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Abstract——The increasing number of distributed energy re‐
sources (DERs), advancing communication and computation
technologies, and reliability concerns of the customers have
caused an intense interest in the concept of microgrid. Although
DERs are the biggest motivation of the microgrids due to their
intermittent generation characteristics, they constitute a risk for
system reliability. Battery storage systems (BSSs) stand as one
of the most effective solutions for this reliability problem. How‐
ever, the inappropriate use of BSS creates other operational
problems in power systems. In order to deal with these con‐
cerns explicitly in microgrids, an optimized microgrid central
controller (MGCC) is the key factor, which controls the real-
time operation of a microgrid. This work proposes a model pre‐
dictive control (MPC) based MGCC that will provide optimal
control of the microgrid, considering economic and operational
constraints. The proposed system will minimize the energy cost
of the microgrid by utilizing mixed-integer linear programming
(MILP) assuming the presence of DERs and BSS as well as the
bi-directional grid connection. Moreover, the aging effect of
BSS will be considered in the proposed optimization problem
which will provide an up-to-date system model. The proposed
method is evaluated using real load and photovoltaic (PV) gen‐
eration data.

Index Terms——Microgrid, optimization, battery storage, model
predictive control, mixed-integer linear programming.

I. INTRODUCTION

WITH the developments in photovoltaic (PV) panel
and wind turbine technologies, energy generation be‐

comes easier and more environmental friendly compared to
the conventional methods. Those sources are connected to
the grid with small amounts at various locations, and are
called distributed energy resources (DERs). DERs make it
possible to supply the load even if there is an interruption at
the power grid, and to reduce the net power drawn from the
grid during normal operation. However, it has been seen that
some problems may arise due to the uncertainty in genera‐
tion characteristics of DERs [1]. Although it is technically
possible to eliminate these problems by virtue of the im‐
provements in the storage technologies, it is not a simple

task to solve all those issues.
The developments in DER technologies and introduction

of new system elements such as energy storage systems
make it possible to build an isolated system structure. These
self-contained structures are known as microgrids. These sys‐
tems have their own controller, and depending on the power
quality at the point of common coupling, they may operate
in the island mode for a certain time. Although microgrids
offer high operational flexibility, their control is harder than
the conventional grids, due to their low inertia and fast dy‐
namic characteristics.

In microgrids, the intermittent characteristic of DERs cre‐
ates some concerns about the reliability. To overcome these
problems, the real-time control strategy of the microgrid,
which is the microgrid central controller (MGCC), should be
studied carefully. During the normal operation state of the
grid, MGCC functions to minimize the operation cost of the
microgrid. This work develops a control strategy for the nor‐
mal operation state of the microgrid (on-grid operation),
which constitutes the majority of the operation.

There are various works in the literature about the mi‐
crogrid control in normal operation state for cost optimiza‐
tion. According to [2], the secondary control can be divided
into centralized and decentralized controls. References [3]
and [4] can be given as the examples of decentralized con‐
trol strategy. In these works, multi-agent systems are pro‐
posed to minimize the operation costs of the system by con‐
sidering each generation unit individually. However, with
this method, the optimum operation of the microgrid might
be missed due to the self-autonomy of the agents, where
they do not have a full knowledge of the whole system.
Moreover, with this method, only the current state of the sys‐
tem is considered, i. e., no future predictions are included.
Thus, the optimum operation in a daily base may be missed.
In addition, there is a huge communication burden of the
given approach in [4]. Although in [5], the given neural-net‐
work strategy is applicable for the grid-connected mode of
operation of the microgrid, the optimum operation of the sys‐
tem cannot be guaranteed with this method. Note that [5] ne‐
glects the battery storage systems (BSS). In [6], the energy
storage system is included in the microgrid system. Howev‐
er, the effect of the aging of BSS is not given.

Model predictive control (MPC) in microgrid applications
has been studied by the researchers. In [7], a primitive exam‐
ple of MPC is given. Reference [8] is one of the successful
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examples of the MPC applications in microgrid control,
where the contribution of storage system is also included. Al‐
though a detailed study on mixed-integer linear program‐
ming (MILP) is given in this work, the aging of BSS is not
considered. Moreover, the given PV generation forecasting
strategy, which is support vector machine, can be improved
with neural networks. Another application of MPC strategy
is given in [9], where different types of DERs and BSSs are
taken into account. Moreover, different system market op‐
tions are included in the system. However, it is not clear
how the battery model is obtained and the cost function of
BSS is derived. Reference [10] uses a stochastic MPC meth‐
od to control the microgrid with BSS. However, BSS is not
monitored in real time and the battery aging is not consid‐
ered at all. Reference [11] adds the BSS cost to the objec‐
tive function. However, an empirical method is used in the
solution procedure. In addition to those studies, [12] can be
given as another implemented MPC example, without consid‐
ering the aging of the batteries, neither. References [13] and
[14] are two recent studies on microgrid control concept
where distributed MPC is considered. Those studies do not
update the battery model with time, and do not involve the
aging of battery in the control problem. Reference [15] pro‐
poses an energy management system by introducing penalty
factor for fast charging/discharging to limit battery aging.
However, it does not utilize real-time measurements to up‐
date the battery model. Finally, in [16], expected lifetime of
a battery is calculated for microgrid control using normal dis‐
tribution curve rather than real-time measurements.

In general, battery aging is neglected in microgrid control
problems, assuming that aggressive usage of the battery is
prevented. However, in applications where deep discharge
(harsh usage) is possible, the proposed method stands for‐
ward.

