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ABSTRACT
Recognition of objects with subtle differences has been used
in many practical applications, such as car model recognition
and maritime vessel identification. For discrimination of the
objects in fine-grained detail, we focus on deep embedding
learning by using a multi-task learning framework, in which
the hierarchical labels (coarse and fine labels) of the samples
are utilized both for classification and a quadruplet-based loss
function. In order to improve the recognition strength of the
learned features, we present a novel feature selection method
specifically designed for four training samples of a quadru-
plet. By experiments, it is observed that the selection of very
hard negative samples with relatively easy positive ones from
the same coarse and fine classes significantly increases some
performance metrics in a fine-grained dataset when compared
to selecting the quadruplet samples randomly. The feature
embedding learned by the proposed method achieves favor-
able performance against its state-of-the-art counterparts.

Index Terms— Deep distance metric learning, embed-
ding learning, fine-grained classification/recognition.

1. INTRODUCTION

Recently, embedding learning has become one of the most
popular issues in machine learning [1, 2, 22]. Proper mapping
from the raw data to a feature space is commonly utilized for
image retrieval [4] and duplicate detection [5], which are used
in many applications such as online image search.

For training a model that can extract proper features, the
distance between two samples of a dataset in the feature space
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should be considered. Moreover, some embedding learning
methods are employed to increase the classification accuracy,
e.g., fine-grained object recognition [6] by using deep convo-
lutional neural network (CNN) models which require a sig-
nificant amount of training samples. Fortunately, there are
datasets for various purposes such as car model recognition
[7] and maritime vessel classification and identification [8].
Some of these datasets can be used for classifying land, ma-
rine, and air vehicles in a real-world scenario. Concretely, car
model recognition can be employed in the context of visual
surveillance and security for the land traffic control [6] and
marine vessel recognition is used for the purpose of coastal
surveillance [9] [10]. In this work, we focus on the feature
learning problem specifically designed for car model recog-
nition.

Recently developed studies on feature learning focus on
extracting features from raw data such that the samples be-
longing to different classes are well-separated and the ones
from the same classes are close to each other in the fea-
ture space. The state-of-the-art network architectures such
as VGG [11] and GoogLeNet [12] are frequently used for
extracting features from images by several different training
processes. In the early years, pairwise similarity is used for
signature verification with contrastive loss [13]. Since con-
sideration of the whole pairs or triplet samples in a dataset
is not computationally tractable, carefully designed mining
techniques are proposed, such as hard positive [14] and nega-
tive [15] mining.

In the previous methods that employ a hard mining step
during training, at each iteration of the optimization, they fo-
cus on the separation of samples in the feature space in a se-
lected batch from the dataset. Therefore, the distance rela-
tions among the samples in a dataset are not fully exploited.
Moreover, the classification loss function for the fine-grained
labels is not considered in the training phase. On the other
hand, our proposed method for the quadruplet sample selec-
tion enables to convey more information from the utilized
dataset by considering the globally hard negatives and rela-
tively easy positives in the distance loss terms and the auxil-
iary classification layers.

The contributions of this work are summarized as fol-
lows: (1) In order to improve embedding learning, we have
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proposed two novel quadruplet selection methods where the
globally hardest negative and moderately easy positive sam-
ples are selected. (2) Our framework contains a CNN trained
with the combination of the classification and distance losses.
These losses are designed to exploit the hierarchical labels of
the training samples. (3) To test the proposed method, we
have conducted experiments on the Stanford Cars 196 dataset
[7] and observed that the recognition accuracy of the unob-
served classes has been improved with respect to the random
selection of samples in the quadruplets while outperforming
the state-of-the-art feature learning methods.

2. RELATED WORK

Earlier works on metric learning are based on Siamese Nets
[13]. In that study, two identical neural networks extract the
features of two arbitrary images. Next, these features are
compared by a metric which is based on a radial function3.
While their loss function forces the samples in the same class
to be closer to each other in the sense of the selected distance
function, the samples in the different classes are forced to be
mapped far from each other. The cost function of such a net-
work is given below [16] where [.]+ represents the operation
of max(0, .), and Di,j are distances in between samples.

