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ABSTRACT
Laser experiments are widely used to investigate excitation of Rayleigh-Taylor modes, which are of

great importance for astrophysical applications. Measured growth rates are normally compared with
either the sharp interface or the smooth gradient model. In the present paper an analytical solution is
obtained that is valid for arbitrary density gradient scale L . It is a further development of the Mikaelian
& Lindl model. New explicit presentation u(k) is found which describes all discrete modes at all trans-
verse wavenumbers k with one parametric expression. A critical value of kL is shown to exist when two
independent solutions for the fastest growing main mode become degenerate, in this case the growth rate
is calculated exactly. The focus is on astrophysical applications when boundary conditions are at inÐnity.
The case of rigid walls is also considered to study the interrelation with the Chandrasekhar model.
Results are supposed to be used for nonlinear RT treatment to analyze mixing in supernovae and other
RT-driven objects.
Subject headings : hydrodynamics È instabilities È methods : analytical È supernovae : general È X-ray

1. INTRODUCTION

The problem of the Rayleigh-Taylor (RT) instability is of
great importance for many applications. It has been
modeled and investigated in a number of laboratory experi-
ments. Most recently, the Nova laser facilities (Remington
et al. 1995) have been used for excitation and treatment of
RT dynamics in imploded targets. Further laser-driven
RT experiments are supposed to be carried out for model-
ing of the mixing and other processes important for astro-
physical applications.

The measured growth rates are normally compared with
the analytical results and hydrodynamic simulations. Two
well-known expressions, one for sharp interface, ush2 \

and one for smooth density gra-[kg(o2[ o1)/(o2 ] o1),dient, are used, where o(z) is the verticalusm 2 \ [g/L ,
proÐle of unperturbed mass density, L , is the characteristic
scale of mass density gradient, and k is the transverse wave-
number of the perturbations. These two cases are often
combined with one extrapolation (Munro 1988) :
u2 \ [kg/(1 ] kL ), which gives correct zeroth order terms
but wrong asymptotical behavior.

In this paper incompressible Rayleigh-Taylor modes are
treated for an exponential density proÐle o(z). The analyti-
cal approach is presented, which is the further development
of the model suggested by Mikaelian & Lindl (1984). A new
explicit form of the dispersion relation u(k) is found, which
allows us to describe all discrete modes at all transverse
wavelengths with one parametric expression. It is then used
to follow the transition between sharp and smooth limiting
cases.

Vertical eigenmodes are shown to be discrete not only in
the Ñuid, which is bounded with the rigid walls, but in the
case of inÐnite space as well. Short and long transverse
wavelength limits are investigated. Furthermore, an inter-
mediate value of is found at which two fundamentalkcr Lsolutions describing the fastest-growing main mode become

degenerate and for this case the growth rate is calculated
exactly. In the model by Chandrasekhar (1968), the growth
of perturbations inside a single layer with a similar expo-
nential density proÐle was analyzed. The inter-relation
between this model and our approach is discussed as well.

Results obtained are valid for arbitrary scale L . They are
planned to be used for nonlinear treatment of RT to study
the process of mixing. In particular, mixing causes an e†ec-
tive smoothing of the density gradient that can be taken
into account as time-dependent L (t). Another purpose of
this consideration is to create an accurate quantitative
theory for comparison with the experiments investigating
the early phase of supernova explosions by means of laser-
irradiated targets.

2. BASIC EQUATIONS

Rayleigh-Taylor gravitational modes are analyzed by
using linearized incompressible Ñuid equations. The
uniform static gravitational Ðeld g is assumed to be along
the z-axis, such that all parameters of the equilibrium state
are z-dependent and uniform in the xy-plane. Linear pertur-
bations are taken in the form f (t, y, z)\ f (z)
exp ([iut ] iky). The eigenfunction equation for z com-
ponent of Ñuid velocity v(z) can be obtained as follows :

[o(z)v@]@ [ k2[(g/u2)o@(z) ] o(z)]v\ 0 . (1)

