 0.00750 0.02307 24 5.00 2.00 - 

W50-6  
RA 0.00072 0.00252 2 5.18 2.60 12.08 
SA 0.00141 0.00477 5 5.04 3.18 6.68 

IWS 0.00497 0.01440 17 6.00 1.71 - 

3 A70-4 
RA 0.00144 0.00486 5 4.98 2.90 35.28 
SA 0.00176 0.00434 7 5.02 3.24 22.34 

IWS 0.00291 0.00973 12 5.00 2.05 - 
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Table 1 (cont’d) 

 

E70-4  
RA 0.00000 0.00000 0 5.46 2.92 37.74 
SA 0.00078 0.00322 4 4.92 2.94 23.78 

IWS 0.00539 0.01188 19 5.00 1.68 - 

L70-4 
RA 0.00034 0.00148 2 5.20 2.20 36.00 
SA 0.00036 0.00153 3 4.88 2.72 23.24 

IWS 0.01066 0.03820 21 5.00 2.17 - 

E100-4  
RA 0.00000 0.00000 0 5.96 3.24 60.42 
SA 0.00194 0.00597 9 5.32 3.88 43.14 

IWS 0.01034 0.03156 25 5.00 2.34 - 

W50-6  
RA 0.00123 0.00434 4 5.08 2.70 13.56 
SA 0.00119 0.00460 3 5.08 3.00 7.30 

IWS 0.00642 0.01906 21 6.00 1.88 - 

4 

A70-4  
RA 0.00262 0.00794 6 4.88 3.04 36.66 
SA 0.00204 0.00510 9 5.06 3.48 23.10 

IWS 0.00386 0.01281 14 5.00 2.00 - 

E70-4  
RA 0.00000 0.00000 0 5.18 2.94 39.74 
SA 0.00071 0.00323 3 5.10 3.16 24.48 

IWS 0.00640 0.01434 22 5.00 1.81 - 

L70-4  
RA 0.00017 0.00062 2 5.42 2.40 37.18 
SA 0.00074 0.00216 6 4.88 3.00 23.56 

IWS 0.01108 0.03913 23 5.00 2.15 - 

E100-4  
RA 0.00000 0.00000 0 6.32 3.16 61.18 
SA 0.00231 0.00752 9 5.42 4.00 43.46 

IWS 0.01291 0.03984 27 5.00 2.42 - 

W50-6 
RA 0.00133 0.00478 4 4.96 2.80 14.36 
SA 0.00143 0.00550 5 5.04 3.06 7.18 

IWS 0.00737 0.02229 21 6.00 1.76 - 

5 

A70-4  
RA 0.00269 0.00831 5 5.10 3.12 37.72 
SA 0.00242 0.00590 11 5.02 3.56 24.18 

IWS 0.00457 0.01503 17 5.00 2.03 - 

E70-4  
RA 0.00000 0.00000 0 5.42 3.16 41.06 
SA 0.00093 0.00399 6 5.10 3.36 25.06 

IWS 0.00710 0.01605 22 5.00 1.87 - 

L70-4 
RA 0.00000 0.00000 0 5.54 2.30 37.72 
SA 0.00067 0.00179 5 4.94 2.94 22.94 

IWS 0.01225 0.04230 25 5.00 2.06 - 

E100-4  
RA 0.00077 0.00271 2 6.12 3.30 62.48 
SA 0.00210 0.00742 8 5.48 4.04 43.88 
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Table 1 (cont’d) 

 

