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We construct Born-Infeld (BI) type gravity theories which describe tree-level uni-

tary (non-ghost and non-tachyonic) massless spin-2 modes around their maximally

symmetric vacua in four dimensions. Building unitary BI actions around flat vac-

uum is straightforward; but, this is a complicated task around (anti)-de Sitter back-

grounds. In this work, we solve the issue and give details of constructing pertur-

batively viable determinantal BI theories. It is interesting that the Gauss-Bonnet

combination, which is a total derivative in four dimensions, plays an important role

in the construction of viable BI theories.
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I. INTRODUCTION

It is well known that Einstein’s gravity, otherwise an excellent theory in the “interme-
diate” scales, needs to be modified both at large and small scales. At large distances, the
galaxy rotation curves and the accelerated expansion of the universe are somewhat urgent
problems which could be provisionally solved by keeping Einstein’s theory intact but intro-
ducing large amounts of dark matter and dark energy, or alternatively by modifying gravity
at long distances such as upgrading it to massive gravity. [Of course, it could happen that
one may need to both modify gravity and also add dark matter and dark energy to solve
these long distance problems. This possibility should not be ruled out.] At small scales or
at high energies, the problem is more complicated, even if phenomenologically less urgent,
due to lack of data. It is more complicated because what one really needs is a quantum
theory of gravity whose basic degrees of freedom, symmetries, and even principles as applied
to spacetime are unknown. Namely, the geometric nature of spacetime, even its number of
dimensions at small distances is not clear. Even though there are candidates such as string
theory, loop quantum gravity, or asymptotically safe theories, it is fair to say that we are
still far away from a consistent theory of quantum gravity.

In the absence of guiding principles for a renormalizable theory of gravity, one is forced
to introduce effective theories which work better than Einstein’s gravity at small dis-
tances and hopefully also at large distances. One such attempt is, emulating pre-quantum-
electrodynamics era electromagnetism, to write Born-Infeld (BI) type gravity theories [1]
which were inspired by the work of Eddington [2] who used the idea of “generalized volume”
suggested actions of the form

I =
ˆ

d4x
√

det Rµν (Γ), (1)

and assumed the metric and the connection to be independent variables. [A note about
history: Eddington’s work in gravity precedes the works of Born and Infeld [3] in electro-
dynamics, but it is actually difficult to find this action in Eddington’s book in one compact
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form even though the discussion is scattered in the book. Schrödinger attributes this theory
to Eddington on page 113 of his book [4].] After all, good ideas never disappear: Eddington’s
idea was resuscitated recently in a number of works [5–9] which led to interesting results
such as singularity free cosmology.

In analogy with the minimal electromagnetic BI theory, in this current work, we shall
take the more conventional path of assuming the metric to be the only independent variable
following Deser and Gibbons [1] who gave a jump-start to the BI gravity theories. This line
of reasoning recently [10–13] bore much fruit in the lower dimensional setting where we have
found a BI type action which reads

IBINMG = −4m2

κ2

ˆ

d3x





√

− det
(

gµν − 1
m2

Gµν

)

−
(

Λ0

2m2
+ 1

)

√

− det g



 , (2)

where Gµν is the Einstein tensor without a cosmological constant. This theory is called the
Born-Infeld New Massive Gravity (BINMG) theory with the following remarkable properties:

1. For Λ0 6= 0, unlike any generic finite order theory besides the cosmological Einstein’s
theory, it has a unique maximally symmetric vacuum with an effective cosmological
constant Λ = Λ0

(

1 + Λ0

4m2

)

for Λ0 > −2m2 [11, 14]. Flat space is the unique vacuum
when Λ0 = 0.

2. It has a unitary spin-2 massive degree of freedom with M2 = m2 + Λ about the
flat (Λ = 0) and AdS backgrounds. This provides an infinite order extension of the
quadratic NMG1 [15–17].

3. It reproduces, up to desired order in the curvature expansion, the extended NMG
theories that are consistent with the AdS/CFT duality and that have a c-function
[11, 18, 19].

4. The BINMG action appears as a counterterm in AdS4 [20].

In addition to these properties, the existence of a supersymmetric extension to the cubic
order truncation of the theory suggests that a supersymmetric extension presumably exists
for the full theory [21].