Lsiamese(i, j) = yi,jD
2
i,j + (1− yi,j)[α−Di,j ]

2
+. (1)

A similar approach uses triplets for training process as
in [17], where each triplet sample consists of three mem-
bers: (1) Reference (anchor) sample, XR, (2) Positive sam-
ple, XP , (3) Negative sample, XN . The constraints of a
triplet are as follows: the reference and positive samples be-
long to the same class, whereas the negative sample does not
(XR ∈ Ci, XP ∈ Ci, and XN 6∈ Ci, where Ci denotes
the class label of the reference sample). For well-separation
of the classes, XR should be closer to XP than XN . The
selection method of triplets is known to be an important is-
sue for convergence [17]. Among the existing studies, some
of them indicate that selecting the samples randomly reduces
the efficiency of training. A recent study in [15] proposes
hard negative mining, which emphasizes that selecting XN

close to XR increases the performance of separation in the
feature space. On the other hand, hard positive mining is also
suggested to enhance the performance by selecting XP far
from XR [14]. Moreover, hard negative and positive mining
methods are also used for the face recognition purpose [18].
For triplet-based approaches [19], the following function is
utilized where the distances are defined as l2 norm4, and m is
a margin:

Ltriplet(xR, xP , xN ,m) = [D2
R,P −D2

R,N +m]+. (2)

3The distance between any two members in the feature space is defined
as the cosine of the angle between them [13].

4The distance between any two members (xi and xj ) in the space is de-
fined as Dij = ||fθ(xi)− fθ(xj)||2.

Another approach is to utilize the hierarchical class labels
of the training samples [6]. In that method, samples with sim-
ilar fine labels have the same coarse label, i.e. a sample has
more than one label. The cost function is modified by consid-
ering both the coarse and fine labels. For this purpose, each
quadruplet sample is constructed as follows: (1) Reference
sample (anchor sample), XR, (2) Positive positive sample,
XP+

, (3) Positive negative sample, XP−
, (4) Negative sam-

ple, XN . Similar to the triplet selection, the quadruplets are
selected such that three constraints should be taken into ac-
count. First, both the coarse and fine classes of XR and XP+

should be the same. Second, although the coarse class of XR

is the same as the coarse class of XP−
, the fine classes are

different. Finally, the coarse class of XR and XN should be
different.

Moreover, the loss function for the quadruplets is similar
to the triplet based methods [6]. On the other hand, in [9], the
use of the global loss has been proposed, while the quadruplet
samples are selected randomly (Note that these quadruplets
hold the constraints). The global loss penalizes the network
in case of the mean and variance of the distances between the
samples in a quadruplet are not appropriate, as given in (3)5,
where t1 and t2 are the margins, similar to (2).

Lglobal(Q) = σ2
P+ + σ2

P− + σ2
N+

λg1[µP+ − µP− + t1 − t2]+ + λg2[µP− − µN + t2]+.
(3)

In [6], the hierarchical labels of the training samples are
utilized. It should be noted that a model has difficulty in con-
vergence when the samples are selected randomly since the
most informative pairs are not effectively considered. Here,
we propose two methods for sample selection to address this
issue.

3. PROPOSED METHOD

Each quadruplet sample is represented as Qi = {XR
i , X

P+

i ,

XP−

i , XN
i } where Xi = (xi, yi1, yi2). xi ∈ Rn repre-

sents the vector of the pixels of an image (n is the num-
ber of the pixels in the image), yi1 ∈ C1 and yi2 ∈ C2

represents the coarse, and fine classes, respectively, where
C1 = {ci1}

k1
i=1 (k1 is the number of coarse classes) and sim-

ilarly, C2 = {ci2}
k2
i=1. Let the weights of a CNN be θ ∈ Rm

where m is the number of the weights, then the network can
be defined as fθ(xi) : Rm × Rn → Rk where k is the
dimension of the feature space.

Our proposed cost function consists of two parts: the clas-
sification (Section 3.1) and distance (Section 3.2) cost func-
tions. The aim of these cost functions is to form the fea-
ture space so that fine classes are well-separated. However,
the learning process highly depends on the selection of the

5In (3), σ2
P+/− = var{DR,P+/−}, σ2

N = var{DR,N}, and
µP+/− = E{DR,P+/−}, µN = E{DR,N} as defined in [20].



quadruplets. The training process takes more time when se-
lecting the quadruplets in an erroneous strategy. We propose
to select the members of the quadruplets from the most in-
formative region in the feature space in Section 3.3. As val-
idated by the experiments (Section 4), proposed method in-
creases the performance of separation significantly as it can
be observed from both Recall@K and Normalized Mutual In-
formation (NMI) values in Table 1.