 IWS 0.01498 0.04692 28 5.00 2.48 - 

W50-6  
RA 0.00043 0.00105 3 5.34 2.80 14.72 
SA 0.00189 0.00619 6 4.96 3.12 7.44 

IWS 0.00760 0.02277 21 6.00 1.76 - 

6 

A70-4 
RA 0.00346 0.01031 7 5.24 3.31 37.88 
SA 0.00266 0.00649 11 5.12 3.76 24.16 

IWS 0.00441 0.01333 19 5.00 2.09 - 

E70-4  
RA 0.00000 0.00000 0 5.42 3.32 41.42 
SA 0.00114 0.00466 7 5.08 3.54 25.04 

IWS 0.00765 0.01739 22 5.00 1.87 - 

L70-4  
RA 0.00000 0.00000 1 5.48 2.50 38.20 
SA 0.00076 0.00204 7 4.94 3.12 23.62 

IWS 0.01339 0.04639 28 5.00 2.14 - 

E100-4  
RA 0.00084 0.00291 3 6.30 3.50 63.14 
SA 0.00232 0.00833 9 5.50 4.20 44.00 

IWS 0.01656 0.05182 30 5.00 2.52 - 

W50-6  
RA 0.00042 0.00101 3 5.32 2.88 15.84 
SA 0.00092 0.00230 5 4.96 3.06 8.16 

IWS 0.00778 0.02308 22 6.00 1.78 - 

∞ 

A70-4 
RA 0.00273 0.00683 7 5.00 3.58 39.38 
SA 0.00320 0.00835 11 5.22 4.12 25.90 

IWS 0.00824 0.02516 24 5.00 2.11 - 

E70-4  
RA 0.00050 0.00084 2 5.28 3.46 42.88 
SA 0.00277 0.00946 10 5.00 3.70 26.92 

IWS 0.01076 0.02468 24 5.00 1.78 - 

L70-4  
RA 0.00011 0.00039 1 5.38 2.70 40.20 
SA 0.00244 0.00708 10 4.92 3.50 25.24 

IWS 0.01662 0.05425 28 5.00 2.00 - 

E100-4 
RA 0.00348 0.00620 5 5.82 3.84 65.28 
SA 0.00380 0.01388 10 5.52 4.40 44.74 

IWS 0.02120 0.06396 32 5.00 2.33 - 

W50-6  
RA 0.00018 0.00036 1 5.34 2.92 17.38 
SA 0.00091 0.00245 6 5.00 3.18 8.24 

IWS 0.00844 0.02464 23 6.00 1.62 - 
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The primary goal of RA (and also SA and IWS) is to guide the DM to a good, 
if not the best, final solution among a set of alternatives. However, since the 
algorithm proceeds by estimating the parameters of the preference function using 
DM responses, the final parameter estimates can be useful information as well. If 
good estimates can be obtained, these can be utilized to rank the solutions. So 
besides a highly-preferred solution, DM can also be presented with a ranking of all 
solutions. Furthermore, parameter estimates can be used for similar problems of the 
DM in the future. If preferences of the DM can be modeled beforehand, it will not 
be necessary to consider the whole solution set iteratively. Therefore, we also tested 
the precision of the parameter estimates of RA. Since RA works with the smallest 
possible α value for reasons explained before, it is not appropriate to directly 
consider the deviations of the estimated weights from the true weights of the DM. 
As the estimated α can be lower than the true α, we do not expect full agreement 
between the estimated weights and true weights. Consequently, we choose to 
employ a metric that will show how close the ranking of solutions formed by 
estimated parameters is to that formed by true parameters. Kendall rank correlation 
coefficient, also known as Kendall’s Tau coefficient, is a widely used metric for 
this purpose (see Daniel, 1990). Kendall’s Tau coefficient measures the similarity 
between two orderings of the same data. If it is 1, two orderings are exactly the 
same; if it is -1, two orderings are perfect opposites of each other. A coefficient of 
0 shows that there is no relationship between the orderings. We calculate Kendall’s 
Tau coefficients for each algorithm using the true rankings of the problem settings. 
To compare RA and SA fairly, we use the final parameter estimates of these 
algorithms after all solutions are exhausted. Since the average number of iterations 
until the termination condition for RA is higher than SA, we do not want to favor 
RA unfairly by using more iterations from it. In addition, if the parameter estimates 
are going to be used for similar future problems, it is reasonable to try to obtain as 
precise parameters as possible. Therefore, for RA and SA, Kendall’s Tau coefficient 
is calculated with parameters estimated after a single solution remains in the set. 
Unlike RA and SA, IWS does not eliminate solutions from the feasible set as it 
progresses. So for Kendall’s Tau coefficient of IWS, we run it for the average 
number of iterations it takes for RA and SA to have a single solution left, which is 
15. The results are summarized in Table 2; for each case, we report the average of 
the results of the 50 weight vectors. It can be seen that all Tau coefficients for RA 