All these virtues of the three-dimensional BI gravity led us to search for similar theories
beyond three dimensions and especially in the more relevant 3 + 1 dimensions. In this work,
this is the task that we take on. Some of our computations, especially in the context of
general formalism, will be in generic n dimensions, but in most of the current work we
shall focus on n = 3 + 1 dimensions since it has rather distinctive features compared to
the n > 4 cases. The generic n dimensional theory is somewhat more complicated and
deserves a separate attention [22]. As we shall see, the set of viable Lagrangians is larger in

1 There are in fact two extensions of NMG, the second one being

I = −4m2

κ2

ˆ

d3x

{
√

− det

[

gµν +
1

m2

(

Rµν − 1

6
gµνR

)]

−
(

Λ0

2m2
+ 1

)

√

− det g

}

,

which has the same perturbative properties. It was conjectured in [20] that this action could appear as a

dS4 counterterm. This theory is yet to be explored further.
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four dimensions compared to the three dimensional case, where there are only two theories
as mentioned above, since vanishing of the Weyl tensor and the linear theory having no
propagating degrees of freedom by itself in three dimensions make n = 2 + 1 rather simple
and unique. One should not expect such a simplicity in four dimensions and beyond.

In constructing viable BI-type gravity theories, the important point is to find the physical
constraints that one imposes on the theory. Here, the constraints we shall assume are:

1. In small curvature expansion, the theory at the lowest order reduces to (cosmological)
Einstein’s gravity,

2. The theory admits flat or (A)dS vacuum,

3. The theory describes only massless spin-2 excitations around its flat or the (A)dS
vacuum, and these excitations are non-ghost and non-tachyonic (namely, the theory
is tree-level unitary) as a full theory (thus, infinitely many terms in the curvature
expansion contribute to the propagator of the theory).

4. On the top of the previous condition, the theory is tree-level unitary at any finite
truncated order in the curvature expansion.

Let us briefly explain why these conditions are imperative for a healthy theory. We require
that in small curvature expansion the theory reduces to the (cosmological) Einstein theory
which is a natural condition to reproduce the plethora of data explained by Einstein’s theory.
The second requirement is sort of self-explanatory since one needs a maximally symmetric
vacuum with vanishing conserved quantities such as energy and angular momentum. The
third requirement is also somewhat obvious both in the context of the stability of the vacuum
and perturbative viability of the quantum version of the theory. The fourth condition is
extremely difficult to satisfy in the curvature expansion for (A)dS backgrounds. Observe
that we require not only that the theory is tree-level unitary as a whole (condition 3); but,
it is also tree-level unitary at any truncated order in the curvature expansion (condition
4). To the best of our knowledge, the theories that we shall present are the only ones
that satisfy this requirement in four dimensions. [There are Lovelock theories [23] in higher
dimensions that also satisfy this requirement; but, they reduce to Einstein’s theory in four
dimensions.] Lastly, note that viable BI-type gravity theories were also studied in [24] where
similar constraints were required; however, the additional massive spin-0 degree of freedom
was allowed besides massless spin-2 mode and the unitarity of finite truncations were not
considered.

As we shall find out, these conditions still leave a large set of viable theories. Of course,
one can additionally impose that there be no dimensionless or dimensionful parameters
save, the Newton’s and, perhaps, the BI parameter, which highly constrains the viable
theories. As we shall see, the most “minimal” BI theory also has a unique vacuum. This is
actually quite important, since, once Einstein’s theory is augmented with additional powers
of curvature, immediately one undesired feature arises that is the non-uniqueness of the
maximally symmetric vacuum. Since, asymptotic structures of spacetimes with different
cosmological constants are different, their energy properties are not comparable. Therefore,
there is no way to choose one vacuum over the other if there are more than one viable vacua.
Hence, it would be highly desirable to have a theory with a unique vacuum.
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To see that four dimensional BI theories are somewhat special, let us start with the
following n dimensional generic action

I =
2

κγ

ˆ

dnx
[

√

− det (gµν + γAµν) − (γΛ0 + 1)
√

− det g
]

, (3)

where κ is the modified Newton’s constant which in four dimensions reads κ = 16πG and
G is the Newton’s constant and γ is a dimensionful BI parameter with mass dimension −2
in four dimensions. To stick to the idea of obtaining minimal theories, we will find the
simplest two tensor Aµν which does not have derivatives of the Riemann tensor and which
has as small powers and contractions of the Riemann tensor as possible. The most naive
approach would be to take Aµν = Gµν + βgµνR, similar to the 2 + 1 dimensional case. As
shown in Appendix-A, upon small curvature expansion, this theory will generate quadratic
terms which have massless spin-2, massive spin-0 and massive spin-2 modes; the last one
being a ghost even around flat spacetime.2 Hence, this too optimistic guess does not lead
to a perturbatively viable theory. In the small curvature expansion (|γAµν | ≪ 1) of the
action (3), either quadratic terms must be eliminated or they must appear in the benign
Gauss-Bonnet combination to get rid off the massive modes; therefore, in four dimensions
and beyond, to built viable BI-gravity theories, one has to take Aµν to be up to at least
quadratic order in the curvature, which of course leads to an eight order theory in the
curvature under the square root when the determinant is explicitly written in terms of the
traces.