Battery employment is essential in microgrid applications
because of the unreliable nature of the renewable sources.
However, due to the high investment cost of BSS, those sys‐
tems should be modeled precisely and considered in the cost
optimization. Harsh usage of the battery might seem to mini‐
mize the operation cost for the short term; however, this
type of operation will cause the replacement of the battery
sooner than expected. Therefore, considering the battery ag‐
ing in the optimization model is essential to optimize the to‐
tal cost. In order to include BSS in the microgrid control
problem, a wide variety of models has been developed with
varying degrees of complexity such as electro-chemical mod‐
els [17], [18], mathematical models [19], [20] and electrical
models [21] - [24]. Among those studies, electrical circuit
models are commonly used to estimate the behaviour of the
battery [25].

This paper proposes an MPC based MGCC that considers
the aging of BSS to minimize the operation cost of a mi‐
crogrid with a PV system. The proposed method estimates
the up-to-date BSS capacity using real-time measurements.
To the best of the authors’ knowledge, this is the first study
that estimates the capacity of a BSS based on a numerical
method using real-time data, rather than employing heuristic

models. The main contributions of this paper are as follows:
1) The methods in the literature identify battery parame‐

ters numerically once. Those methods neither update the pa‐
rameters during the battery lifetime, nor the update is real‐
ized in a heuristic manner. The proposed method, on the oth‐
er hand, updates the parameters periodically, using real-time
measurements in a numeric manner.

2) Since the method uses real-time measurements, it is ca‐
pable of identifying unexpected parameter changes due to ex‐
posure to excessive temperature, physical shock, etc. Howev‐
er, conventional heuristic methods cannot detect those unex‐
pected changes, as they follow the expected behavior of the
battery aging.

In this paper, to give a thorough approach to all parts, the
work is divided into four parts. In Section I, the problem
and its background are defined. All the introductory defini‐
tions are given in this part. In Section II, the proposed solu‐
tion for the given problem is explained. The required deriva‐
tions and formulations are given in this section. In Section
III, the results of the proposed solution method are illustrat‐
ed. The comparison of different operational cases are also
given in this part. Finally in Section IV, the work is summa‐
rized and concluded.

II. PROPOSED METHOD

An MGCC to minimize the operation cost of the mi‐
crogrid will be modeled for the operation of the system in
normal operation state. To achieve this, the MPC method
will be utilized, which enables an optimum solution for long-
term operation. For simplicity, the losses in the microgrid
and the losses in power electronic components are neglected.
A detailed strategy about the inclusion of inverter and DC-
DC converter losses can be found in [26]. In the considered
system structure, it is assumed that the electric grid permits
the bi-directional power flow, i. e., the excess power can be
sold to grid with a different tariff. Furthermore, the effect of
the aging of BSS, which directly affects the usable capacity
of BSS, will be considered in this work. The optimization
problem is formulated as an MILP problem.

The definition of MPC can be given as deciding the opti‐
mum control strategy for the current time instant based on
forcasted behaviour of the system using dynamic models
[27]. With this method, the control decision may not be the
optimum operation for the current time instant. However, in
the forecasted time horizon, the control decision yields the
optimum solution based on the forecasted behaviour of the
system.

In the system modeling, the PV generation model plays a
crucial role. Generally, solar generation depends on the natu‐
ral and environmental conditions such as temperature, foggi‐
ness, cloudiness, etc. Since the majority of commercial PV
inverters have maximum power point tracking algorithm, it
can be assumed that all the generated power is transferred to
the microgrid. Although the PV generation can be used for
the purpose of voltage regulation, this kind of usage will not
be included in this work.
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Load model is another key factor in modeling. Since it de‐
pends on the instantaneous choices of the people, it might
be chaotic in small systems. One of the main purposes of mi‐
crogrid operation is to provide uninterrupted service to the
customers; therefore, it is not preferred to apply load shed‐
ding. Only in island mode of operation, some loads may be
de-energized, but such a scenario will not be considered in
this work.

Battery is the core of BSS and its optimal usage has an
important role in cost optimization. Harsh usage of the BSS
decreases the lifetime of the battery significantly. Therefore,
in microgrid operation, the aging of the battery should be
considered as well.

In this work, PV generation is forecasted using long-short
term memory (LSTM), and load forecasting is performed us‐
ing Kalman filter. Note that these forecasted results are used
as inputs of the proposed MPC method, where the main con‐
tribution of this work is the integration of the BSS aging ef‐
fect to MGCC, so that the proposed method will reduce the
charging-discharging cycle numbers to expend the lifetime
of BSS. In this work, a cycle is defined as discharging/charg‐
ing period of the battery. In the discharging period, the state
of charge (SoC) goes from 100% to 0%; while in the charg‐
ing period, the SoC goes from 0% to 100%. In practical ap‐
plications, the minimum SoC value may be limited to extend
the lifetime of the battery. However, in order to emphasize
the benefits of the proposed method, the given cycle defini‐
tion is used. Note that 0% SoC does not indicate 0 open-cir‐
cuit terminal voltage. The effect of aging on BSS capacity is
estimated using least squares estimator, and expected life‐
time of BSS is modeled as a function of the capacity. In this
section, the load and generation forecasting methods are first‐
ly presented. Then the proposed BSS capacity estimation
method will be introduced, and it will be followed by the ex‐
planation of the proposed MGCC.

A. Load and PV Generation Forecasting

With the measured historical data, the load and PV genera‐
tion characteristics of the microgrid can be forecasted easily.
There are lots of different forecasting strategies in the litera‐
ture for both problems. In [28] and [29], the use of artificial
neural network (ANN) for load forecasting is proposed. In
[29], the proposed ANN-based method can work with an ac‐
curacy of 99.5%. Also, auto-regressive integrated moving av‐
erage (ARIMA) models have some popularity in literature,
where they may be combined with some other methods [30],
[31]. For the PV generation forecasting, there exist some
methods based on Markov chain [32] as well as support vec‐
tor machine [33], [34].

Although it is possible to use any method depending on
the application, in this work, a Kalman filter based approach
for load forecasting and LSTM method for PV generation
forecasting will simply be utilized. The main motivations be‐
hind these choices are the ease of implementation and low
memory requirements.