are high values close to 1. On the other hand, Tau coefficients range between 0.5180 
and 0.8121 for SA, and between 0.3588 and 0.7220 for IWS. Moreover, the 
standard deviations for the Tau coefficients of RA are substantially lower than those 
of SA and IWS. These low standard deviations show that the high average 
coefficients that we report for RA are reliable. Based on the good performance of 
RA in Table 2, we can make this conclusion: after RA is run with a DM, the 
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The primary goal of RA (and also SA and IWS) is to guide the DM to a good, 
if not the best, final solution among a set of alternatives. However, since the 
algorithm proceeds by estimating the parameters of the preference function using 
DM responses, the final parameter estimates can be useful information as well. If 
good estimates can be obtained, these can be utilized to rank the solutions. So 
besides a highly-preferred solution, DM can also be presented with a ranking of all 
solutions. Furthermore, parameter estimates can be used for similar problems of the 
DM in the future. If preferences of the DM can be modeled beforehand, it will not 
be necessary to consider the whole solution set iteratively. Therefore, we also tested 
the precision of the parameter estimates of RA. Since RA works with the smallest 
possible α value for reasons explained before, it is not appropriate to directly 
consider the deviations of the estimated weights from the true weights of the DM. 
As the estimated α can be lower than the true α, we do not expect full agreement 
between the estimated weights and true weights. Consequently, we choose to 
employ a metric that will show how close the ranking of solutions formed by 
estimated parameters is to that formed by true parameters. Kendall rank correlation 
coefficient, also known as Kendall’s Tau coefficient, is a widely used metric for 
this purpose (see Daniel, 1990). Kendall’s Tau coefficient measures the similarity 
between two orderings of the same data. If it is 1, two orderings are exactly the 
same; if it is -1, two orderings are perfect opposites of each other. A coefficient of 
0 shows that there is no relationship between the orderings. We calculate Kendall’s 
Tau coefficients for each algorithm using the true rankings of the problem settings. 
To compare RA and SA fairly, we use the final parameter estimates of these 
algorithms after all solutions are exhausted. Since the average number of iterations 
until the termination condition for RA is higher than SA, we do not want to favor 
RA unfairly by using more iterations from it. In addition, if the parameter estimates 
are going to be used for similar future problems, it is reasonable to try to obtain as 
precise parameters as possible. Therefore, for RA and SA, Kendall’s Tau coefficient 
is calculated with parameters estimated after a single solution remains in the set. 
Unlike RA and SA, IWS does not eliminate solutions from the feasible set as it 
progresses. So for Kendall’s Tau coefficient of IWS, we run it for the average 
number of iterations it takes for RA and SA to have a single solution left, which is 
15. The results are summarized in Table 2; for each case, we report the average of 
the results of the 50 weight vectors. It can be seen that all Tau coefficients for RA 
are high values close to 1. On the other hand, Tau coefficients range between 0.5180 
and 0.8121 for SA, and between 0.3588 and 0.7220 for IWS. Moreover, the 
standard deviations for the Tau coefficients of RA are substantially lower than those 
of SA and IWS. These low standard deviations show that the high average 
coefficients that we report for RA are reliable. Based on the good performance of 
RA in Table 2, we can make this conclusion: after RA is run with a DM, the 
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resulting preference parameter estimates can be used to assist that DM in similar 
problems. For example, if the DM is confronted with another set of universities 
evaluated with the same criteria, previously estimated parameters will directly 
provide a good ranking of the new universities. 