Upon inspection, one can see that the most general two-tensor up to and including
quadratic order can be written as

Aµν =Rµν + βSµν

+ γ
(

a1CµρσλC ρσλ
ν + a2CµρνσRρσ + a3RµρRρ

ν + a4SµρSρ
ν

)

+
γ

n
gµν

(

b1CρσλγCρσλγ + b2RρσRρσ + b3SρσSρσ
)

, (4)

where Sµν ≡ Rµν − 1
n
gµνR is the traceless-Ricci tensor and Cµανβ is the Weyl tensor, and β,

ai, and bi are dimensionless constants. Observe that there is no RµνSµν cross term because
of the following relation

RµρSρ
ν =

1
2

RµρRρ
ν +

1
2

SµρSρ
ν − 1

2n
gµν (RρσRρσ − SρσSρσ) . (5)

Suppose ḡµν is a maximally symmetric vacuum of the theory and we would like to study
excitations (hµν) about this vacuum. If this vacuum is flat, then our task is easy since all we
need is to expand the action up to quadratic order in the curvature, then expand the resultant
action up to O

(

h2
µν

)

and check the propagating modes in the theory. But, if this vacuum
is an (A)dS space, then in principle all the terms in the curvature expansion contribute to
the free theory (that is the vacuum and the O

(

h2
µν

)

theory), and hence one has a highly
complicated task. Therefore, in building viable BI actions for gravity the main hurdle is

2 Nevertheless, it is remarkable that instead of the square root Lagrangian if one considers a different

power in n dimensions [det (g + γG)]
1/(n−1)

then one has a massive gravity theory without the nonlinear

Boulware-Deser ghost [25, 26].
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to satisfy the tree-level unitarity around non-flat maximally symmetric backgrounds; but,
fortunately we have built the necessary formalism to carry out this task in [12]. [PhD
thesis [27] of one of the authors is devoted to these issues and expounds upon many of the
discussions in the published papers.]

It was shown in these works (and we shall give another argument in this paper) that
in four dimensions no terms beyond O

(

A2
µν

)

expansion around Aµν = 0 contribute to the
free theory, namely the vacuum and the excitations. Therefore, to study the excitations of
(3) about its maximally symmetric vacua in four dimensions, all one needs to study is the
following theory

I =
1

κγ

ˆ

d4x
√−g

[

A − 2γΛ0 +
1
4

A2 − 1
2

AµνAµν
]

, (6)

with A ≡ Aµ
µ and note that this is a fourth order theory in the curvature. For generic even

n dimensions, one needs to expand up to O
(

An/2
µν

)

, and for odd dimensions, all the powers
contribute. In four dimensions, because of the identity

CµρσλC ρσλ
ν =

1
4

gµνCαρσλCαρσλ, (7)

we can also eliminate a1 or b1, without loss of generality, we choose a1 = 0. Note that
instead of this basis (namely the Weyl, Ricci and traceless-Ricci tensors), one can use the
Riemann, Ricci tensors and the scalar curvature which we do in Appendix-B for the purpose
of comparison. There, we also give formulas relating one basis to the other. The Aµν tensor
with these seven dimensionless parameters looks cumbersome; but, in what follows unitarity
of theory with only massless spin-2 excitations about the (A)dS vacua will eliminate three
(or four depending on the theory) of these parameters, and in addition, conforming to the
notion of minimality will lead to a theory without free dimensionless parameters. Note that,
we do not count the dimensionful BI parameter γ which can be constrained by experiments:
As long as γR is small, any γ is viable in our analysis. Hence, it should be considered as
a new dimensionful parameter. Of course, not to introduce a new dimensionful parameter,
one can choose γ = κ since they are of the same dimensions.3 [Observe that, since κ = 4πℓ2

p

with ℓp being the Planck length, the condition κR ≪ 1 is satisfied as long as we are far away
from the Planck regime: R ≪ 1

ℓ2
p
.]

The layout of the paper is as follows: In Section II, we recall that the “free theory”
of BI gravity should be the same as the free theory of Einstein–Gauss-Bonnet theory that
describes unitary massless spin-2 excitations around flat and (A)dS spaces. In Section III, we
give details of finding the maximally symmetric vacua of generic gravity theories including
the BI gravity with the help of equivalent linear actions which circumvent the complicated
task of deriving the field equations. In that section, we also derive the equivalent quadratic
curvature action that has the same free theory including the vacuum of the original generic
gravity, specifically the BI theory. In Section IV, we determine the vacua of the BI gravity.
In Section V, we impose that the BI gravity describes unitary massless spin-2 gravitons
around its flat background. In Section VI, we study the unitarity of the BI theory around

3 In Born-Infeld electrodynamics, one necessarily introduces a dimensionful BI parameter; but, in BI gravity

one can simply recycle Newton’s constant and no new parameter is introduced.
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its unique viable (A)dS vacuum and impose the condition that only massless spin-2 particle
is allowed. In the Appendices, we give details of the computations relevant to the results in
the text.

