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1. Prelminaries. Since the pioneering work of W. G. Bade [3,4] a great deal of
work has been done on bounded Boolean algebras of projections on a Banach space ([11,
XVII.3.XVIII.3], [21, V.3], [16], [6], [12], [13], [14], [17], [18], [23], [24]). Via the Stone
representation space of the Boolean algebra, the theory can be studied through Banach
modules over C(K), where K is a compact Hausdorff space. One of the key concepts in
the theory is the notion of Bade functionals. If X is a Banach C(^)-module and x e X,
then a Bade functional of x with respect to C{K) is a continuous linear functional a- on A"
such that, for each a in C(K) with a > 0, we have

(i) a(ax)>0,
(ii) if a{ax) = 0, then ax = 0.
It is clear that the definition of Bade functionals makes sense when C(K) is replaced

by an arbitrary C*-algebra. In this paper we show, using elementary C*-algebraic
techniques, that most of the known results on Bade functionals for C(K) carry over to the
C*-algebra setting. Moreover, we prove an existence theorem in the C*-algebraic case that
is new even in the C(K) setting. This result shows that Bade functionals always exist in
many important cases, e.g. when the C*-algebra is separable or when the Banach space is
either separable or the dual of a separable space. In [14], T. A. Gillespie showed that, for
a Banach C(K)-modu\e X, Bade functionals always exist if X does not contain a copy of
c0, and he asked if the converse is true. However Bade functionals always exist when
X = c0) since c0 is separable.

Although the C*-algebraic point of view clarifies many of the results in [11, XVII.3,
XVIII.3], this paper is written for a readership that is not assumed to be expert in
C*-algebras. We therefore provide a brief account of the properties of C*-algebras and of
Arens extensions that we need.

Throughout, si will denote a C*-algebra with 1. The Gelfand-Naimark theorem says
that we can assume that si is a C*-subalgebra of the algebra L(H) of all (bounded linear)
operators on a Hilbert space H. We will choose H to have the additional properties listed
in the following lemma. The interested reader can consult [22] for details. If AT is a
Banach space, we follow the notation of [15] and let X** denote the normed dual of X.
We will use si' to denote the commutant of si, and we use * to denote the involution in a
C*-algebra. However, we still use w* to denote the weak-star topology.

LEMMA 1. Every C*-algebra is *-isomorphic to a C*-algebra si of operators on a
Hilbert space H with the following properties.

(1) For each q> in si**, there are vectors e,f in H with \\e\\2= | | / | | 2= ||<p|| such that
qj(A) = (Ae, f) for all A in si.

(2) The second dual si**** is isometrically isomorphic to the weak operator closure si"
of si, with each T in si" acting on a (p in si9 {defined as in (1)) by
T(cp) = (Te,f).

(3) Under the identification of si**** with si" in (2), the w*-topology on si***
corresponds to the weak operator topology on M".
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74 DON HADWIN AND MEHMET ORHON

(4) Every w*-closed left (resp. right) ideal in sinn has the form s&nnP (resp. Psd**)
for some self adjoint projection P in s&##.

(5) / / si is separable, then H is separable.
Throughout, X will denote a (left) Banach .^-module, i.e., X is an j^-module and a

Banach space, lx=x for all x in X, and the map (a, x)^>ax is continuous from Ax X
into X. Equivalently, there is a bounded homomorphism m:s£^>L(X) such that
m(l) = l (i.e., m(a)(x) = ax). If we define a new norm || ||' on X by ||JC||' =
sup{||m(a)jc||: ||a|| < 1}, then ||JC|| ^ ||JC||' ^ ||m|| \\x\\, so || ||' is an equivalent norm with
respect to which m is a contraction. By replacing si with the C*-algebra si/ker(m), we
can always assume that m is 1 — 1. The following lemma shows that we can also assume
that m is an isometry.

LEMMA 2. Suppose m:s£—> L(X) is a unital contractive homomorphism. Then
(1) if a, b esi and a*a <b*b, then \\m(a)x\\ ^ ||m(6)x|| for every x in X;
(2) if m is 1 — 1, then m is an isometry.