This equation describes the ““ vertical ÏÏ structure of the
incompressible Rayleigh-Taylor modes. Normally, either
the rigid wall (v\ 0) or free interface boundary condition
[v@\ (gk2/u2)v] are imposed on the upper and lower
boundaries at z\ ^h. However, regardless of what partic-
ular case is considered, some general properties of eigen-
values u2 can be derived. The function v(z) is described by a
uniform linear di†erential equation with uniform linear
boundary conditions. This implies that before initial condi-
tions are speciÐed, the proÐle v(z) is deÐned with the accu-

509



510 UCER & MIRNOV Vol. 127

FIG. 1.ÈUnperturbed density proÐle, o(z). The two uniform Ñuids of
densities are bounded with rigid walls at z\ ^h, and separated byo1, o2the layer, [d \ z\ d, with the exponential density proÐle.

racy to an arbitrary nonzero constant. This constant can
even be a complex number (of course, complete solution
v[t, y, z] satisfying physical initial conditions turns out to be
pure real). This freedom allows us to impose any integral
constraint suitable for calculation. Let us multiply equation
(1) with complex conjugate v*(z) and integrate over the Ñuid
volume. If the integral constraint is chosen in the form,
/ o(z) o v(z) o2 dz\ 1, equation (1) takes the following form:

u2 \ [g
/ o@(z) o v(z) o2 dz] o([h) o v([h) o2[ o(h) o v(h) o2

1 ] k~2/ o(z) o v@(z) o2 dz
.

(2)

In the case of rigid wall boundary conditions, the second
and the third terms in the numerator are zero. In all cases
the eigenvalues of u2 turn out to be pure real. Moreover, if
the case of rigid walls is considered and density gradient is
positive, that is, o@(z)º 0, then all u2 are negative, indicat-
ing that all eigenmodes are unstable.

Detailed analysis of vertical eigenmodes is based on exact
solution of equation (1). To treat the problem analytically,
we choose the density proÐle suggested in Mikaelian &
Lindl (1984) and the rigid wall boundary conditions
v(^h)\ 0 (h º d) (see Fig. 1)

o(z)\

4

5

6

0
0
o2 , zº d ,

Jo1 o2 exp (z/L ) , o z o¹ d ,
o1 , z¹ [d,

(3)

where Substituting the density proÐled \ (L /2) ln (o2/o1).(eq. [3]) to equation (1) and making use of the normal-
ization condition above, the following useful inequality is
obtained :

[g/L \ u2\ 0 . (4)

3. STRUCTURE OF THE EIGENMODES

Discrete structure of eigenvalues and their dependence on
k is found by analyzing three di†erent parts of the proÐle
(eq. [3]) separately. Solutions in upper and lower uniform
Ñuids are The velocityv2,1(z) \ C2,1 sinh [k(z < h)].
proÐle, v(z), in the intermediate nonuniform region is given
by

v(z) \ C
`

exp j
`

z] C~exp j~ z , (5)

where

j
B

\ ([ln (o2/o1) ^ Jt2)/4d ,

t2\ ln2 (o2/o1) ] [2kL ln (o2/o1)]2

] (1] g/u2L ) . (6)

In accordance with deÐnition (eq. [6]), the function t2 is
pure real and has either a positive or a negative sign. In fact,
the Ðrst term in equation (6) is positive while the second
term is always negative due to equation (4).

The frequency spectrum of the problem consists of an
inÐnite number of discrete ““ vertical ÏÏ eigenmodes. For the
fastest growing main mode that has the smallest vertical
wave number, n \ 1, t2 is positive if the transverse wave
vector k is small enough. The t2 changes sign and becomes
negative at some critical value of However, for allk(kcr).other modes with n [ 1, t2 is negative at all values of kL
and therefore t is pure imaginary. Following this picture,
we will analyze the structure of the modes considering the
situations where k is smaller, equal, or greater than kcr.

3.1. T he Main Mode, in L ong T ransverse W ave L imit
(t2[ 0)k \ kcr

With the help of equation (6) eigenfrequencies of all
modes can be expressed in terms of t and k as follows :

u2 \ [g
L
G
1 ] 1

4k2L2
C
1 [ t2(k)

ln2 (o2/o1)
DH~1

. (7)

The dependence t2(k) is derived by matching v(z) and
v@(z) at points z\ ^d. At this point, it is suitable to intro-
duce the variable k@, which is related to k as
k@\ k coth [k(h [ d)]. The dependence of t on k@, obtained
under the assumption that t2[ 0 is given by the equation

exp t\ (t] a~)(t[ a
`
)

(t[ a~)(t] a
`
)
,

a
B

\ ln (o2/o1)(1^ 2k@L ) . (8)

When rigid walls are moved to inÐnity, k@\ k. First, we
will analyze this basic case. Then by substituting k@ instead
of k, the e†ect of boundary conditions will be taken into
account.