3.1. Classification Cost Function

In order to increase the discriminativeness of the features for
the available class labels, softmax loss is employed. Contrary
to the traditional one, the proposed neural network has two
outputs which are dedicated to the fine and coarse classes.
Let sθ = [gθ, hθ] where gθ denotes the output for the coarse
class, whereas hθ is for the fine class. Then, the proposed cost
function is obtained:

LC1,C2(x) = −λc1
k1∑
i=1

p(ci1)log

(
eh

x
θ (c

i
1)∑k1

j=1 e
hxθ (c

j
1)

)

−λc2
k2∑
i=1

p(ci2)log

(
eg
x
θ (c

i
2)∑k2

j=1 e
gxθ (c

j
2)

)
.

(4)

C1 and C2 specify the coarse and fine classes, respec-
tively. p(ci1) is the probability that the x vector belongs to
the ith coarse class. If x ∈ cj1, then by using hard decision,
p(ci1) = δij where δij is the Kronecker delta function. Sim-
ilarly, p(ci2) is also calculated for C2. hxθ (c

i
1) represents the

ith element of the hxθ vector, where hxθ is the score vector
for the coarse classes (C1). Likewise, gxθ is the one for the
fine classes (C2). λc1 and λc2 are the weights of the fine and
coarse classification terms of the cost function.

3.2. Distance Cost Function

The distances between the samples in the feature space are
commonly defined by a radial function [17]. For this rea-
son, the representations which will be learned by our pro-
posed framework are m-dimensional feature vectors. The
distance for any two members can be defined by l2 norm.
Hence, we can clearly formulate our goal by the inequality
DR,P+ < DR,P− < DR,N . The first part can be rewritten
as DR,P+ + m1 < DR,P− , and the second part would be
DR,P− + m2 < DR,N where m1 and m2 are the margins,
which should be positive numbers. Moreover, we emphasize
the discrimination of the coarse classes by using the condition
m1 > m2 > 0. Then, the new cost function can be proposed

as:

Ljoint(xR, xP
+

, xP
−
, xN ) =

[
1−

DR,P−

DR,P+ +m1 −m2

]
+

+

[
1− DR,N

DR,P− +m2

]
+

+ LC1,C2(x
R).

(5)
Finally, the overall proposed network is shown in Figure 1

with the loss function given in (6). This loss function, which
is the combination of (5) and (3), consider the distances of
the samples in the feature space using Ljoint while Lglobal
regularizes the statistics of the distances batch-wise.

Lcomb(Q) =
∑
∀i

Ljoint(Qi) + ηLglobal(Q). (6)
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Fig. 1: The proposed framework is similar to the model used
in [9]. The dimension of the last fully connected (FC) layer
is 1024. Note that all the weights in the network are shared,
including the weights in the FC layers.

3.3. Quadruplet Selection

In the previous section, we have briefly summarized our novel
loss function. As it is mentioned before, selecting the quadru-
plet samples randomly makes it difficult to exploit the most
informative training examples. Instead of attempting to cover
all the quadruplet combinations in the training set, we pro-
pose two novel selection strategies. First, a reference sample
is randomly selected with equal probability from the training
set (Let the reference sample be selected as XR, where CR1
and CR2 are the coarse and fine labels of the reference sam-
ple, respectively.). The negative sample is selected from the
set of the samples belonging to the different coarse classes.
The critical point is that, like hard negative mining in [15],
we should select the closest negative sample to XR (XN :=
argmin
XN 6∈CR1

||fθ(xR)−fθ(xN )||2). At this point, we propose two

different methods for the selection of XP+

and XP−
. The

experimental comparison of these two methods is given in
Section 4.



3.3.1. Method 1

For determining XP+

, we select the sample whose fine class
is the same as the fine class of XR, and which is closest to
XN . At this point, the constraint for selection of XP+

is as
follows: the distance between XP+

and XR is greater than
the distance between XR and XN (DR,P+ > DR,N ). Sim-
ilarly, we select XP−

whose coarse class is the same as the
coarse class of XR, which is the closest sample to XN , and
also satisfying DR,P− > DR,N . This method is visualized in
Figure 2.

3.3.2. Method 2

In the second method, after selecting XN , the distance be-
tween XR and XN (DR,N ) determines a hyper-sphere which
takes XR as its center. After selecting the labels of XP+

and XP−
according to the constraints in Section 2, XP+

and
XP−

are selected from the predetermined classes such that
they are the closest points to XR but outside the region en-
closed by this hyper-sphere. If there are no samples which
are both close to XR and outside of the hyper-sphere, then
the furthest sample to XR inside the hyper-sphere is selected.
This selection method is illustrated in Figure 2.