Proof. (1) For each positive integer n, let /„ : [0, °°)—* [0, oo) be defined by

lit i f / > l / n
JMO-f"

In
Then tfn{t)<\ and t(l-tfn(t))

2<l/n for all f>0. Also a*a<b*b implies that
\\d*a*ad\\ < \\d*b*bd\\ for all d in si. Let cn = afn{b*b)b* for each n > 1. Then

\\cn\\
2=\\cnc*n\\ = \\afn{b*b){b*b)m\\2

= \\(b*b)l%(b*b)(a*a)fn(b*b)(b*byf2\\

<\\(b*b)l%(b*b)(b*b)fn(b*b)(b*b)lf2\\ = \\fn(b*b)(b*b)\\2<l.

Also

\\a-cnb\\2=\Hl-(b*b)fn(b*b))\\2

= (1 - (b*b)fn(b*b))(a*a)(l - (b*b)fn(b*b))\\

< ||(1 - (b*b)fn(b*b))(b*b)(l - (b*b)fn(b*b))\\ < 1/n.

Since ||cn|| ^ 1 for every n and \\a - cnb\\->0, it follows that ||m(a)*|| = lim ||m(cn6)x|| <
||m(Z?)jc|j for every x in X.

(2). It follows from (1) that ||m(a)jc|| = ||m((a*a)1/2):c|| for every x in X and every a
in si. To show that m is an isometry we need only show that ||m(a)|| = ||fl|| for O^a < 1
and ||a|| = 1. For each positive integer n let gn(t) = min(t, 1 - 1/n) and hn(t) = max(0,1 -
n(l - 0). Then ||a - gB(a)|| -^ 0 and hn(a) ± 0 and gn(a)hn(a) = (1 - l/n)nn(a) for each n.
Since m is 1 - 1 , we see that 1 - 1/n is in the spectrum of m(gn(a)), . and since
m(gn(a))-»An(fl) and the set of noninvertible elements in L(X) is closed, we conclude
that 1 is in the spectrum of m(a). Thus ||m(a)|| 2:1.

Associated with the module multiplication

MxX^>X:(a,x)^>ax (1)
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BADE FUNCTIONALS 75

we define three other bilinear maps:

I x l ^ / : (JC, a)^ fix,a; fix,a(a) = a(ax), (2)

X* x M**^X*:(a, a)-» aa; (aa)(x) = a(fixj, (3)

du* x X**^X**: (a, /3)-> a/3; (*j8)(a) = /3(a«). (4)

When (1) is taken as the product on M (i.e., X = ,s#), then (4) becomes the Arens product
on slnt* [5] (which coincides with the operator product when sd is as in Lemma 1).
Furthermore, (3) defines a right Banach ,s#*#-module structure on X** that gives an
antihomomorphism m#:sG.#u—> L(X**) defined by m**(a)(a) = aa. (The only nontrivial
thing to check is the associativity, which is straightforward using Lemma 1.) The map (4)
defines a Banach ,s###-module structure on X****. Since the ,s##*-module structures on
X* and Xnn extend the canonical induced ^-module structures on these spaces, we call
(3) and (4) the Arens extensions of the module multiplication on X. For information on
Arens extensions the reader can consult [2] and [10].

We list some properties of m* for easy reference.

LEMMA 3. The map mn has the following properties.
(1) For each a in si, m**(a) is the adjoint in L(Xn) of the operator m{a) in L{X).
(2) m* is (w*, w*-operatorycontinuous.
(3) For each a in Xn the linear map from $£*"* into Xn that sends a to oca is

(w*, w*)-continuous.
(4) For each a in Xu', there is a selfadjoint projection ea in sd**** such that

{a e s&**: aa = 0} = (1 - ea)sl**.

The proof of the above lemma is straightforward if one recalls that the w*-operator
topology on L{XU) is generated by the seminorms T—»|2r(or,-)(*(-)| for finite subsets
a, e X* and x, eX, i = 1, 2, . . . , n. By taking adjoints we embed L{X) into L(Xtt), and
on L(X) the w*-operator topology coincides with the weak operator topology.

Note that the projection in part (4) of the above lemma is called the carrier projection
of a in si**.

Considering the Arens j^##-module structure on X#n and the natural embedding of
X in Xn#, we let (A') denote the norm closed j^##-submodule generated by X, i.e.,
(X) =sp{ax:a e slu*, x eX}. On (X) the ^# #-module structure behaves nicely. Let
a- o((X), Xn) denote the relative w*-topology on (X) d * * .