The results of the applied Kalman filter can be seen in
Fig. 1, where the blue line represents the forecasted load,

and the red line represents the actual load measurement.
Note that as the forecasting horizon changes, the time inter‐
vals employed for the Kalman filter change as well. There‐
fore, the forecasting may carry some inaccuracy, especially
if there is an unexpected change in demand amount.

To forecast the PV generation, LSTM method is applied
by using the LSTM tool of MATLAB. The employed fore‐
casting tool receives the recorded PV generation values cor‐
responding to the previous time instant and corresponding to
the same time instant to be forecasted of the previous day.
However, if cloudiness data is available, it can be used to
improve the output of the LSTM method. The result can be
seen in Fig. 2, where the red line represents the actual PV
generation, and the blue line shows the forecasted PV gener‐
ation. The difference between the forecasted and actual data
is due to the lack of cloudiness data.

The proposed MPC is designed to operate at normal opera‐
tion state so that the grid is not interrupted. Therefore, the in‐
accuracy in PV generation and load forecasting causes a sub-
optimal operation decision. However, this does not constitute
any risk of load interruption. More accurate forecasting
methods can be utilized in practical applications. In this
work, the aim is to utilize MPC for microgrid control consid‐
ering BSS aging, and hence no special effort is paid to im‐
prove the forecasting accuracy. In future works, forecasting
method with better accuracy will be employed.

B. BSS Capacity Estimation

The capacity of battery changes with time, which is based
on the usage behavior. In literature, there are many heuristic
methods utilized to model this behavior [21], [24]. However,
those methods are not accurate in real-life practical opera‐
tions, despite the fact that they reflect dependency of the ca‐
pacity on environmental conditions and usage behavior. In
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this paper, BSS capacity estimator based on least squares
method is proposed. The proposed method uses the electrical
circuit model of the batteries which is shown in Fig. 3 [35],
and estimates model parameters using real-time current and
voltage data. The measured quantities provide two linearly
independent equations, which do not provide enough redun‐
dancy for the solution. Therefore, rather than using a single
snapshot of measurements, a time series of measurements
are utilized to increase the measurement redundancy. Note
that the degradation of the battery lifetime in a day is negli‐
gible, and that it may be assumed to be constant within a
day. Based on this assumption, the proposed method uses
battery terminal voltage and current measurements within a
day, and estimates a single usable capacity of BSS.

In the equivalent circuit of the battery, Ccap represents the
usable capacity; R0 represents the instantaneous voltage drop
of the step response; R1, C1 and R2, C2 are responsible for
short-time and long-time constants of the step response, re‐
spectively; VSoC is the quantitive representation of SoC; VOC

varies with VSoC thus the non-linear relationship between VOC

and SoC can be modelled. Lastly, a current controlled cur‐
rent source is used to charge/discharge the battery with iL.
The same iL current flows through Ccap and load. Details of
the model can be found in [21]. Ccap declines as cycle num‐
ber, discharge current and storage time increases, and is de‐
pendent to ambient temperature. Note that the effects of cy‐
cle number, discharging current and storage time are reflect‐
ed automatically in the proposed estimation process, as real
measurements are used. In this work, it is assumed that the
ambient temperature at the location of the BSS is controlled,
and does not change significantly during a day. The left-
hand side of Fig. 3 represents the remaining usable capacity
of the battery, and a decrease in Ccap represents the decrease
in lifetime. On the other hand, the right-hand side models I-
V characteristic of the battery. Parallel RC circuits yield the
transient response. The values of R0, R1, R2, C1 and C2 fluc‐
tuate with varying SoC values. However, this fluctuating be‐
haviour is negligible for resistive parameters if SoC is 10%
or higher [36]. Therefore, in this work, those values are as‐
sumed to be constant, and their values can be calculated us‐
ing the method defined in [24]. The capacitor values are ne‐
glected in this study, as steady-state voltage and current mea‐
surements are used in the proposed estimator.

The relation between the measurements and system states
is given in (1):

z = h(x)+ e (1)

where z is the measurement vector; x is the system state vec‐

tor; e is the measurement error vector; and h(×) is the set of
functions that relates measurements to the system states.

In this work, z contains battery terminal current and bat‐
tery terminal energy, which is the product of terminal volt‐
age, supplied current and pre-determined time interval be‐
tween two measurement updates. As explained previously, to
improve measurement redundancy, data recorded during a
day with constant time intervals is included in z.
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where iL [t] is the terminal current; n is the last time instant
when the measurement is taken; EL [t]= iL [t]VL [t]Dt; VL [t] is
the terminal voltage; and Dt is the time interval between two
measurement recordings.

The system states are defined as Ccap and SoC voltages
corresponding to the measurement update instants values,
VSoC [t]. The state vector is given below.
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where VSoC [t] is the SoC voltage at time instant t.
The relation equations between the system states and mea‐

surements are defined below. Equations (4) and (5) are ob‐
tained based on the Kirchhoff’s current law and conserva‐
tion of the energy law, respectively.

iL [t]=Ccap

dVC

dt
=Ccap

VSoC [t]

Dt
-Ccap

VSoC [t - 1]

Dt
(4)

EL [t]=VL [t]iL [t]Dt =
1
2

CcapV
2

SoC [t]- i2
L [t] ( )R0 +R1 +R2 Dt (5)

The least squares estimation problem can be defined as
follows:

min rTr (6)

s.t. r = z - h (x) (7)

where r is the measurement residual vector. The problem de‐
fined in (6) can be solved using the Gauss-Newton itera‐
tions, where the states are updated at each iteration as fol‐
lows:

Dxk =G-1 H T ( )z - h(x̂k) (8)

where H is the Jacobian matrix defined in (9); G is the gain
matrix and G =H T H; and x̂k is the estimated system state
vector at the kth iteration.
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Fig. 3. Equivalent circuit of battery cell.
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Note that temperature change during a day is limited.
Therefore, one can consider temperature dependency of the
battery capacity by:

1) Dividing the range between the minimum and maxi‐
mum temperature values of the corresponding day into equal
intervals. Note that a few degrees of temperature change is
not significantly effective on the battery capacity.

