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Abstract. Signaling networks are essential for cells to control processes such as 
growth and response to stimuli. Although many “omic” data sources are 
available to probe signaling pathways, these data are typically sparse and noisy. 
Thus, it has been difficult to use these data to discover the cause of the diseases. 
We overcome these problems and use “omic” data to simultaneously 
reconstruct multiple pathways that are altered in a particular condition by 
solving the prize-collecting Steiner forest problem. To evaluate this approach, 
we use the well-characterized yeast pheromone response.  We then apply the 
method to human glioblastoma data, searching for a forest of trees each of 
which is rooted in a different cell surface receptor.  This approach discovers 
both overlapping and independent signaling pathways that are enriched in 
functionally and clinically relevant proteins, which could provide the basis for 
new therapeutic strategies.  

Keywords: Prize-collecting Steiner forest, signaling pathways, multiple network 
reconstruction. 

1 Introduction 

High-throughput technologies including mass spectrometry, chromatin 
immunoprecipitation followed by sequencing (CHIP-Seq), RNA sequencing (RNA-
seq), microarray and screening methods have the potential to provide dramatically 
new insights into biological processes. By providing a relatively comprehensive view 
of the changes that occur for a specific type of molecule or perturbation, these 
approaches can uncover previously unrecognized processes in a system of interest. 
However, interpreting these data types together to provide a coherent view of the 
biological processes is still a challenging task.  In order to discover how changes in 
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different classes of molecules relate to each other, it is possible to map the data onto a 
network of known or predicted interactions.  In the ideal case, the observed 
interactions would all lie near each other in a functionally coherent part of the 
interaction network (the interactome). However, due to false positives and false 
negatives in both the “omic” data and the interactome, the true situation is much more 
complex; advanced algorithms are needed to find meaningful connections among the 
data.  Among the approaches that have been proposed to find these sub-networks 
from the interactome are network flow optimization [1, 2], network propagation [3], 
the Steiner tree approach [4-6], network inference from gene expression [7, 8], linear 
programming [9], maximum-likelihood [10], electric circuits [11-13], network 
alignment [14] and Bayesian networks [15].  

In our previous work, we used the prize-collecting Steiner tree formalism to find an 
optimum tree composed of nodes detected in experiments (terminals) and nodes that 
were not detected (Steiner nodes).  We assigned costs to each interaction reflecting 
our confidence that the reported interaction was real and assigned prizes for excluding 
any of the terminals from the tree based on confidence in the proteomic or 
transcriptional data.  By minimizing the sum of the total cost of all edges in the tree 
and the total prize of all nodes not contained in the tree, we were able to obtain 
compact and biologically relevant networks [4, 6]. Despite the power of Steiner tree 
approach for identifying functionally coherent networks, it is restricted to discovering 
a connected subgraph, which may be an inadequate representation for many systems.  
In particular, we often expect there to be many simultaneously acting biological 
processes in the cell that may not be connected together by interactions in the 
currently known interactome.  These processes may be unconnected either because 
they may involve essentially independent cell functions, or simply due to our 
imperfect knowledge of the interactome.   

In this work, we formulate a forest (defined as a disjoint union of trees) approach 
to identify simultaneously acting pathways in biological networks using both 
proteomic and transcriptional data, We use a generalization of the message-passing 
algorithm for the Prize-collecting Steiner Tree (PCST) problem [4, 16]. We first 
demonstrate the forest approach by using it to integrate proteomic and transcriptional 
data in the yeast pheromone response, showing that the forest consists of trees 
enriched in specific and distinct biological processes. As an additional feature, 
directed edges, which are particularly useful for representing the effects of enzymes 
and transcriptional regulators on their targets, are also incorporated. 