LEMMA 4. The following are true.
(1) For each z in (X), the linear map from si*"* to (X) that sends a to az is

(w*, o)-continuous.
(2) Each z in (X) has a carrier projection ez in Muu, i.e., {aes£nn:az = 0} =

^ # # ( 1 - ez).
(3) The following are equivalent:
(a) (X)=X,
(b) For each x in X, the map from M to X that sends a to ax is (norm,

weak)-compact.
(c) The map m:$$—> L(X) has an (unique) extension m : ^ # # - * L ( A r ) that is (w*,

weak-operator)-continuous.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089500008053
Downloaded from https://www.cambridge.org/core. Middle East Technical University Library (METU), on 24 Jul 2020 at 17:15:38, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089500008053
https://www.cambridge.org/core


76 DON HADWIN AND MEHMET ORHON

(4) If the conditions in (3) hold and {/>*} is an increasingly directed net ofself adjoint
projections in si****, and Px~*p(w*)> then m(pk) —>rh(p) in the strong operator topology.

Proof. (1) Fix a in X*, and for each z in X**** we define a map q>z a in si****** by
Vz.cX.0) = (az)(a)- Since si** is a norm closed subspace of si******', and since the linear map
from X**** into si****** that sends z to q>za is norm continuous it follows that
M = {z e X****: cpz a e si**} is a norm closed subspace of X****. Since q>x a = fix a for every
* in X(<=X****), we know that XcM. By Lemma 1, M is clearly closed under
multiplication by elements in si****; thus (X)cM. If {an} is a net in si**** and
«„-»()(**), and if are A'*, and if ze(X), then (a«z)(or) = <p*t(r(an)-»0. This proves (1).

(2) This follows from (1) and part (4) of Lemma 1.
(3) The implication (a) implies (c) follows from (1), since a is the weak topology

o n l .
To prove (c) implies (b), suppose xeX. Then, by (c), m(ba\\(si****)) is compact in

the weak operator topology and contains m(ball(si)) as a weak-operator dense subset.
Thus »v-cl[(ball(^))x] = m(bal\(M****))x is weakly compact.

To prove (b) implies (a), suppose a e sAut* and x e X. We wish to show that ax e X.
Choose a bounded net {an} in si so that an—*a(w*). By (b), we can assume that
anx—*y(w) for some y in X. However, by (1), anx—>ax(w*) in X****. Thus ax =y e X.
Since si****XczX, we have X = (X).

(4) It follows from (3) that pkx^>px(w) for every x in X. Fix x in X and suppose
e > 0 . It follows from the Hahn Banach theorem that there are indices A,, A2, . . . , An and
positive numbers tu t2, • • • , tn such that £ t,•. = 1 and ||(p - £ tjpx)x\\ < e. If A > A, for
1 < i < /i, then pA commutes with the /?A('s, and since p -pk<p - £ f,-/?̂ , it follows from
Lemma 2 that ||(p -pA)*ll =s \\(p - £ f,pA,>|| < e. Thus lim ||(p -pK)x\\ = 0.

The following lemma, which is based on the polar decomposition of linear functional
on a C*-algebra (see [22]), is our main tool in proving the existence of Bade functionals.

LEMMA 5. If x eX and aeX**, then there is a partial isometry B in si**** such that,
for each A in si with A^O,

(1) (aB)(Ax)>0,
(2) if (aB)(Ax) = 0, then a(CAx) = 0 for every C in si,
(3) iix,aBB* = (ix,a.

Proof. Assume without loss of generality that \\nx,a\\ = 1. Since the closed unit ball
of si**** is vv*-compact, we can choose a net {Bn} in ball(^) and a B in ball(j^##) so that
Hx,a(Bn)-^l = \\Px.a\\ and Bn^>B(w*). Assume that siaL(H) with the properties of
Lemma 1. Then there are unit vectors e,finH such that [ix a(A) = (Ae, f) for all A in si.
Since fixa(Bn)—*(Be,f) = (e,B*f) = l, we have equality in the Cauchy-Schwarz in-
equality; thus Be=fand B*f = e. Since B*Be = e, we know that (B*B)V2e = e; thus if
B = V{B*B)m is the polar decomposition of B, then Ve =f and V*f = e. Hence we can
assume that B is a partial isometry. Note that (aB)(Ax) = (BAe,f) = (Ae, B*f) =
(Ae, e). Statements (1) and (2) are now obvious and (3) follows from the fact that
BB*f=f