Table 2 
Comparison of RA, SA and IWS with respect to Kendall’s Tau coefficient 

α Set Algorithm 
Average 

Tau  
Std. dev. 
of Tau  α Set Algorithm 

Average 
Tau  

Std. dev. 
of Tau  

1 

A70-4 
RA 0.9694 0.0219 

5 

A70-4  
RA 0.9357 0.0376 

SA 0.7978 0.1745 SA 0.6912 0.2277 
IWS 0.7220 0.1724 IWS 0.6097 0.1846 

E70-4  
RA 0.9582 0.0265 

E70-4  
RA 0.9347 0.0498 

SA 0.7925 0.1638 SA 0.7035 0.1543 
IWS 0.6402 0.2054 IWS 0.5417 0.1947 

L70-4  
RA 0.9539 0.0578 

L70-4  
RA 0.9398 0.0497 

SA 0.7725 0.1324 SA 0.6049 0.2553 
IWS 0.6882 0.1571 IWS 0.5326 0.1996 

E100-4  
RA 0.9765 0.0141 

E100-4  
RA 0.9391 0.0471 

SA 0.8121 0.1651 SA 0.6762 0.2265 
IWS 0.6954 0.2074 IWS 0.5376 0.1990 

W50-6 
RA 0.9502 0.0259 

W50-6  
RA 0.9119 0.0550 

SA 0.6072 0.2394 SA 0.5420 0.2082 
IWS 0.5238 0.1920 IWS 0.3769 0.1701 

2 

A70-4  
RA 0.9577 0.0459 

6 

A70-4  
RA 0.9347 0.0426 

SA 0.7606 0.1920 SA 0.6869 0.2270 
IWS 0.6605 0.2083 IWS 0.5882 0.2046 

E70-4  
RA 0.9681 0.0278 

E70-4 
RA 0.9324 0.0469 

SA 0.7363 0.1431 SA 0.7026 0.1581 
IWS 0.5670 0.2042 IWS 0.5339 0.1937 

L70-4  
RA 0.9601 0.0407 

L70-4  
RA 0.9264 0.0569 

SA 0.6944 0.2056 SA 0.6247 0.2572 
IWS 0.6362 0.1708 IWS 0.5211 0.2023 

E100-4  
RA 0.9775 0.0160 

E100-4  
RA 0.9363 0.0419 

SA 0.7452 0.1831 SA 0.6671 0.2236 
IWS 0.6293 0.1838 IWS 0.5281 0.2010 
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Table 2 (cont’d) 

 W50-6  
RA 0.9368 0.0456 

 W50-6  
RA 0.9169 0.0383 

SA 0.6013 0.2414 SA 0.5369 0.2078 
IWS 0.4441 0.1786 IWS 0.3724 0.1693 

3 

A70-4  
RA 0.9528 0.0318 

∞ 

A70-4  
RA 0.9370 0.0454 

SA 0.7125 0.2243 SA 0.7015 0.2405 
IWS 0.6397 0.1710 IWS 0.5938 0.1881 

E70-4 
RA 0.9494 0.0369 

E70-4  
RA 0.9377 0.0619 

SA 0.7122 0.1486 SA 0.7080 0.1641 
IWS 0.5503 0.1952 IWS 0.5100 0.2064 

L70-4  
RA 0.9436 0.0499 

L70-4 
RA 0.9501 0.0589 

SA 0.6475 0.2370 SA 0.6401 0.2396 
IWS 0.5546 0.2076 IWS 0.5044 0.2006 

E100-4 
RA 0.9579 0.0331 

E100-4  
RA 0.9556 0.0479 

SA 0.7024 0.2019 SA 0.6745 0.2321 
IWS 0.5811 0.1862 IWS 0.5039 0.2198 

W50-6  
RA 0.9236 0.0408 

W50-6  
RA 0.9242 0.0486 

SA 0.5609 0.2034 SA 0.5180 0.2090 
IWS 0.4038 0.1675 IWS 0.3588 0.1915 

4 

A70-4  
RA 0.9410 0.0394      
SA 0.7050 0.2261 

 