We reasoned that the Steiner forest approach could be utilized in modeling 
mammalian signaling where there are many more cell-surface receptors and 
downstream pathways than in yeast.  In principle, the forest approach could uncover 
multiple, independent components of the biological response.  Although the 
interactome data are much less complete for mammals than for yeast, we show that 
the same methods are applicable.  We built prize-collecting Steiner forests derived 
from proteomic data from a model of glioblastoma multiforme (GBM) in which each 
tree was rooted in a different cell surface receptor representing independent signaling 
pathways and potential points of therapeutic intervention.  The solution reveals 
several known pathways and some unexpected new ones that are altered in the disease 
and suggests potential therapeutic strategies. The modified algorithm can now be 
applied to a wide range of complex systems. 
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2 Methods 

2.1 Datasets 

Throughout this work, two different biological networks are used: the yeast 
interactome and the human interactome. We refer to nodes with prize values greater 
than zero as terminal nodes. 

Yeast Dataset. The yeast interactome contains 34,712 protein-protein and transcription 
factor to target interactions between 5,957 nodes. The terminal node set contains 106 
differentially phosphorylated proteins detected by mass spectrometry [17] and 118 
differentially expressed genes [18] detected by microarray in response to the mating 
pheromone alpha factor. The node prizes  are computed from the fold changes between 
treated and non-treated conditions. The edge costs are calculated by taking a negative 
log of the interaction probability. The details are available in [6]. In this study, we 
modified  the transcription factor–DNA interactions to be directed edges. We also 
added to the interactome a set of directed edges that represent phosphorylation and 
dephosphorylation reactions  between kinases, phosphatases and their substrates [19]. 
If these interactions are available in the original interactome, probabilities are retained. 
If they are not, the probabilities of these interactions are set uniformly to 0.8, based on 
the distribution of the probabilities in the original interactome. The final interactome 
contains 35,998 edges between 5,957 nodes. In both cases, the resulting interactomes 
are comprised of both undirected and directed edges.  

Human Dataset. Protein-protein interactions in the STRING database (version 8.3) 
are used as the data source for the human interactome [20]. Here, the probabilities 
from experiments and database evidence channels are combined to obtain the final 
probability of the interactions. Interactions with a combined probability greater than 
0.8 are included in the interactome. The receptor molecules are collected from the 
Human Plasma Membrane Database [21] where 331 receptors are available in the 
interactome derived from STRING. The phosphoproteomics data in [22] is combined 
with the interactome in humans for the GBM test case. From this dataset, 72 proteins 
containing phophorylated tyrosine peptides are present in our human interactome. 

2.2 Prize-collecting Steiner Tree Problem 

For a given, directed or undirected network G(V, E, c(e), p(v)) of node set V and edge 
set E, where a p(v) ≥ 0 assigns a prize to each node v ∈ V and c(e) ≥ 0 assigns a cost 
to each edge e ∈ E. The aim is to find a tree T(VT,ET), by minimizing the objective 
function: 

                                        (1) 

where the first term is β times the sum of the node prizes not included in the tree T 
and the second part is the sum of the edge costs of T. Note that 
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so that minimizing f(T) amounts to collecting the largest set of high prize vertices 
while minimizing the set of large cost edges in a trade-off tuned by β.  As a starting 
point, we consider the message-passing algorithm for the PCST problem introduced 
in [4]. The message-passing algorithm converts the global problem of finding the 
optimal tree into a set of local problems that can be solved efficiently. These 
equations are solved iteratively in a computationally efficient way. Here we present a 
generalization of the message passing algorithm designed to solve the PCST problem 
on directed networks (i.e. where in general c(e{i,j}) might be different from c(e{j,i})). 
In this variant, the optimization will be done on directed rooted trees, where choice of 
the root (which will be part of the candidate tree) is an external parameter of the 
algorithm. 

2.3 Prize-collecting Steiner Forest (PCSF) Problem 

A type of PCSF has already been considered in [23, 24]. In these works penalties are 
assigned to each pair of nodes either directly connected in the tree (i.e. edges 
belonging to the forest), or completely disconnected (i.e. in different forest 
components). Here we consider a different PCSF construction for a given, directed or 
undirected network G(V, E, c(e), p(v)) of node set V and edge set E, where a p(v) ≥ 0 
assigns a prize to each node v ∈ V and  c(e) ≥ 0 assigns a cost to each edge e ∈ F. The 
aim is to find a forest F(VF,EF) that  minimizes the objective function:  