REMARKS. 1. So far we have considered only left Banach ^-modules. However, the
Arens extensions defined previously have obvious analogues for right modules and the
analogue of the preceding lemma is also valid for right Banach j^-modules.
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BADE FUNCTIONALS 77

2. Notice that most of the proof of the preceding lemma takes place in the Hilbert
space H and not in X. All we require is that X** be an ^##-module, not necessarily a
Banach ^**#-module. If X is a locally convex space and an .stf-module such that the
multiplication si x X into X is (jointly) continuous, then the Arens extension make sense
to the extent that X* is a right j^*#-module. In this setting, the preceding lemma is valid.

2. Existence of Bade Functionals. The following theorem is new even in the case
where si = C(K) for some compact Hausdorff space K. We say that a (not necessarily
closed) linear subspace M of X is w*-countably si-separated if there is a sequence {an} in
X* such that sp{ana :« > 1, a e si} separates the points of M. Suppose that Xis a Banach
j^-module and a is a Bade functional for x. Then asl separates the points of six. (Proof:
asi{ax) = 0^>a(a*ax) = 0^a*ax = 0^>ax = 0.) Hence, if x has a Bade functional, then
six is w*-singly .stf-separated. The following theorem is a strong converse of this fact.

THEOREM 6. Suppose that X is a Banach si-module and x e X. If six is w*-countably
si-separated, then x has a Bade functional with respect to si.

Proof. Choose a sequence {an} of unit vectors in Xn so that a^si + a2si + . . .
separates the points of six. By Lemma 5, we can choose a sequence {Bn} in the unit ball
of si** such that, for each positive A in si and each n, (anBn)(Ax)^0, and
(anBn)(Ax) = 0 implies that an(CAx) = 0 for every C in si, i.e., each element of ansi
annihilates Ax. Thus if we let a = E (anBn)/2", then a is a Bade functional for x.

n

REMARKS. 1. The analogue of the preceding theorem for right Banach ^-modules is
true (see the remarks following Lemma 5).

2. The preceding theorem has an analogue for locally convex .stf-modules. In the
proof, the existence of the 6n's still holds (see the remarks following Lemma 5). The only
problem is in being able to find a sequence {tn} of positive numbers such that £ tnocnBn

converges to a functional in Xn. One way to insure this is by requiring Xn to be
sequentially complete in the w*-topology (i.e., the o{Xn, Ar)-topology) and the sequence
{<*„} to be strongly bounded.

COROLLARY 7. If Xu contains a sequence separating the points of X, then every vector
in X has a Bade functional with respect to si. In particular, if X is separable or the dual of
a separable Banach space, then every vector in X has a Bade functional with respect to si.

Proof. First suppose that X is separable and {*„} is dense in X. Choose a sequence
{an} in the unit ball of X* so that arn(jcn) = ||jcn|| for « s l . Then {<xu a2, • • •} separates
the points of X, so spf^, a2, . • •} is u>*-dense in Xn'. Thus X is w*-countably
.^-separated for every C*-algebra si acting on X.

Next suppose that X = YU for some separable Banach space Y, and let {yn} be a
dense sequence in Y. Then sp{yuy2, . . .}, considered as a subset of Xn = Ynn, is
w*-dense, and the desired conclusion follows as in the first case.

COROLLARY 8. Every element of c0, c, /°°, c0 x I1, / ' x r, L(Y*)(Y a Banach space
with y # separable), or S8#* (58 a separable C*-algebra) has a Bade functional with respect
to any Banach si-module structure on these spaces.
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78 DON HADWIN AND MEHMET ORHON

COROLLARY 9. If si is separable, and X is a Banach si-module, then every vector in X
has a Bade functional with respect to M.

Proof. The space (six)~ is separable for every x in X.

The following theorem shows how Theorem 6 can be used to construct Bade
functionals in nonseparable situations. The second corollary contains C*-algebraic
analogues of classical results of Bade [3,4]. Suppose A" is a Banach si** **-moAu\e,, and
x eX. We say that si**** is countably decomposable with respect to x if, whenever {pk} is
an orthogonal family of projections in si****, then pxx ¥= 0 for at most countably many
values of A.