II. CONSTRUCTING THE BORN-INFELD ACTION

The most general quadratic theory in n dimensions that describes only massless spin two
excitations around its flat or (A)dS vacuum is the Einstein–Gauss-Bonnet (EGB) theory
with the Lagrangian

L =
1
κ

(R − 2Λ0 + γχGB) , (8)

where the GB combination is given as

χGB ≡ RµνρσRµνρσ − 4RµνRµν + R2. (9)

In four dimensions, the GB part is a total derivative, and hence does not contribute to
the field equations and plays no role in the particle spectrum or the vacuum of the theory.
But as we shall see here, it plays a major role in constructing BI type actions: Namely,
we will see that at the quadratic level BI gravity reduces to the EGB theory instead of the
Einstein’s theory even though classically they are equivalent. In some sense, the dimensionful
parameter γ in front of the GB term, plays the role of the BI parameter.

It is clear that flat space is a vacuum for Λ0 = 0 and if Λ0 6= 0 (A)dS is the vacuum with
Λ = Λ0. In the basis discussed in the Introduction, we can recast the EGB action as

L =
1
κ

[

R − 2Λ0 + γ
(

CµνρσCµνρσ +
2
3

RµνRµν − 8
3

SµνSµν

)]

, (10)

where we have used the four dimensional identity

CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν +
1
3

R2. (11)

It is not difficult to see that (10) describes only massless spin two excitations in flat and AdS
vacua. There are many ways to show this but because this is almost common knowledge
let us briefly sketch the proof without going into further details: Linearization of the field
equations derived from (10) about its (A)dS vacuum yields

1
κ

Gµν =0, (12)

where Gµν is the linearized Einstein tensor, which in the transverse-traceless gauge for per-
turbations hµν = gµν − ḡµν , reads

1
κ

Gµν = − 1
2κ

(

�̄ − 2Λ0

3

)

hµν = 0. (13)

Despite the appearance of a mass-like term, (13) together with the transversality and the
tracelessness conditions, describe a massless spin two excitation. This can be easily seen
if one writes the AdS metric in its conformal to flat coordinates ḡµν = Ω2ηµν with Ω =
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(

1 − 3
4
Λ0x

2
)−1

where x2 = ηµνxµxν which reduces (13) to the massless wave equation in flat
space ∂2hµν = 0 [28]. For this massless spin-2 excitation to be unitary, there is only one
condition that is the positivity of the Newton’s constant, κ > 0, namely gravity is attractive
or similarly massless spin-2 field has a positive kinetic energy as seen from the action [in the
mostly positive signature convention]

I =
ˆ

d4x
√

−ḡ

{

1
4κ

hµν

(

�̄ − 2Λ0

3

)

hµν + hµνTµν

}

. (14)

If one requires a generic gravity theory of the form L ≡ √−g f
(

Rµν
ρσ

)

, namely with a
Lagrangian density built from arbitrary powers of the Riemann tensor and its contractions
but not its derivatives to propagate only unitary massless spin two excitations, it should
have the same propagator structure as the EGB theory (or equivalently the cosmological
Einstein’s theory). It appears to be a highly cumbersome task to find the propagator of
a generic gravity theory or a BI type gravity theory in constant curvature backgrounds
because in principle infinitely many terms contribute to the propagator. Fortunately, there
is a highly useful shortcut which works by constructing an equivalent quadratic curvature
action that has the same propagator structure and the vacua as the generic theory under
study. We work this out in the next section.

III. EQUIVALENT LINEAR ACTION AND EQUIVALENT QUADRATIC

CURVATURE ACTION

The first step in finding the particle spectrum of a given gravity theory about its maxi-
mally symmetric vacuum is to show that the theory in fact admits such a vacuum and if it
does admit such a solution, one must find the effective cosmological constant of the vacuum.
The most direct way to find the maximally symmetric vacuum is to derive the field equations
first and then solve these equations. But, for the determinantal actions of the form that we
study in this work or for higher derivative theories with many powers of curvature, finding
the field equations is by itself a difficult task. As a demonstration of the complication, the
reader could check the field equations of the action we study in this work in Appendix-F.

In this section, we shall give a method to find the maximally symmetric vacuum or vacua
of a given theory which circumvents the procedure of deriving the field equations. The
method involves constructing an equivalent linear action (ELA) that has the same vacuum
or vacua as the original action and it is so powerful that it pays to lay out some details here.