R
N

P+

P-

R
N

P+

P-

Fig. 2: The two-dimensional representation of the samples in
the feature space. The different shapes represent the different
fine classes, the different colors represent the different coarse
classes. AfterXR is selected, the nearest sample belonging to
the different coarse class is selected as XN . XP+

and XP−

are also selected as in Method 1 (left), and Method 2 (right).

4. RESULTS

We compare the performance of our proposed method against
the state-of-the-art feature learning approaches in [18, 21, 4,
22, 20] by using the same evaluation methods. In addition, the
randomly selected quadruplets are utilized as in [9]. Stanford
Cars 196 dataset [7] is used in the experiments. To implement
the proposed methods, a hierarchical structure is required for
all the samples in the dataset, where each sample originally
has only one label. For this purpose, we should add the high-
level classes (coarse labels) to the dataset. In other words,
the 196 classes, which are originally in the dataset, are taken
as the fine classes and 22 coarse classes are added using the
types of the cars, similar to the study in [6].

The important point in the generation of the training and
test sets is that they should not share any fine class labels.
With this restriction, we want to measure the adequacy of our
neural network to separate the classes that have not been seen
before. The most common performance analysis methods for
zero-shot learning are Recall@K and NMI. Recall@K speci-
fies whether the samples belonging to the same fine class are
close to each other, and NMI is a measure of clustering quan-
tity as mentioned in [22].

For this purpose, the first 98 fine classes of the dataset are
selected as the training set, and the rest are used only as the
test set similar to the study in [1]. In our experimental setup,
the pre-trained ResNet101 model [23] (that has been trained
using the ImageNet dataset [24]) is employed as our CNN
model to extract the features. The experiments are performed
on Pytorch platform [25]. In addition, the hyper-parameters
of the cost function are selected as 0.08 for λc1, 0.25 for λc2;
1 for λg1, λg2, and η. The margins are 0.7 for m1, and t1; 0.3
for m2, and t2. The learning parameters are as follows: the
learning rate is 0.0003, the momentum is 0.9, and stochas-
tic gradient descent algorithm is used for optimization. The
results can be examined in Table 1.

Method R@1 R@2 R@4 R@8 NMI
Semi-Hard [18] 51.54 63.78 73.52 82.41 55.38

Lifted Structure [21] 52.98 65.70 76.01 84.27 56.50
N-Pairs [4] 53.90 66.76 77.75 86.35 57.24

Clustering [22] 58.11 70.64 80.27 87.81 59.23
Triplet + Global [20] 61.41 72.51 81.75 88.39 58.61

Random Quadruplet Selection [9] 61.49 73.41 82.88 89.92 54.50
Proposed Method 1 64.85 75.59 83.41 89.55 57.32
Proposed Method 2 66.06 76.62 84.84 90.63 57.00

Table 1: Using Stanford Cars 196 dataset, precision of Re-
call@K and NMI are shown for different methods.

Our proposed quadruplet based learning framework has
improved the precision in terms of Recall@K even if they
are selected randomly. According to Recall@K metric, ran-
dom quadruplet selection method outperforms the previous
studies in [18, 21, 4, 22], and it is comparable to the study in
[20]. On top of that, when the proposed selection methods are
used, even higher levels of accuracy can be obtained. As it is
demonstrated in Table 1, Method 1 results in 64.85% accuracy
of Recall@1, which is an improvement by at least 3.4% com-
pared to the other studies; while Method 2 results in 66.06%
accuracy of Recall@1 corresponding to a 4.5% increase.

5. CONCLUSION

We have demonstrated the proposed method of selection sig-
nificantly increases the rate of separation of a model in terms
of recall performance. Unlike previous studies that consider
only the distances between XR-XP+/−

and XR-XN , the
proposed methods consider also the distances between XN -
XP+/−

in the feature space. This consideration helps us im-



prove the model and achieve better accuracy performance.
These two proposed selection methods allow the loss func-
tion not only to enlarge margins between the samples in the
different classes but also to create several tight clusters for
each class. Moreover, these two proposed methods have the
advantage that they pay attention to the samples at the re-
gion around the critical hyper-sphere. Especially, the second
method attacks the easier problem, i.e. while the first method
can reshape the only particular region in the feature space, the
second one can use all the region on the surface of a hyper-
sphere. Therefore, the feature space is manipulated through a
better optimization procedure.
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