2) Assigning new capacitance states to each of those inter‐
vals.

3) Forming (9), also considering those new states.

C. Proposed MGCC Formulation

In MPC, the optimum operation decision for the consid‐
ered time instant is given based on the forecasted system be‐
havior. In this work, the forecasting horizon is taken as the
next 24 hours, and the operation decisions are given in ev‐
ery 15 min, i.e., there are 96 time steps in a forecasting hori‐
zon. The proposed method considers the future load demand
and PV generation expectations as well as the available BSS
capacity, and determines its current operation decision ac‐
cordingly.

The main concern of the proposed formulation is the over‐
all cost optimization in the system. Therefore, the objective
function can be defined in (10).

Jt = Jgridt + JBSSagingt (10)

where Jgridt and JBSSagingt are the objective associated with the
cost of the power drawn from the grid at time instant t, and
the objective associated with the use of BSS at time instant
t, respectively. These objective functions can be written in
detail as follows:

Jgridt = {Pgridt ( )costbuyt Dt Pgridt ³ 0

Pgridt ( )costsellt Dt Pgridt < 0
(11)

JBSSagingt =
Invremain

Cycleremain

k
|PBSSt|Dt

Capusable

(12)

where Pgridt is the power drawn from the grid at time t;
cos tbuyt is the purchase price of the electricity from the grid;
cos tsellt is the selling price of the electricity to the grid;

Invremain is the price equivalent to the remaining battery life
which is defined in (13); k is the penalty factor; Cycleremain is
the remaining number of cycles defined in (14); PBSSt is the
power drawn from the BSS at time t; and Capusable is the
BSS capacity estimation, which is found at the end of each
day.

Invremain = Inv-A
Inv

Ethroughput
(13)

Cycleremain =Cyclemax -Cyclet (14)

where Inv is the capital investment of the BSS; Ethroughput is
the total throughput energy over BSS lifetime; Cyclemax is
the cycle life of the BSS; Cyclet is the cycle value that corre‐
sponds to the Capusable in usable capacity vs. cycle number
graph at time t; and A is the area under the usable capacity
vs. cycle number graph between the installation of BSS and
Cyclet point.

In (11), the energy drawn from the grid is multiplied with
the cost of the energy at the corresponding time period. In
(12), |PBSSt|Dt Capusable presents the effect of depth of dis‐

charge (DoD) at the given time instant t, and
Invremain Cycleremain reflects the updated cost of each cycle. It

should be noted that the absolute value of the PBSSt is used
in (12), since it is assumed that the effects of charging and
discharging are similar. Finally, penalty factor, k, in (12) is
used to represent how much the system operator desires to
avoid charging-discharging actions. As the value increases,
the proposed MGCC will perform a lower number of actions.

In the given formulation, Cycleremain and Capusable are calcu‐
lated by using the developed battery model. The output of
the proposed BSS capacity estimation is the Capusable of the
battery. Cycleremain can be found easily by checking the corre‐
sponding point in usable capacity versus cycle number
graph, provided by the battery manufacturer. A sample graph
is given in Fig. 4. It should be noted that in this work, the
battery capacity is updated every day by assuming that the
aging of BSS in a day is negligibly low.

The PV panels are also aging throughout their usage. Actu‐
ally, they are exposing to the environmental conditions more
than BSS. However, their performances change due to that
the aging can be learned by the LSTM algorithm. Therefore,
no extra effort is made in this work on the PV aging.

The constraints of the considered optimization problem
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can be given as:

Ploadt =Pgridt +PPVt +PBSSt (15)

Capt =Capt - 1 -PBSStDt (16)

where Ploadt is the power demand of the load at time t; PPVt

is the power output of the PV inverters at time t; and Capt is
the capacity of the BSS at time t.

Equation (15) represents the basic power balance equation
for the system, while (16) gives the capacity change in bat‐
tery depending on the power drawn from battery.

The linearized optimization problem can be written by
combining (10)-(16).

min∑
t = 0

96

Pgridt (cos tbuyt)Dts +Pgridt (cos tsellt)Dt(1- s)+

Invremain

Cycleremain

|PBSSt|Dt

Capusable

(17)

s.t.

Ploadt =Pgridt +PPVt +PBSSt (18)

0£-Pgridt +Ms (19)

-Pgridt +Ms£M (20)

Capt =Capt - 1 -PBSStDt (21)

PBSSt £PBSSmax (22)

Capt £Capmax (23)

|PBSSt|³ 0 (24)

Capt ³ 0 (25)

sÎ{01} (26)

where s is the binary variable used to check the direction of
power flow at grid connection; |PBSSt| is the absolute value
of the variable PBSSt; M is a larger number than the possible
power flowing at grid connection; and PBSSmax is the maxi‐
mum power capacity of the BSS.

In (21), the initial capacity of the battery should be used
at time step t = 0. While (22) gives the upper and lower
bounds of the PBSSt, (23) shows the upper bound of Capt. To
linearize the conditional cost function (11) a very large num‐
ber is used, which is namely M. Finally, s is a binary vari‐
able, which is used to find either the electricity is bought
from the grid or sold to the grid.

In (22), the boundary for PBSSt is taken as the rated cur‐
rent of BSS, because according to [37], current values larger
than the rated current may lead to the fast degradation of
BSS, especially in charging mode.