Consider a generic action of the form4

I =
ˆ

dnx
√

−gf
(

gαβ, Rµ
νρσ, ∇ρRµ

νρσ, . . . , ∇ρ1∇ρ2 . . . ∇ρm
Rµ

νρσ

)

, (15)

for which we ask if it admits a maximally symmetric vacuum and if it does so what is
the effective cosmological constant? Here we shall work in generic n dimensions. At this
stage, it is clear that the derivative terms will not contribute to the maximally symmetric

4 Of course one can work in the basis introduced in the Introduction, but here we shall work with the

Riemann tensor, as this basis is more common in many other applications.
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vacuum since they will yield covariant derivatives of the metric tensor at the level of the
field equations which vanish by metric compatibility. Therefore, for notational simplicity let
us denote the action as

I =
ˆ

dnx
√−gf

(

Rµν
αβ

)

, (16)

where we have also gotten rid off the inverse metric without loss of generality and taken
the independent variable to be Rµν

αβ that could stand for the Riemann tensor, or if once
contracted to the Ricci tensor, and if twice contracted to the scalar curvature. For example,
the Einstein-Hilbert action in this language reads

´

dnx
√−gδα

µδβ
ν Rµν

αβ. To find the field
equations for the maximally symmetric spacetime, one varies the action as

δI =
ˆ

dnx

(

δ
√−gf

(

Rµν
αβ

)

+
√−g

∂f

∂Rµν
ρσ

δRµν
ρσ

)

. (17)

Needless to say that, this procedure will not yield the full equations of the most general
theory (15) but only the part relevant for the maximally symmetric spacetime. On the
other hand, if f does not depend on the derivatives of the Riemann tensor, as will be the
case in this work, it will yield the full equations. We can write the variation of the Riemann
tensor as

δRµν
ρσ =

1
2

(gαρ∇σ∇ν − gασ∇ρ∇ν) δgµα − 1
2

(gαρ∇σ∇µ − gασ∇ρ∇µ) δgαν

− 1
2

R ν
ρσ αδgµα +

1
2

R µ
ρσ αδgαν , (18)

which was obtained from
δRµ

νρσ = ∇ρδΓµ
νσ − ∇σδΓµ

νρ. (19)

In calculating the derivative ∂f
∂Rµν

αβ

in (17), one may try to symmetrize it in such a way that

it satisfies the symmetries of the Riemann tensor. However, this is not required since at the
end, it is multiplied with δRµν

ρσ which kills the parts of ∂f
∂Rµν

αβ

that do not obey the symmetries

of the Riemann tensor. Then, inserting the variation of the Riemann tensor (18) into the
varied action (17) leads to a bunch of terms

δI =
ˆ

dnx
(

−1
2

gµν

√−gf
(

Rαβ
ρσ

)

δgµν
)

+
1
2

ˆ

dnx
√−g

∂f

∂Rµν
ρσ

(gαρ∇σ∇ν − gασ∇ρ∇ν) δgµα

− 1
2

ˆ

dnx
√−g

∂f

∂Rµν
ρσ

(gαρ∇σ∇µ − gασ∇ρ∇µ) δgαν

− 1
2

ˆ

dnx
√−g

∂f

∂Rµν
ρσ

(

R ν
ρσ αδgµα − R µ

ρσ αδgαν
)

. (20)

After integration by parts and dropping the boundary terms, one arrives at the field equa-
tions

1
2

(

gνρ∇λ∇σ − gνσ∇λ∇ρ

) ∂f

∂Rµλ
ρσ

− 1
2

(

gµρ∇λ∇σ − gµσ∇λ∇ρ

) ∂f

∂Rλν
ρσ

−1
2

(

∂f

∂Rµλ
ρσ

R λ
ρσ ν − ∂f

∂Rλν
ρσ

R λ
ρσ µ

)

− 1
2

gµνf
(

Rαβ
ρσ

)

= 0. (21)



10

For the maximally symmetric spacetimes, the first line of the field equations just yields zero.
Therefore, the relevant part of the field equations that determines the effective cosmological
constant is the second line

[

∂f

∂Rµλ
ρσ

]

R̄µλ
ρσ

R̄ λ
ρσ ν −

[

∂f

∂Rλν
ρσ

]

R̄µλ
ρσ

R̄ λ
ρσ µ + gµνf

(

R̄αβ
ρσ

)

= 0, (22)

where the barred quantities are evaluated at the maximally symmetric value of the Riemann
tensor given as

R̄µλ
ρσ =

2Λ
(n − 1) (n − 2)

(

δµ
ρ δλ

σ − δµ
σδλ

ρ

)

. (23)