There is a nontrivial solution to equation (8) when k takes
values between Let us focus on the limit of0 ¹ k ¹ kcr.small kL within this interval. Expanding equation (8) in
powers of kL , an asymptotical expression for the growth
rate of the main mode is obtained :

u2 \ [kg
o2[ o1/o2] o1
1 ] kL f (o2/o1)

, (9)
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where

f (o2/o1)\
4o2 o1

(o2 [ o1)2
A

ln
o2
o1

[ 2
o2[ o1
o2] o1

B
.

The function has a maximum atf (o2/o1) ln (o2/o1) \ 1.8,
with This result indicates that corrections to thefmax\ 0.35.
sharp interface model, due to Ðnite values of kL > 1,
become important starting from relatively large values of
kL ^ 3. This conclusion will be conÐrmed below by the
exact calculation of the growth rate at kcr L .

3.2. T he Main Mode, at Intermediate V alue of k\ kcr(Degenerate Case, t2\ 0)
The transition of the main mode eigenfunction from real

to complex appears at some critical value of k when two
fundamental solutions of equation (5) become degenerate,

t2\ 0. The growth rate in this case can be calcu-j
`

\ j~,
lated exactly as a function of density ratio Instead ofo2/o1.exponential functions in equation (5) the degenerate main
mode is described by the following solution :

v(z)\ (C
`

] C~ z) exp ([z/2L ) . (10)

Matching v(z) and at points z\ ^d yields a criticalv1,2value for k when degeneration takes place :

kcr L
tanh [kcr(h [ d)]

\ R(o2/o1)

\ ln (o2/o1)
4(1 ] J1 ] ln2 (o2/o1)/4)

. (11)

Here the e†ect of rigid boundaries is taken into account
explicitly.

The growth rate of the perturbations with the critical
wavelength is as follows :

u2 \ [4(g/L )kcr2 L2/(1 ] 4kcr2 L2) . (12)

The critical k exists if boundaries are placed far enough
from the unstable region, that is, IfL /(h [ d)\ R(o2/o1).rigid walls are inÐnitively far and donÏt a†ect instability, the
critical values always exist, yielding thekcr L \ R(o2/o1),growth rate u2 \ [g/2L at andln (o2/o1)? 1 u2 \

in the opposite limiting case. Compar-[(g/16L )( ln o2/o1)2ing these results with the sharp interface growth rate ush2 ,
(see ° 1), one can conclude that expression for is validush2not only asymptotically, when kL ] 0, but gives correct
values at Ðnite kL ^ 1 as well.

3.3. T he Range of the Short W avelengthkcr\ k,(t2\ 0)

In the short wave range there are no more solu-k [ kcr,tions to equations (7) and (8) ; therefore negative values of
t2(k) have to be considered. This can be formally achieved
by substitution of it instead of t in the equations (7)È(8).
Because the left-hand side of the resulting equation (8) is a
periodic function of t, it has inÐnitely many discrete solu-
tions for all values 0¹ k \ O. One of these solutions,t

n
(k)

appears only if and corresponds to the0 ¹t1\ 2n k [ kcrcontinuation of the main mode. Other solutions with larger

t exist for all values of k. When t varies between
2n(n [ 1)\ t \ 2nn, k increases from zero to O and it is
repeated periodically with t. All modes can be labeled by
integer n (n \ 1, 2, 3, . . . ) in accordance with the interval of
2n(n [ 1)\ t \ 2nn, which corresponds to the given mode.
As a conclusion, at large values of kL ? 1 the asymptotical
expression for the growth rates of all modes is as follows :

u
n
2 \ [g

L
G
1 ] 1

4k2L2
C
1 ] (2nn)2

ln2 (o2/o1)
DH~1

. (13)