Note that for an optimal operation, all system components
should be modeled with the highest accuracy possible. There‐
fore, it is crucial to estimate the battery capacity, which is
the main component in a microgrid that can be utilized for
cost optimization, based on the real-time measurements. The
proposed capacity estimation method is used to find the opti‐
mal model that satisfies the measurements taken. On the oth‐
er hand, conventional methods use heuristic equations,
which may cause significant inaccuracy.

III. SIMULATIONS

In this section, the performance of the proposed BSS ca‐
pacity estimator will be firstly presented, followed by a com‐
parative study on the application of the proposed MGCC.

In order to observe the performance of the BSS capacity
estimator, a test data set is created. Measurement vector is
formed adding random error to the measurement set calculat‐
ed using assumed true states, namely Ccap and randomly gen‐
erated VSoC [t] values.

VSoC [t] values are set to the values given in Table I. The
estimated states are given in Table II. At the end of each iter‐
ation, the error is calculated. When it is less than the pre‐
defined threshold, the estimator is said to be converged. As
seen in Table II, the proposed estimator converged in 6 itera‐
tions to the unbiased state estimates. Note that as the size of
the state vector is 97´ 1, only three sample VSoC states and
corresponding estimates are presented in the table.

As shown in Tables I and II, the proposed BSS capacity
estimator performs with a high accuracy and low computa‐
tional burden. The method runs daily because BSS capacity
does not change significantly within 24 hours. The resulting
capacity estimation is supplied to the proposed MGCC to
provide the updated limitations on the storage constraints of
the optimization problem.

The proposed MGCC is applied to a microgrid that is
composed of a load with rated power of 61 kW, and a PV
system with a capacity of 55 kWp. During the simulation,
the maximum power supplying capability of the BSS is as‐
sumed to be 5 kW, and the maximum capacity of BSS is tak‐
en as 10 kWh. The initial SoC of BSS is assumed as 20% (2
kWh). The time of use (ToU) tariff is assumed to be 15
cents/kWh from 06:00 to 17:00, 30 cents/kWh from 17:00 to
22:00 and 8 cents/kWh from 22:00 to 06:00. The capital in‐
vestment of BSS is considered as $5100. Finally, the total
throughput power of BSS is taken as 5 MWh.

TABLE I
TRUE STATES

TABLE II
ESTIMATION RESULTS AT EACH ITERATION
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can be given as:

Ploadt =Pgridt +PPVt +PBSSt (15)

Capt =Capt - 1 -PBSStDt (16)

where Ploadt is the power demand of the load at time t; PPVt

is the power output of the PV inverters at time t; and Capt is
the capacity of the BSS at time t.

Equation (15) represents the basic power balance equation
for the system, while (16) gives the capacity change in bat‐
tery depending on the power drawn from battery.

The linearized optimization problem can be written by
combining (10)-(16).

min∑
t = 0

96

Pgridt (cos tbuyt)Dts +Pgridt (cos tsellt)Dt(1- s)+

Invremain

Cycleremain

|PBSSt|Dt

Capusable

(17)

s.t.

Ploadt =Pgridt +PPVt +PBSSt (18)

0£-Pgridt +Ms (19)

-Pgridt +Ms£M (20)

Capt =Capt - 1 -PBSStDt (21)

PBSSt £PBSSmax (22)

Capt £Capmax (23)

|PBSSt|³ 0 (24)

Capt ³ 0 (25)

sÎ{01} (26)

where s is the binary variable used to check the direction of
power flow at grid connection; |PBSSt| is the absolute value
of the variable PBSSt; M is a larger number than the possible
power flowing at grid connection; and PBSSmax is the maxi‐
mum power capacity of the BSS.

In (21), the initial capacity of the battery should be used
at time step t = 0. While (22) gives the upper and lower
bounds of the PBSSt, (23) shows the upper bound of Capt. To
linearize the conditional cost function (11) a very large num‐
ber is used, which is namely M. Finally, s is a binary vari‐
able, which is used to find either the electricity is bought
from the grid or sold to the grid.

In (22), the boundary for PBSSt is taken as the rated cur‐
rent of BSS, because according to [37], current values larger
than the rated current may lead to the fast degradation of
BSS, especially in charging mode.

Note that for an optimal operation, all system components
should be modeled with the highest accuracy possible. There‐
fore, it is crucial to estimate the battery capacity, which is
the main component in a microgrid that can be utilized for
cost optimization, based on the real-time measurements. The
proposed capacity estimation method is used to find the opti‐
mal model that satisfies the measurements taken. On the oth‐
er hand, conventional methods use heuristic equations,
which may cause significant inaccuracy.

III. SIMULATIONS

In this section, the performance of the proposed BSS ca‐
pacity estimator will be firstly presented, followed by a com‐
parative study on the application of the proposed MGCC.

In order to observe the performance of the BSS capacity
estimator, a test data set is created. Measurement vector is
formed adding random error to the measurement set calculat‐
ed using assumed true states, namely Ccap and randomly gen‐
erated VSoC [t] values.

VSoC [t] values are set to the values given in Table I. The
estimated states are given in Table II. At the end of each iter‐
ation, the error is calculated. When it is less than the pre‐
defined threshold, the estimator is said to be converged. As
seen in Table II, the proposed estimator converged in 6 itera‐
tions to the unbiased state estimates. Note that as the size of
the state vector is 97´ 1, only three sample VSoC states and
corresponding estimates are presented in the table.

As shown in Tables I and II, the proposed BSS capacity
estimator performs with a high accuracy and low computa‐
tional burden. The method runs daily because BSS capacity
does not change significantly within 24 hours. The resulting
capacity estimation is supplied to the proposed MGCC to
provide the updated limitations on the storage constraints of
the optimization problem.