Equation (22) is the vacuum field equation and the information on the functional form of
the Lagrangian enters the field equation through only two background-evaluated quantities

[

∂f

∂Rµλ
ρσ

]

R̄µλ
ρσ

, f
(

R̄αβ
ρσ

)

. (24)

Therefore, (22) tells us that if these two quantities are the same for any given two gravity
theories, then those two gravity theories have the same maximally symmetric vacua, namely
their effective cosmological constants are equal. Then, for a theory defined by a given
f
(

Rµν
αβ

)

, one can determine the vacua of the theory by performing a first order Taylor series
expansion around yet to be determined maximally symmetric background as

I =
ˆ

dnx
√−g







f
(

R̄µν
αβ

)

+

[

∂f

∂Rλν
ρσ

]

R̄µλ
ρσ

(

Rλν
ρσ − R̄λν

ρσ

)







, (25)

which from now on will be called as equivalent linearized action (ELA). Risking to be a
little pedantic, let us reiterate the above observation: Considered as another generic gravity
theory, (25) has the same vacua as (16). As a result, to get the effective cosmological constant
of the vacuum (or vacua) of the most general gravity theory, all one needs to do is a first
order Taylor series expansion of the generic theory in the Riemann tensor and construct the
equivalent linear action.

Furthermore, let us show that (25) reduces to a cosmological Einstein-Hilbert action. Let
us define ζ which satisfies

[

∂f

∂Rµν
ρσ

]

R̄µλ
ρσ

Rµν
ρσ ≡ ζR. (26)

Here, the term
[

∂f/∂Rµν
ρσ

]

R̄µν
ρσ

is made up of the Kronecker-deltas such as δρ
µδσ

ν , and it should

satisfy the symmetries of the Riemann tensor, so antisymmetrizing δρ
µδσ

ν yields δ[ρ
µ δσ]

ν .5 Con-

sidering this together with (26) yields the background evaluated first derivative of f
(

Rµν
αβ

)

as
[

∂f

∂Rµλ
ρσ

]

R̄µλ
ρσ

= ζδ[ρ
µ δσ]

ν . (27)

5 Note that the total antisymmetrization in the up indices implies the total antisymmetrization in the down

indices, that is δ
[ρ
µ δ

σ]
λ = δ

[ρ
[µδ

σ]
λ] .
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Using these, one can recast the equivalent linear action (25) in a more explicit form such
that it becomes the usual cosmological Einstein-Hilbert action as

IELA =
1
κl

ˆ

dnx
√−g (R − 2Λ0,l) , (28)

where the subindex l denotes the equivalent linear action values. The effective Newton’s
constant and the effective “bare” cosmological constant are

1
κl

= ζ,
Λ0,l

κl
= −1

2
f̄ +

nΛ
n − 2

ζ, (29)

where we have used R̄ = 2nΛ
n−2

and defined f̄ ≡ f
(

R̄αβ
ρσ

)

. Then, the field equation for the

maximally symmetric background is simply Λ = Λ0,l which yields Λ = n−2
4ζ

f̄ . Note that this
is definitely the field equation that one gets after putting (23) and (27) in (22).

This construction implies that the maximally symmetric vacua of a generic gravity theory
can also be found by expanding the original action in the metric perturbation hµν up to the
first order O (hµν) and taking the variation with respect to hµν .

Once the vacuum of the theory is established, one can move on to discuss the particle
spectrum around this vacuum by expanding the action up to O

(

h2
µν

)

in the metric perturba-
tion. Directly expanding the action in powers of hµν is a highly complicated task but again
fortunately a similar method to the one described above exists [29]. The method amounts
to finding an equivalent quadratic curvature action (EQCA) that has the same degrees of
freedom around the same vacua as the original theory. EQCA can be found by expanding
the action in Taylor series up to quadratic order in the Riemann tensor as we show below.
Here we shall assume that the action does not depend on the derivatives of the Riemann
tensor.

For an action that does not depend on the derivatives of the Riemann tensor, the field
equations are (21). To analyze the spectrum of the f

(

Rαβ
ρσ

)

theory, that is the excitations
around a given background, one needs the linearized field equations from which one can
identify the excitations by decoupling the linearized field equations into a set of individual
wave equations for each excitation. As we discussed above, one way to obtain this linearized
field equation is to expand the action in hµν up to second order and perform variation
with respect to hµν . On the other hand, naturally, one can also directly linearize the field
equations (21). To obtain the linearized field equations, one needs the following linearized
two tensors

[

gµνf
(

Rµν
αβ

)]

L
=hµνf

(

R̄µν
αβ

)

+ ḡµν

[

∂f

∂Rαβ
ρσ

]

R̄αβ
ρσ

(

Rαβ
ρσ

)