                            (3) 

where κ is the number of trees in the forest and ω is new tuning parameter explained 
below. A practical way of minimizing f’ consists in casting the PCSF into a PCST on 
a slightly modified graph. The idea is to introduce an extra root node v0 into the 
network connected to each node v ∈ V by an edge (v ,v0) with cost ω [25]. The PCST 
algorithm is employed on the resulting graph H(V U {v0,}, E U Vx{v0,}) and the 
solution will be called T. We define the forest F as T with all edges that point to the 
root removed. It is straightforward to see that the tree T is minimal for f if and only if 
the forest F is minimal for f’. Typically, the algorithm is run for different values of β 
and ω.   

We used the previously published message-passing approach as the underlying 
implementation for this forest search [4], as many of our networks exceeded the capacity 
of the linear programming approaches. The message-passing approach is 
computationally fast and robust to the noise in the network as well.  Although this 
algorithm is not guarranteed to find the optimal solution, in practice the networks it 
discovers are very similar to the exact solution.  Introducing the artificial edges allows 
the algorithm to identify one or more trees that are only connected to the artificial node 
and not to each other. Although this modification seems algorithmically straightforward, 
its biological implications are very important. The concept is illustrated in Figure 1. In 
that example, two distinct pathways are connected only through spurious edges. The 
main difference between the tree formalism and the forest formalism is that the former 
one that connects as many of the experimental data as it can in a single network.  As a 
result, it will either have to exclude some of the data that relate to distinct biological 
processes or add spurious edges to force these data to connect to the tree while the latter 
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enrichment is performed by using all human proteins as background set. All network 
visualizations were performed in Cytoscape [27].  

3 Results 

3.1 The PCSF Approach Reveals Parallel Working Pathways in Addition  
to Hidden Individual Proteins or Genes in Yeast Pheromone Response 

High-throughput experimental methods like mass-spectrometry are capable of 
simultaneously detecting changes in many distinct biological processes that will not 
be connected by physical interactions.  However, the PCST approach searches for a 
tree structure in the interactome that connects as many of the experimental data as it 
can.  As a result, it will either have to exclude some of the data that relate to distinct 
biological process or add spurious edges to force these data to connect to the tree. The 
main advantage of PCSF approach over PCST is that PCSF does not force the system 
to be connected in a single network, and it can automatically separate multiple 
pathways.  

We tested the PCSF algorithm using data from the yeast pheromone response, 
which we had previously analyzed using the prize-collecting Steiner tree approach.  
The data consist of phosphoproteomic and transcriptional changes induced by mating 
pheromone, and the network is enriched with directed transcription factor-target and 
kinase/phosphatase-substrate reactions. The edge costs of the interactome were 
computed as the negative log of the interaction probabilities, and node prizes were 
obtained from the scheme detailed in [6]. To explore the space of solutions, we tuned 
the ω and β parameters between [0.005, 0.1] and [1, 20], respectively. The minimum, 
maximum and average size and number of trees in the constructed PCSFs are 
extracted for each (ω, β) pair and the distribution of these values along ω parameter is 
plotted.  We looked for a solution in a region where the number of trees and average 
size of the trees in the forest are closest to each other.  By these criteria, the best 
solution is found when ω = 0.025 and β = 13. We note that in order to explore these 
parameters, we constructed 400 solutions to the PCST problem.  This number of 
calculations is only practical using the message-passing algorithm, but not with the 
integer linear programming based approaches.  

The solution to PCSF problem places distinct functional classes in seperate sub-
trees. In this solution, there are six trees, each containing more than 10 nodes. In 
Figure 2, each tree is labeled with its corresponding pathway. Small sub-trees such as 
T3-6 are enriched in specific biological processes including the PKC pathway, actin 
organization, protein folding and kinetochore, and DNA and chromatin pathways, 
while larger trees contain multiple processes. For example, the largest subtree, T1, 
contains the pheromone core MAPK pathway with CDC28 related proteins and the 
second largest one, T3, contains transcription and transport processes (see Figure 2). 
There are two different yeast MAPK pathways; the pheromone-induced MAPK and 
the protein kinase C (PKC) pathways [28, 29]. The PCSF algorithm correctly 
separates these two pathways into different trees. The largest tree in size is T1 
contains pheromone-induced MAPK pathway but the PKC pathway is located in T3. 
While the former one induces cells to differentiate and be prepared for mating, the 
latter one is involved in cell integrity and new cell wall synthesis.  
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of cell integrity. SWI4/SWI6 regulates the expression of genes functioning in cell 
wall synthesis and G1/S transition of the cell cycle.  