The proposed MGCC is applied to a microgrid that is
composed of a load with rated power of 61 kW, and a PV
system with a capacity of 55 kWp. During the simulation,
the maximum power supplying capability of the BSS is as‐
sumed to be 5 kW, and the maximum capacity of BSS is tak‐
en as 10 kWh. The initial SoC of BSS is assumed as 20% (2
kWh). The time of use (ToU) tariff is assumed to be 15
cents/kWh from 06:00 to 17:00, 30 cents/kWh from 17:00 to
22:00 and 8 cents/kWh from 22:00 to 06:00. The capital in‐
vestment of BSS is considered as $5100. Finally, the total
throughput power of BSS is taken as 5 MWh.

TABLE I
TRUE STATES

Variable

Ccap (kAh)

VSoC[1] (V)

VSoC[2] (V)

VSoC[96] (V)

Value

100.000

12.594

12.153

15.465

TABLE II
ESTIMATION RESULTS AT EACH ITERATION

No. of iteration

0 (initial value)

1

2

3

4

5

6

Ccap (kAh)

80.000

114.418

109.544

101.612

99.672

100.083

100.000

VSoC[1] (V)

10.000

12.594

11.786

12.371

12.623

12.585

12.597

VSoC[2] (V)

10.000

11.776

11.329

11.934

12.181

12.144

12.155

VSoC[96] (V)

10.000

18.635

15.101

15.244

15.501

15.454

15.468
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Five different case scenarios are evaluated using the de‐
fined microgrid. All simulations are performed with three-
day-long data.

Case 1: The PV system and the BSS are neglected so that
all power demand is supplied from the grid. This case actual‐
ly presents the cost of the required energy to run the load.

Case 2: The PV system is utilized to reduce the electrical
cost of the load, but BSS is disregarded.

Case 3: This case includes all components such as the
load, PV and BSS. BSS is controlled based on the following
rules, which will be stated as the primitive control strategy
in the rest of the paper:

1) The battery is charged to 100% between 22: 00 and
06:00.

2) The battery starts discharging at 06:00, and re-charging
at noon (if the PV generation exceeds the load, the residual
amount will be stored for free. If the PV generation is less
than the load, the battery will reduce the power demanded
from the grid in the morning, and increase the power de‐
manded from the grid in the afternoon. Therefore, the cost
will not be affected).

3) At 18:00, the battery starts discharging.
This is the most basic way of controlling a BSS, which is

also applied by some commercial products.
Case 4: In this case, BSS is controlled using an MPC-

based MGCC. The MGCC does not consider battery aging.
This method is similar to the method proposed in [8].

Case 5: This case utilizes the proposed MGCC.
The results are presented in Table III, where the check

marks specify whether the corresponding components and
features are considered in the control problem for each case.

As shown in Table III, the use of BSS reduces the opera‐
tion cost of a microgrid. However, Case 3 visualizes that if
the battery size is not selected properly in the presence of
the primitive control strategy, the cost reduction may be in‐
significant. Note that if a better battery capacity selection is
realized, lower costs would be obtained using primitive con‐
trol strategy. According to Table III, the forecasting-aided
MGCC may provide a significant cost reduction microgrid
operation.

The resulting cost for the considered three days is higher
if the proposed MGCC is employed as shown from the com‐
parison of Cases 4 and 5. However, if the overall cost which
includes battery renewal is considered, it will be seen that
the proposed method is superior in terms of cost optimiza‐
tion. Figure 5 shows the load and generation profiles for the
considered three days, while Fig. 6 presents the SoC varia‐

tions of the battery corresponding to Cases 4 and 5. As
shown in Fig. 6, the battery charging cycle number in Case
4 is approximately twice of that of Case 5. Therefore, one
can expect to renew the battery sooner if Case 4 is em‐
ployed.

Considering the costs obtained in Table III, it can be ob‐
tained that BSS will be amortized in five years if Case 4 is
employed. This duration will be extended to 6 years with the
utilization of Case 5 while the life time of the battery is dou‐
bled.

In Table III, errors in load and PV generation forecasting
lead to a better operation cost for the proposed method. It
can be concluded that the forecasting inaccuracy results in a
sub-optimal cost.

The effect of MPC algorithm is shown in Fig. 6. The con‐
sideration of the aging effect decreases both the variations in
the drawn power from the battery and the depth of dis‐
charge. This is an expected observation since the usage of
the battery is punished by the added term in cost function
given in (12).

IV. CONCLUSION

This paper presents an MGCC based on MPC. The pro‐
posed MGCC aims to optimize the operation cost of the mi‐
crogrid, considering load and PV generation forecasting as
well as the up-to-date BSS capacity. In this paper, the opti‐
mal control problem is formulated as an MILP problem. The
MILP problem minimizes not only the cost of energy but al‐
so the battery usage.

Load and PV generation forecasting is realized using Kal‐
man filter and LSTM methods, respectively. As the paper
does not concentrate on the improvement of forecasting tech‐
niques, no special effort is made to improve the forecasting
accuracy.

TABLE III
SIMULATION RESULTS

Case

1

2

3

4

5

Grid

√
√
√
√
√

PV

√
√
√
√

BSS

√
√
√

MPC

√
√

Aging of BSS

√

Cost ($)

563.6

404.1

403.9

395.7

397.1

PV generation; Load; Night tariff; Day tariff; Peak tariff
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Fig. 5. Actual load and PV generations.
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Fig. 6. Change of SoC with/without aging effect.

The optimal usage of BSS is crucially important in mi‐
crogrid operation. The actual capacity of BSS should be
known due to reliability considerations. The conventional
heuristic methods provide a rough approximation of the bat‐
tery capacity, while the proposed capacity estimation method
in this work utilizes the well-known electrical battery model
and real-time measurements in order to obtain an accurate es‐
timation.

Once the actual usable battery capacity is known, the sys‐
tem operator will utilize BSS to minimize the operation cost
to avoid frequent charging and discharging, since those ac‐
tions significantly reduces the battery life. Considering the
high renewal cost of the battery, one must limit those charg‐
ing and discharging actions to extend the life time of the bat‐
tery. As seen in the simulations, the proposed MGCC suc‐
ceeds in reducing the overall cost of the microgrid in long-
term operation with the consideration of battery aging.