L
, (30)

and
(

∂f

∂Rµλ
ρσ

R λ
ρσ ν

)

L

=

[

∂2f

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µλ
ρσ

(

Rηθ
ατ

)

L
R̄ λ

ρσ ν +

[

∂f

∂Rµλ
ρσ

]

R̄µλ
ρσ

(

R λ
ρσ ν

)

L
, (31)

and
(

gνρ∇λ∇σ
∂f

∂Rµλ
ρσ

)

L

=ḡνρ

[

∂2f

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µλ
ρσ

∇̄λ∇̄σ

(

Rηθ
ατ

)

L
+ ḡνρ

[

∂f

∂Rµλ
ρα

]

R̄µλ
ρσ

∇̄λ (Γσ
σα)L

− ḡνρ

[

∂f

∂Rαλ
ρσ

]

R̄µλ
ρσ

∇̄λ
(

Γα
σµ

)

L
− ḡνρ

[

∂f

∂Rµα
ρσ

]

R̄µλ
ρσ

∇̄λ (Γα
σλ)L , (32)
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where the subindex L means that the quantity is expanded up to O (hµν). The lineariza-
tion of the other terms in (21) follow from these terms upon symmetrization and antisym-
metrization. Notice that the information on the functional form of the Lagrangian enters
the linearized field equations through the following three background-evaluated quantities:

[

∂2f

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µλ
ρσ

,

[

∂f

∂Rµλ
ρσ

]

R̄µλ
ρσ

, f
(

R̄αβ
ρσ

)

. (33)

Therefore, if these three quantities are the same for any given two gravity theories, then those
two theories have the same spectrum around the same vacua. Then, for a theory defined
by a given f

(

Rµν
αβ

)

, one can determine the spectrum of the theory through the quadratic

gravity defined by the up to second order Taylor series expansion of f
(

Rµν
αβ

)

around the
maximally symmetric background as

I =
ˆ

dnx
√−g







f
(

R̄µν
αβ

)

+

[

∂f

∂Rλν
ρσ

]

R̄µν
ρσ

(

Rλν
ρσ − R̄λν

ρσ

)

+
1
2

[

∂2f

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µν
ρσ

(

Rηθ
ατ − R̄ηθ

ατ

) (

Rµλ
ρσ − R̄µλ

ρσ

)







, (34)

which from now on will be called as the equivalent quadratic curvature action (EQCA). Note
that this action not only has the same spectrum but also has the same vacua as the original
f
(

Rµν
αβ

)

theory.
Now, let us further recast (34) in the form of a quadratic gravity theory. To do this, first

let us define the quadratic curvature parameters α, β, and γ as

1
2

[

∂2f

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µν
ρσ

Rηθ
ατ Rµλ

ρσ ≡ αR2 + βRλ
σRσ

λ + γ
(

Rηλ
ρσRρσ

ηλ − 4Rλ
σRσ

λ + R2
)

. (35)

Since the background evaluated second order derivative of f
(

Rµν
αβ

)

just involves Kronecker

deltas and obeys the symmetries of the Riemann tensors Rηθ
ατ and Rµλ

ρσ , one has
[

∂2f

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µν
ρσ

= 2αδ[α
η δ

τ ]
θ δ[ρ

µ δ
σ]
λ + β

(

δα
[ηδ

[ρ
θ]δ

|τ |
[µ δ

σ]
λ] − δτ

[ηδ
[ρ
θ]δ

|α|
[µ δ

σ]
λ]

)

+ 12γδ[α
η δτ

θ δρ
µδ

σ]
λ , (36)

where the last term, clearly, should have the totally antisymmetric form since the Gauss-
Bonnet combination is the quadratic Lovelock term6. Using these together with (26), one
can put (34) in a more explicit form as a quadratic gravity theory [34];

IEQCA =
ˆ

dnx
√−g

[1
κ̃

(

R − 2Λ̃0

)

+ αR2 + βRλ
σRσ

λ + γχGB

]

, (37)

where the effective Newton’s constant is given as

1
κ̃

= ζ − 4Λ
n − 2

[

nα + β + γ
(n − 2) (n − 3)

(n − 1)

]

, (38)

6 More explicitly, the Lovelock Lagrangian density can be written as δµ1µ2µ3µ4
ν1ν2ν3ν4

Rν1ν2
µ1µ2

Rν3ν4
µ3µ4

= 4χGB where

δµ1µ2µ3µ4
ν1ν2ν3ν4

= ǫabcdδµ1
νa

δµ2
νb

δµ3
νc

δµ4
νd

= 4!δµ1
ν[a

δµ2
νb

δµ3
νc

δµ4
νd]

.
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and the effective “bare” cosmological constant reads

Λ̃0

κ̃
= −1

2
f
(

R̄αβ
ρσ

)