REMARK. If* has a carrier projection in si**** (i.e., {a e si****:ax = 0} is w*-closed),
si** being countably decomposable with respect to x is equivalent to the stronger
statement that, for every increasingly directed family {pk} of self adjoint projections in
M**** with w*-limit p, there is an increasing sequence {pK} with w*-limit q such that
px = qx. To see this let 9 denote the set of all w*-limits of increasing sequences in {pk}.
It is clear that 9 is a set of projections with the following properties.

(i) Any countable subset of 9 has an upper bound in 9.
(ii) If beP and (p-b)x^O, then there is a b' in 9> such that b<b' and

The first property is obvious. The second follows from the fact that (p — b) =
w* - limpA(p - b), and since {a e si****: ax = 0} is w*-closed, there must be a A for which

pk(p-b)x¥=0. Choose b' in 0> so that b,pk<b'. Then (b'-b)x^O, since 0 *
pk(p - b)x = px(b' - b)x.

It follows from (i) and (ii) that, if the desired q does not exist, there is an increasing
net {qa:a<Q}, where Q is the first uncountable ordinal, such that, for each a<Q,
(<7ff+i -qa)x^0. This clearly violates the countable decomposability of sinn with respect
to*.

THEOREM 10. Suppose that Y is a Banach si**-module, y eY, SP c Y*, such that
(1) &sin* = {asi** :ae&} separates the points of sl*uy,
(2) nya e si** for every a in &,
(3) s&*n is countably decomposable with respect to y.

Then y has a Bade functional with respect to si**** in the norm closure o/sp SFsi****.

Proof. For each a- in 9, let #a = {ae si****: si**nay a ker(a-)} = {a e si****: si****a a
ker iiy a}. Then, by (2), each 3a is a w*-closed left ideal in si****. Hence, by Lemma 1,
there is a projection qa in si**** such that 3a = st****{\ - qa). It is clear from (1) that
a e f~l $a if and only if ay = 0. Hence ay = 0 if and only if aqa = 0 for every a in 3F.

We now think of si**** as a von Neumann algebra on the Hilbert space H (Lemma 1).
The condition aqa = 0 says that a = 0 on qa(H). For each countable subset A of 8F, let /?A

be the projection onto sp{qa(H):aeA}. Then each px is in si**** (since pk is the
projection onto the closure of the range of £ taqa, with each ta>0, and £ /ff <°°).

Moreover, the net {pk} is increasingly directed and therefore converges (H>*) in si**** to a
projection p in si****. It follows that si****(l -p) = {a e si****:ay = 0}, since ap = 0 if and
only if aqa = 0 for every a in 9. Thus p is a carrier projection in si**** for y.
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BADE FUNCTIONALS 79

It follows from countable decomposability that there is an increasing sequence
with w*-limit q in sinn such that qy =py. Since q £ p and {p - q)y = 0, we conclude that
P ~<I = (P ~ <?)(! ~P) = 0. '-e-> P = 1- Let A = U A,. Clearly, p=q=pk. It follows that

ay = 0 if and only if aqa = 0 for every a in A. It follows from the definition of the qa and
the countability of A that sin#y is w*-countably ^##-separated. Thus, by Theorem 6, y
has a Bade functional with respect to Mnn. The fact that the Bade functional is in
sp &s£nn is a consequence of the proof of Theorem 6.

REMARKS. 1. The analogue of the preceding result for right ^##-modules is also true
(see the remarks following Theorem 6).

2. If Y is a locally convex j^*#-module, then the above result holds if we assume
that the set ^ is w "-bounded in Y# and that Y# is w "-sequentially complete.

3. All we really needed in the above theorem was that sinn was a von Neumann
algebra, not necessarily the second dual of a C*-algebra. However, every von Neumann
algebra is the dual of a unique Banach space and has a unique >v*-topology. When
formulated for a von Neumann algebra, part (2) of the preceding theorem should be
changed to say that each \iy a is w*-continuous.

We can now give a complete characterization of the existence of Bade functionals
with respect to s&un in terms of countable decomposability. This is somewhat related to a
result of Gillespie [14, Theorem 2]. The following result arises by combining Theorem 10
with Lemma 4(1).