Transcriptional machinery and transport proteins are located in T2, seperate from 
other trees. The connection between transcriptional machinery and cellular transport 
part is achieved by the interaction between PHO4 and PSE1. Although these two 
proteins are experimentally undetected, the PCSF algorithm locates them in the same 
sub-tree. Direct association of PSE1 to PHO4 is required for the import of PHO4 into 
the nucleus [32]. Nuclear pore components (NUP60, NUP85, NUP116, NUP159) are 
located in T2 because nuclear transport is achieved through the nuclear pore [32]. In 
this sub-tree, the transcription factor PHO2 functions in a combinatorial manner with 
PHO4 and SWI5 [33].    

Table 1. GO enrichments of the sub-trees in the PCSF illustrated in Fig. 2 

Subtree Name GO Enrichment - Biological Process Corr p-value 
T1 regulation of cell cycle  

cell division 
cell cycle 

1.97 x 10-17 
2.60 x 10-17 
3.02 x 10-17 

T2 transcription 
regulation of nucleobase, nucleoside, nucleotide 
and nucleic acid metabolic process 
nuclear transport 

7.07 x 10-13 
2.36 x 10-12 
 
7.30 x 10-8 

T3 positive regulation of gene-specific transcription 
regulation of gene-specific transcription  
positive regulation of transcription, DNA-
dependent 

2.20 x 10-5 
7.75 x 10-5 
9.11 x 10-5 

T4 actin filament-based process 
endocytosis 
actin cytoskeleton organization 

1.51 x 10-9 
4.42 x 10-9 
9.32 x 10-9 

T5 protein folding  
protein refolding 
kinetochore assembly 

1.60 x 10-3 
1.60 x 10-3 
4.25 x 10-3 

T6 positive regulation of glycolysis 
regulation of glycolysis 
positive regulation of transcription 

2.54 x 10-4 
2.54 x 10-4 
2.54 x 10-4 

In addition to the pathway analysis, we utilized GO biological process annotations 
to find the specific biological processes enriched in these trees. In Table 1, the top 
three annotations for each tree are tabulated along with their corrected p-values. These 
results show that this method effectively locates different biological processes into 
different trees. Instead of forcing all nodes to be connected in a single network, this 
“forest” representation composed of multiple sub-trees is more useful for 
distinguishing distinct pathways. The forest solution retains enrichment for the 
expected biological process, such as response to stress, cell cycle, signaling and 
transport. Further, by adding directions between transcription factors to targets and 
enzyme to substrate interactions, we are able to obtain condition-specific transcription 
factors and compact networks. 
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3.2 The PCSF Algorithm Reveals Coordinately Acting Receptor Molecules 
Functioning in Human GBM by Integrating Receptome, Interactome  
and Proteomics Data 

Having demonstrated that the PCSF algorithm can successfully distinguish parallel-
working pathways in yeast, we used it to identify cell surface receptors associated 
with signaling pathways altered in disease.  Cell surface receptors are an interesting 
class of molecules to study, as they may be particularly easy to target with therapeutic 
agents.  There is increasing evidence that some proteins are “undruggable,” in other 
words hard or impossible to target with small molecule-based therapies because their 
three-dimensional shape does not have any appropriate concave sites to which these 
proteins can bind.  In contrast, cell surface receptors can either be targeted with their 
natural ligand, modified forms of the natural ligand, small molecules that insert into 
the naturally occurring binding pocket or antibodies.   