The major contribution of the paper is the battery model
update based on real-time measurements. Note that one can
use the proposed battery capacity modeling method in differ‐
ent control strategies without losing generality.
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The optimal usage of BSS is crucially important in mi‐
crogrid operation. The actual capacity of BSS should be
known due to reliability considerations. The conventional
heuristic methods provide a rough approximation of the bat‐
tery capacity, while the proposed capacity estimation method
in this work utilizes the well-known electrical battery model
and real-time measurements in order to obtain an accurate es‐
timation.

Once the actual usable battery capacity is known, the sys‐
tem operator will utilize BSS to minimize the operation cost
to avoid frequent charging and discharging, since those ac‐
tions significantly reduces the battery life. Considering the
high renewal cost of the battery, one must limit those charg‐
ing and discharging actions to extend the life time of the bat‐
tery. As seen in the simulations, the proposed MGCC suc‐
ceeds in reducing the overall cost of the microgrid in long-
term operation with the consideration of battery aging.

The major contribution of the paper is the battery model
update based on real-time measurements. Note that one can
use the proposed battery capacity modeling method in differ‐
ent control strategies without losing generality.

REFERENCES

[1] A. Mills, M. Ahlstrom, M. Brower et al., “Understanding variability
and uncertainty of photovoltaics for integration with the electric power
system,”[Online]. Available: https://escholarship.org/uc/item/58z9s527

[2] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi et al., “Trends in mi‐
crogrid control,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp.
1905-1919, Jul. 2014.

[3] A. L. Dimeas and N. D. Hatziargyriou, “Operation of a multiagent sys‐
tem for microgrid control,” IEEE Transactions on Power Systems, vol.
20, no. 3, pp. 1447-1455, Aug. 2005.

[4] A. Kantamneni, L. E. Brown, G. Parker et al., “Survey of multi-agent
systems for microgrid control,” Engineering Applications of Artificial
Intelligence, vol. 45, pp. 192-203, Oct. 2015.

[5] F. Pilo, G. Pisano, and G. G. Soma, “Neural implementation of mi‐
crogrid central controllers,” in Proceedings of IEEE International Con‐
ference on Industrial Informatics (INDIN), Vienna, Austria, Jun. 2007,
pp. 925-930.

[6] A. Borghetti, M. Bosetti, C. Bossi et al., “An energy resource schedul‐
er implemented in the automatic management system of a microgrid
test facility,” in Proceedings of 2007 International Conference on
Clean Electrical Power, Capri, Italy, May 2007, pp. 94-100.

[7] B. Otomega, A. Marinakis, M. Glavic et al., “Model predictive control
to alleviate thermal overloads,” IEEE Transactions on Power Systems,
vol. 22, no. 3, pp. 1384-1385, Aug. 2007.

[8] A. Parisio, E. Rikos, and L. Glielmo, “A model predictive control ap‐
proach to microgrid operation optimization,” IEEE Transactions on
Control Systems Technology, vol. 22, no. 5, pp. 1813-1827, Sept. 2014.

[9] F. Garcia-torres and C. Bordons, “Optimal economical schedule of hy‐
drogen-based microgrids with hybrid storage using model predictive
control,” IEEE Transactions on Industrial Electronics, vol. 62, no. 8,
pp. 5195-5207, Aug. 2015.

[10] A. Parisio, E. Rikos, and L. Glielmo, “Stochastic model predictive
control for economic/environmental operation management of mi‐
crogrids: an experimental case study,” Journal of Process Control, vol.
43, pp. 24-37, Jul. 2016.

[11] B. Zhao, X. Zhang, J. Chen et al., “Operation optimization of stand‐
alone microgrids considering lifetime characteristics of battery energy
storage system,” IEEE Transactions on Sustainable Energy, vol. 4, no.
4, pp. 934-943, Oct. 2013.

[12] M. Pereira, D. M. De La Pena, and D. Limon, “Robust economic mod‐
el predictive control of a community micro-grid,” in Proceedings of
2016 IEEE 55th Conference on Decision and Control, Las Vegas,
USA, Dec. 2016, pp. 2739-2744.

[13] T. Morstyn, B. Hredzak, R. P. Aguilera et al., “Model predictive con‐
trol for distributed microgrid battery energy storage systems,” IEEE
Transactions on Control Systems Technology, vol. 26, no. 3, pp. 1107-
1114, May 2018.

[14] Y. Zheng, S. Li, and R. Tan, “Distributed model predictive control for
on-connected microgrid power management,” IEEE Transactions on
Control Systems Technology, vol. 26, no. 3, pp. 1028-1039, May 2018.

[15] W. Shi, N. Li, C. C. Chu et al., “Real-time energy management in mi‐
crogrids,” IEEE Transactions on Smart Grid, vol. 8, no. 1, pp. 228-
238, Jan. 2017.

[16] S. Jena, P. Sinha, P. R. Satpathy et al., “Performance analysis of solar
PV based microgrid with and without BESS estimating the expected
battery life,” in Proceedings of International Conference on Technolo‐
gies for Smart City Energy Security and Power: Smart Solutions for
Smart Cities, Bhubaneswar, India, Mar. 2018, pp. 1-6.

[17] D. W. Dees, V. S. Battaglia, and A. Bélanger, “Electrochemical model‐
ing of lithium polymer batteries,” Journal of Power Sources, vol. 110,
no. 2, pp. 310-320, Aug. 2002.

[18] J. Newman, K. E. Thomas, H. Hafezi et al., “Modeling of Lithium-ion
batteries,” Journal of Power Sources, vol. 119-121, pp. 838-843, Jun.
2003.