COROLLARY 11. Suppose X is a Banach si-module, a e X#, and z e (X). Then
(1) z has a Bade functional in X* with respect to s£nn if and only if $&nu is countably

decomposable with respect to z;
(2) a has a Bade functional in (X) with respect to Muu if and only if s£#n is

countably decomposable with respect to a.

If, for each x in X, the map from si to X that sends a to ax is weakly compact (see
part (3) of Lemma 4), we say that si has weakly compact action on X. The notion of
weakly compact action in the case si = C(K) was related to the Bade completeness of a
bounded Boolean algebra of projections in [18]. It is clear from Lemma 4(3) that if si has
weakly compact action on X, then X is a Banach ^#*-module, and, by Lemma 4(4),
sinn is countably decomposable with respect to every vector x in X. In the presence of
weakly compact action the preceding corollary reduces to the C*-algebraic analogue of
two results of Bade [3,4] (see [11, XVII.3.1.12, XVIII.3.26]).

COROLLARY 12. Suppose X is a Banach si-module and si has weakly compact action
on X. Then

(1) every vector in X has a Bade functional in X* with respect to siuu\
(2) an a in Xu has a Bade functional in X with respect to Muu if and only if sinn is

countably decomposable with respect to a.

If siun is a von Neumann algebra acting on a separable Hilbert space, then every
orthogonal family of nonzero projections must be countable. Thus s&#u is countably
decomposable with respect to any vector.

COROLLARY 13. If si is a separable C*-algebra and X is an si-module, then each
vector in X* has a Bade functional in (X) with respect to s&nn.
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80 DON HADWIN AND MEHMET ORHON

In [13] T. A. Gillespie proved that every bounded Boolean algebra of projections on
a fixed Banach space X is contained in a Bade complete Boolean algebra of projections if
and only if X does not contain a copy of c0. Gillespie's result in one direction follows
from the well-known theorem of Pelczynski [19], which says that if a Banach space X does
not contain a copy of c0, then, for each compact Hausdorff space K, every operator from
C(K) into X is weakly compact. In the other direction, Gillespie [13] showed that if X
does contain a copy of c0, then there is a Banach c-module structure on X that does
not have weakly compact action. Pelczynski's result was extended to C*-algebras by
Akemann, Dodds and Gamlen [1], who proved that if X does not contain a copy of c0,
then, for every C*-algebra si and every Banach j^-module structure on X, si has weakly
compact action. Gillespie's result shows that the converse of the latter result is true.

COROLLARY 14. / / X is a Banach si-module and X does not contain a copy of c0,
every element of X has a Bade functional.

COROLLARY 15. / / X is a Banach si-module and X* does not contain a copy of c0,
then every vector in Xn has a Bade functional in (X) with respect to sinn.

Gillespie [14] asked whether the existence of Bade functionals with respect to every
bounded Boolean algebra of projections on a Banach space X implies that X does not
contain a copy of c0. As observed in Corollary 8, this is not true in general. However,
Gillespie's methods [13] do imply the following proposition. If F is a nonempty set, we let
f°(F) denote the C*-algebra si of all bounded complex functions on F, we let co(F)
denote the norm closed subalgebra generated by the functions with finite support, and we
let c(F) denote the algebra generated by co(F) and the identity. This proposition shows
that the countable separation assumption in Theorem 6 cannot be increased to a higher
cardinality. It also shows that Corollary 15 applies in cases in which not every vector in X
has a Bade functional, since c(F)# never contains a copy of c0.

PROPOSITION 16. Suppose X contains a copy of co(F) for an uncountable index set F.
Then on X there is a Banach c{T)-module structure with respect to which not every element
of X has a Bade functional.

3. Questions. (1) We have indicated in the remarks that some of our results can be
extended to locally convex ^-modules. In view of the generalizations of Bade's work to
locally convex spaces ([7], [8], [9], [20], [11, pp. 2107-2110]), it would be interesting to
find exactly which of our results can be extended to this setting and the precise conditions
that are needed for these extensions.

(2) Let us say that a Banach space X has the C{K)-Bade functional property if, for
every compact Hausdorff space K and every Banach C(AT)-module structure on X, every
vector in X has a Bade functional. We define the C*-algebra Bade functional property
analogously. Are these two properties the same?
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