We modified our approach to identify cell-surface receptors associated with 
phosphoproteomic changes that occur in a model of glioblastoma.  We use the 
artificial node to represent external stimuli (including autocrine loops) that potentially 
activates multiple receptor molecules, by connecting this node only to cell surface 
receptors, of which 331 are present in our human interactome.  After running the 
prize-collecting Steiner tree algorithm and removing the artificial node, each sub-tree 
will contain one receptor as the starting node. The receptors selected in the solution of 
PCSF represent those most closely connected to the measured phosphoproteomic data 
and are therefore likely to be main contributors of the disease. 

We applied this approach to phosphotyrosine data for a model of human GBM [22] 
representing phosphorylation differences between cells expressing an oncogenic 
mutation in the EGFR protein and cells with an inactive form of this receptor tyrosine 
kinase.  The result is a set of eleven compact trees each rooted in one of the 331 
potential receptors.  The selected receptors in order of their tree sizes are EGFR, 
ERBB2, CD36, IGF1R, PTCH1, A2MR, SDC2, MET, ITGB3, NPR1 and EPHA2  
(see Fig. 3). Although the algorithm had no direct knowledge that the data represented 
the results of mutation in EGFR, it selected this as the root of the largest tree.  In fact, 
each of the four top receptors has a known link to cancer. EGFR and ERBB2 are 
EGF-family receptors, and it is known that EGFR is mutated in more than 50% GBM 
cases [34]. IGF1R is overexpressed in many tumors and mediates proliferation and 
resistance to apoptosis, and it is currently an anti-cancer treatment target [35]. 
Because IGF1R is also abnormally active in GBM, its inhibition is presented as a 
potential therapy to arrest the tumor growth [36].  It has been previously shown that 
the EGF and IGF pathways cross-talk [37], and IGF1R mediates resistance to anti-
EGFR therapy in glioma cells [38]. Although CD36 functions in brain specific 
angiogenic regulation [39] and the interactions between CD36-Fyn-Yes lead to 
calcium and neurotransmitter release [40], its relation to GBM has not been studied  
in detail.  

Although the algorithm is constrained to identify independent trees, we can 
observe the potential for cross-talk between different receptors by adding back all the 
edges among the selected nodes.  We noticed two receptors selected by the algorithm, 
namely MET and ITGB3 (integrin-β3), are also very important, despite the fact that 
their corresponding sub-trees each contain only two nodes. When all edges are put 
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four receptors (PDGFR, MET, IGF1R and ITGB3) capture many of the nodes that 
were down-stream of EGFR, five nodes are not captured by any other receptors. 
These may represent signaling that is uniquely downstream of EGFR.  

To further explore the network, we removed PDGFR in addition to EGFR and 
ERBB2.  In the new network, the MET receptor partially replaces PDGFR. It has 
been shown that the  MET receptor is activated in GBM and it might be a therapeutic 
target [45]. Similar to the MET receptor tree, the sub-tree containing ITGB3 receptor 
also collects several of the nodes previously associated with EGFR in its 
corresponding sub-tree. It is interesting to note that integrins function as both 
upstream and downstream effectors of growth factor receptors, such as EGFR, 
IGF1R, PDGFR, MET [46]. Integrins and their relation to GBM have not been 
studied in detail, which may have clinical importance in GBM.  

During all these leave-one-receptor-out tests, IGF1R is present in the resulting 
PCSF, and it retains all proteins in the original network. The downstream network of 
IGF1R starts with the estrogen receptor (ESR1) interaction and it contains several 
MAPKs. It has been shown that ESR1 and IGF1R are cross-regulated in the brain and 
activate the MAPK/ERK pathway. This system of interactions results in some neural 
functional regulations in the brain; such as, synaptic plasticity, neurotic growth, and 
neuronal survival [47]. The size of the trees corresponding to the down-stream of  
MET and ITGB3 receptors increases at each knock-out. Also, the FYN related 
downstream pathway of CD36 is swapped to be downstream of MET receptor, 
although CD36 is not knocked-out. This result implies that FYN-related pathway may 
be activated by several receptors.  