At small values of kL > 1 the square of the growth rates
of all modes except n \ 1 tends to zero as (kL )2 :

u
n
2 \ [(2kL )2 g

L
C
1 ] 4n2(n [ 1)2

ln2 (o2/o1)
D~1

, (14)

while for the main mode, n \ 1, it tends to zero linearly.
Using the information collected so far, an explicit depen-

dence of the growth rate on transverse wave number can be
obtained by the help of parametric expressions, where t is
used as a parameter. Making use of equation (8), kL can be
expressed as a function of t as following :

kL \ [t coth (t/2)
2 ln (o2/o1)

]
St2 csch2(t/2)

4 ln2 (o2/o1)
] 1

4
, (15)

while u2 is expressed as a function of t with the equation
(7). In order to get a parametric representation for the main
mode, parameter t has to be ranged as follows : Ðrst it is
considered as real, starts from and varies betweenln (o2/o1)After it becomes zero, it takes imagin-ln (o2/o1) [ t[ 0.
ary values it where t increases from zero up to 2n. Other
modes with n [ 1 correspond to the range
2n(n [ 1)\ t \ 2nn. These parametric expressions allow
us to observe the explicit form of dispersion for all wave-
lengths as shown in Figure 2.

3.4. T he E†ect of the Rigid W all Boundaries
The e†ect of the rigid walls on the dispersion relation in

equations (7) and (8) is presented by the dependence
k@\ k coth [k(h [ d)]. It shows that boundaries are impor-
tant for the long transverse waves. In fact, if k ] 0 then

FIG. 2.ÈExplicit dependence of the growth rate on transverse wave
number kL (o2/o1\ 1.105).
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k@] 1/(h [ d). Suppose the boundaries are placed far away
so that then expanding t in the(h [ d)~1> kcr\ R/L ,
vicinity of k \ 0 and substituting t(k@) into equation (7) we
have an asymptotical expression for the growth rate of the
main mode, n \ 1, in the long wave limit :

u2 \ [kg tanh [k(h [ d)](o2[ o1/o2 ] o1) . (16)

The modes with the higher vertical wave numbers n [ 1
are less sensitive to the distant rigid walls, and therefore
equation (14) is still a good approximation in this case.

In the opposite limiting case, when rigid walls are close to
the unstable region, (h [ d)/L >o2[ o1/o2] o1, k@] O
and equation (13) becomes valid for all modes and all k
values. Note that this limit corresponds to the well-known
solution of Chandrasekhar (1968) which is widely used in
the text books for the illustration of Rayleigh-Taylor insta-
bility.

4. SUMMARY

Discrete structure of Rayleigh-Taylor incompressible
gravitational modes is treated as a function of the trans-
verse wave vector k in both cases of the inÐnite space and
rigid wall boundaries. Explicit expression for the growth
rate is constructed, which allows us to describe all modes
for all transverse wavelengths as a function of one param-
eter t. The modes are labeled by integer n (n \ 1, 2, 3, . . . )
in accordance with the intervals 2n(n [ 1)\ t \ 2nn.

1. There exists the main vertical mode, n \ 1, with the
highest growth rate. Its eigenfunction is pure real and the
growth rate is close to the model with sharp interface ifushLinear correction to at kL > 1 are found to0 ¹ k ¹ kcr. ush2be approximately 5 times smaller than in the paper by
Munro (1988).

2. At some critical value the two fundamental solu-kcr L ,
tions describing the main mode become degenerate and the
growth rate is calculated exactly. The further increase of k
results in main mode to become complex. Other modes with
larger n (n [ 1) are complex for all values of k.

FIG. 3.ÈProÐles of eigenfunction v(z) for mode n \ 3 and di†erent
values of kL (o2/o1\ 2.718).

3. In the limit kL ? 1, the vertical modes are localized
inside the unstable region of the density proÐle while they
spread out in the opposite limiting case. For the mode
shown in Figure 3, in the case of large kL , the eigenfunctions
are localized in the region of unstable density ([d \ z\ d) ;
while for smaller kL , perturbations spread out through the
region of uniform density.

If rigid walls are placed far away but at Ðnite distance,
(O [ h [ d ? L /R), the main mode is modiÐed in accord-
ance with equation (16) while all other modes, n [ 1, are not
changed signiÐcantly in comparison with the case h \ O.
In the opposite limiting case the spectrum of all modes is
described by equation (13).
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