[19] P. Rong, S. Member, and M. Pedram, “An analytical model for pre‐
dicting the remaining battery capacity of Lithium-ion batteries,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14,
no. 5, pp. 1-12, May 2006.

[20] R. Rynkiewicz, “Discharge and charge modeling of lead acid batter‐
ies,” in Proceedings of 14th Annual Applied Power Electronics Confer‐
ence and Exposition (Cat. No.99CH36285), Dallas, USA, Aug. 1999,
pp. 707-710.

[21] G. A. Rincón-mora, “An accurate electrical battery model capable of
predicting lifetime and I-V performance motivation,” IEEE Transac‐
tions on Energy Conversion, vol. 21, no. 2, pp. 1-8, Jun. 2005.

[22] C. Guenther, J. K. Barillas, S. Stumpp et al., “A dynamic battery mod‐
el for simulation of battery-to-grid applications,” in Proceedings of
IEEE PES Innovative Smart Grid Technologies Conference Europe,
Berlin, Germany, Oct. 2012, pp. 1-7.

[23] L. W. Yao, P. Y. Kong, and N. R. N. Idris, “Modeling of Lithium-ion
battery using MATLAB/Simulink,” in Proceedings of 39th Annual
Conference of the IEEE Industrial Electronics Society, Vienna, Austria,
Jan. 2013, pp. 1729-1734.

[24] H. Zhang and M. Y. Chow, “Comprehensive dynamic battery model‐
ing for PHEV applications,” in Proceedings of IEEE PES General
Meeting, Providence, USA , Jul. 2010, pp. 1-6.

[25] S. Boulmrharj, Y. NaitMalek, A. E. Mouatamid et al., “Towards a bat‐
tery characterization methodology for performance evaluation of micro-
grid systems,” in Proceedings of 2018 International Conference on
Smart Energy Systems and Technologies, Sevilla, Spain, Oct. 2018, pp.
1-6.

[26] M. U. Gudelek, C. R. Cirak, E. Arin et al., “Load and PV generation
forecast based cost optimization for nanogrids with PV and battery,”
in Proceedings of 53rd International Universities Power Engineering
Conference, Glasgow, United Kingdom, Dec. 2018, pp. 1-6.

[27] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory
and Design, vol. 1. Cheryl M. Rawlings, 2009.

[28] D. Park, M. El-Sharkawi, R. Marks et al., “Electric load forecasting
using an artificial neural network,” IEEE Transactions on Power Sys‐
tems, vol. 6, no. 2, pp. 442-449, May 1991.

[29] A. Ahmad, N. Javaid, M. Guizani et al., “An accurate and fast con‐
verging short-term load forecasting model for industrial applications in
a smart grid,” IEEE Transactions on Industrial Informatics, vol. 13,
pp. 2587-2596, Oct. 2017.

[30] C. M. Lee and C. N. Ko, “Short-term load forecasting using lifting
scheme and ARIMA models,” Expert Systems with Applications, vol.
38, no. 5, pp. 5902-5911, May 2011.

[31] H. Nie, G. Liu, X. Liu et al., “Hybrid of ARIMA and SVMs for short-
term load forecasting,” Energy Procedia, vol. 16, PART C, pp. 1455-
1460, Apr. 2012.

[32] Y. Z. Li, R. Q. Nie, and J. C. Niu, “Forecast of power generation for
grid-connected photovoltaic system based on knowledge representation
of rough sets,” in Proceedings of Asia-Pacific Power and Energy Engi‐
neering Conference, Shanghai, China, Sept. 2012, pp. 9-12.

[33] N. Sharma, P. Sharma, D. Irwin et al., “Predicting solar generation
from weather forecasts using machine learning,” in Proceedings of
IEEE International Conference on Smart Grid Communications, Brus‐
sels, Belgium, Oct. 2011, pp. 528-533.

[34] A. Fentis, L. Bahatti, M. Mestari et al., “Short-term PV power fore‐
casting using support vector regression and local monitoring data,” in
Proceedings of International Renewable and Sustainable Energy Con‐
ference, Marrakech, Morocco, Jul. 2016, pp. 1092-1097.

[35] A. Rahmoun and H. Biechl, “Modelling of Li-ion batteries using
equivalent circuit diagrams,” Electrical Review, vol. 88, pp. 152-156,

303



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 8, NO. 2, March 2020

Jan. 2013.
[36] J. D. Dogger, B. Roossien, and F. D. J. Nieuwenhout, “Characterisa‐

tion of Li-ion batteries for intelligent management of distributed grid-
connected storage,” IEEE Transactions on Energy Conversion, vol.
26, no. 1, pp. 256-263, Mar. 2011.

[37] S. S. Choi and H. S. Lim, “Factors that affect cycle-life and possible
degradation mechanisms of a Li-ion cell based on LiCoO2,” Journal
of Power Sources, vol. 111, no. 1, pp. 130-136, Sept. 2002.

Ugur Can Yilmaz received his B.Sc. degree in electrical and electronics en‐
gineering from Middle East Technical University (METU), Ankara, Turkey,
in 2018. He is currently an M. Sc. student in METU, Ankara, Turkey. His
main areas of research are power system modeling and state estimation in
distribution systems.

Mustafa Erdem Sezgin received the B.Sc. and M.Sc. degrees in electrical
and electronics engineering from METU, Ankara, Turkey, in 2015 and
2017, respectively. Currently he is a Ph.D. student and research assistant at
METU, Ankara, Turkey. His main areas of research include power system
modeling and microgrid control.

Murat Gol received the B.Sc.(2007) and M.Sc.(2009) degrees in electrical
and electronics engineering from METU, Ankara, Turkey. He received his
Ph.D. degree from Northeastern University, Boston, USA in 2014. Currently
he is an associate professor and a member of Center for Solar Energy Re‐
search and Applications in METU. His main research areas are power sys‐
tem modeling, power system state estimation, and real-time monitoring and
control of power systems.

304