To further validate the relevancy of these receptor molecules (EGFR, ERBB2, 
IGF1R, CD36, PDGFR, MET and ITGB3), we used the TCGA GBM Gene Ranker 
(http://cbio.mskcc.org/tcga-generanker/). This server combines available literature 
information and TCGA data for individual genes to score them. All selected receptors 
are among highly ranked genes (genes having a score greater than 2.0) in GBM 
(calculated scores are as follows: EGFR: 15.75, MET: 11.75, ERBB2: 9.25, 
PDGFRB: 7.25, IGF1R: 4.0, ITGB3: 3.75, CD36: 2.0), with EGFR, MET and ERBB2 
having the highest rank in the database.  

We performed randomization tests to check the reliability of the output of the 
algorithm. Here, terminal nodes, their prizes and the parameter set are kept same with 
the original PCSF analysis of GBM. In addition, number of nodes, edges and edge 
costs are the same as in the original interactome. Only the edges are re-shuffled 
randomly within the network. The randomization test is repeated ten times on 
different interactomes. These characteristics show that random PCSFs contain many 
more sub-trees when compared to the original PCSF and these sub-trees are not 
structured like the original trees; most of the trees in the random forests are ‘stringy’, 
composed of nine proteins at most. Further, random trees are not enriched for a 
specific biological process and none of the receptors found in the original PCSF are 
selected in the random PCSFs. The algorithm uses substantially more Steiner nodes to 
connect terminal nodes in random case.  We performed another randomization test by 
reshuffling the nodes in the original interactome. In this way, the degree distribution 
is retained. In these randomizations we retain the same terminal nodes, prizes and the 
parameter set are kept same with the original PCSF analysis, but these proteins have 
now been randomly mapped to other nodes. The results show that the characteristics 
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of the sub-trees in the random PCSFs are similar with the previous random case; they 
are ‘stringy’, not structured and not enriched for functions. However, this time the 
total number of nodes included in the PCSF is not as large as in the previous random 
case. These results show that the real PCSF solution is significantly different than the 
random solutions.  It is particularly important that the receptors found by the 
algorithm run on the GBM data are not selected in the randomizations, supporting the 
hypothesis that these receptors are biologically relevant. 

4 Discussion 

We present a method for simultaneously discovery of multiple pathways by searching 
for “forests” consisting of multiple trees. We are able to solve this problem 
efficiently, even for large human networks by a simple modification of the previously 
published message-passing solution for the Steiner tree problem. When applied to the 
pheromone response data on the directed yeast interactome, the PCSF approach 
reveals several parallel pathways affected by yeast pheromone. Some of these parallel 
pathways contain multiple, coherently acting processes, such as pheromone response 
and the CDC28 associated pathway, or transport and transcriptional activity of PHO4. 
Others contain only one process, such as actin organization or protein folding.  

The advantages of the forest approach are most apparent when used to study 
mammalian cells, which respond to a large number of hormones, growth factors and 
cytokines.  Applying this approach to proteomic data from a model of GBM results in 
a forest composed of several sub-trees, each of which is rooted from a receptor 
molecule. The PCSF algorithm is able to select receptors relevant to GBM from 
hundreds of molecules in the human receptome. The solution reveals several known 
pathways and some unexpected new ones. EGFR, ERBB2, IGF1R and CD36 are 
starting nodes of the largest sub-trees in the PCSF. This set of receptor molecules was 
selected by the algorithm among hundreds of receptors, and the literature search 
shows that each of the selected receptors is clinically relevant to GBM. To find 
additional receptors whose downstream signaling pathways overlap with the selected 
receptors, we used an iterative approach that can be thought of as an in silico knock-
out experiment.  In this analysis, a selected receptor molecule and all its interactions 
are removed from the interactome and PCSF algorithm is applied to the remaining 
network. These calculations revealed the roles of PDGFR, MET and ITGB3 all of 
which have been previously linked to GBM.  

Our method can be efficienly utilized to reconstruct networks that are enriched in 
functionally and clinically relevant proteins. Further, the algorithm is flexible, and can 
be modified for other types of data such as protein-small molecule inhibitor 
interactions and protein-metabolite interactions. 
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