    
IWS 0.6190 0.1830     

E70-4 
RA 0.9390 0.0481     
SA 0.7032 0.1621     

IWS 0.5487 0.1941     

L70-4  
RA 0.9462 0.0501     
SA 0.6387 0.2513     

IWS 0.5448 0.1988     

E100-4  
RA 0.9524 0.0360     
SA 0.6860 0.2030     

IWS 0.5553 0.1813     

W50-6  
RA 0.9169 0.0496     
SA 0.5410 0.1977     

IWS 0.3878 0.1677     
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5. Conclusions 
Many decision making problems involve numerous solutions and these 

solutions are typically evaluated with multiple conflicting criteria. It is not easy and 
straightforward for a DM to select the best among numerous solutions. In this study, 
we propose an interactive algorithm, RA, to guide the DM to a preferred solution. 
Through successive iterations, we collect preference information from the DM and 
use this information to reduce the solution space as well as to guide the search. At 
each iteration, the DM is asked to provide a preference ranking of a small number 
of solutions. These solutions are determined with the help of a filtering routine to 
increase the efficiency of the algorithm. Using the rankings of the DM, we estimate 
the parameters of the DM’s preference function. The DM is assumed to have an 
underlying Lαw function, a flexible function suited to model the behavior of real 
DMs. RA continues until a predetermined termination condition is satisfied and a 
highly preferable solution is presented to the DM in the end. As a side benefit of 
RA, the estimated parameters can also be used to obtain a ranking of solutions, 
either for the problem on hand or similar future problems. 

RA is tested with university data taken from QS rankings. We compose 
various settings with different sets of universities and criteria, different α values and 
weight vectors for Lαw preference function. The results show that RA successfully 
converges to the most preferred solution of the DM and produces good estimates of 
the preference function parameters. RA is tested against two benchmark algorithms, 
SA and IWS, with respect to several measures. Compared to SA and IWS, RA is 
able to find the most preferred solution for most of the cases considered, and the 
average deviation from the preference value of the true best solution of the DM is 
lower for RA. Furthermore, the resulting estimates of the preference function are 
more accurate for RA than the benchmarks. In all three algorithms, the DM is 
presented with a small set of solutions at each iteration and these solutions are 
generated with the help of a filtering procedure. The DM selects the best solution 
in SA and IWS whereas she/he ranks them in RA. The rankings provide more 
preference information and lead to RA having better convergence performance than 
SA and IWS. RA is observed to be particularly superior to IWS, because IWS does 
not update the assumed form of the preference function as the DM answers more 
questions. RA, on the other hand, uses a flexible preference function whose 
mathematical form can be updated as iterations continue. This update is also done 
with the preference rankings of the DM without the need for additional information. 
However, it should be noted that ranking the solutions is a more difficult task for 
the DM than selecting the best one.  

As future studies, different procedures can be applied in the preference 
elicitation part of the algorithm to increase the convergence performance of the 
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algorithm so that the DM will be required to answer fewer questions. The solutions 
presented to the DM can be determined with different heuristics to reduce the 
number of iterations. In addition, the DM may be asked to provide preference 
information in formats other than ranking.  
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Özet 
 

Sıralama tabanlı, filtrelemeli ve etkileşimli bir çok kriterli seçim algoritması: 
Üniversite seçiminde uygulamalar 

 
Bu çalışmada, karar vericinin (KV) ayrık bir alternatifler kümesi içinde en çok tercih ettiği çözüme 

yakınsamak için etkileşimli bir yöntem geliştirilmiştir. Yöntem iterasyonlar boyunca KV’ye sınırlı sayıda 
alternatif sunup bunlar için sıralamalı tercih bilgisi toplamaktadır. KV tercihleri esnek ve gerçekçi bir tercih 
fonksiyonu ile modellenmiştir. Yöntemin performansını iyileştirmek için sunulan alternatifler bir filtreleme 
prosedürü ile belirlenmiştir. Önerilen yöntem, üniversitelerin farklı kategorilerde yıllık sıralamalarını 
yayınlayan pazarlama şirketi Quacquarelli Symonds’tan çeşitli veri setleri kullanılarak karşılaştırma 
algoritmaları ile kıyaslanmıştır. Sonuçlar önerilen algoritmanın karşılaştırma algoritmalarından üstün 
olduğunu göstermektedir.  

Anahtar kelimeler: Çok kriterli karar verme, sıralama, etkileşimli yöntem, filtreleme 

  