+
nΛ

n − 2
ζ − 2Λ2n

(n − 2)2

[

nα + β + γ
(n − 2) (n − 3)

(n − 1)

]

. (39)

The maximally symmetric solution of (37) satisfies [40]

Λ − Λ̃0

2κ̃
+

[

(nα + β)
(n − 4)

(n − 2)2 + γ
(n − 3) (n − 4)
(n − 1) (n − 2)

]

Λ2 = 0, (40)

which certainly is the same vacuum equation as that of the f
(

Rµν
αβ

)

theory and its equivalent
linearized version (28). We made the equivalence between the linearized field equations of
the f

(

Rµν
αβ

)

theory and (37) more explicit in the Appendix-D.

ELA and EQCA construction for Born-Infeld gravity

The above discussion was for generic f
(

Rµν
αβ

)

theories, let us now focus on the BI-type
theories. To calculate the EQCA, one basically needs (A)dS background calculated values

for the matrix function
√

det (δρ
ν + γAρ

ν) and its first and second derivatives. [Note that, we
are pulling out a factor of

√−det g so that we can work with the Kronecker delta δν
µ whose

variation is zero.] First, the background value of
√

det (δρ
ν + γAρ

ν) is given as
√

det
(

δρ
ν + γĀρ

ν

)

= (1 + ā)
n
2 , (41)

where ā is defined via γĀρ
ν = āδρ

ν . Then, by using det N = exp (Tr (lnN)), the first and

second order differentials of
√

det (δρ
ν + γAρ

ν) can be, respectively expressed as

∂
√

det (δρ
ν + γAρ

ν) =
γ

2

√

det (δρ
ν + γAρ

ν)Bλ
γ ∂Aγ

λ, (42)

and

∂2
√

det (δρ
ν + γAρ

ν) =
γ

2

√

det (δρ
ν + γAρ

ν)
[

Bλ
γ ∂2Aγ

λ − γBλ
θ Bτ

γ

(

∂Aθ
τ

)

∂Aγ
λ +

γ

2

(

Bλ
γ ∂Aγ

λ

)2
]

,

(43)
where Bλ

γ represents the inverse of the matrix
(

δλ
γ + γAλ

γ

)

and for the differential of B we
use ∂B = −γB (∂A) B. Note that one may not be able to find the explicit form of the B
matrix for a given A matrix, and in fact, even for the simple case of Aµν = Rµν it is not
possible to find the explicit form of B. However, this is not needed since just the (A)dS
background value of the B matrix is required to calculate the background values for the first
and second derivatives of

√

det (δρ
ν + γAρ

ν). One can calculate it as

B̄λ
γ = (1 + ā)−1 δλ

γ . (44)

Note that the matrix (I + A) becomes singular for ā = −1, so we assume that ā 6= −1. In
the absence of the specific definition for the A tensor, there is no need to further study the
background values of (42) and (43) by employing (41) and (44).

To find the EQCA for a specific BI gravity theory, one needs to find a and needs to
calculate the first and second derivatives of the A tensor with respect to the Riemann
tensor, Rµν

ρσ . Then, the formulas (41)–(44) are enough to work out the EQCA for the BI
gravity theory.
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Even-dimensional EQCA and ELA

In order to calculate the EQCA and ELA of BI gravity, one needs to calculate the following
three (A)dS background evaluated quantities as explicitly seen from (34);

√

det
(

δβ
ν + γĀβ

ν

)

,

[

∂

∂Rλν
ρσ

√

det
(

δβ
ν + γAβ

ν

)

]

R̄µν
ρσ

,

[

∂

∂Rηθ
ατ ∂Rµλ

ρσ

√

det
(

δβ
ν + γAβ

ν

)

]

R̄µν
ρσ

.

(45)
Using (41–44) and γĀρ

ν = āδρ
ν , the (A)dS evaluated value of the Lagrangian can be calculated

as
√

det
(

δβ
ν + γĀβ

ν

)

= (1 + ā)
n
2 , (46)

and its first derivative reads as,
[

∂

∂Rλν
ρσ

√

det
(

δβ
ν + γAβ

ν

)

]

R̄µλ
ρσ

=
γ

2

√

det
(

δβ
ν + γĀβ

ν

)

B̄κ
γ

[

∂Aγ
κ

∂Rλν
ρσ

]

R̄µλ
ρσ

=
γ

2
(1 + ā)

(n−2)
2 δκ

γ

[

∂Aγ
κ

∂Rλν
ρσ

]

R̄µλ
ρσ

, (47)

and finally its second derivative boils down to
[

∂2

∂Rηθ
ατ ∂Rµλ

ρσ

√

det
(

δβ
ν + γAβ

ν

)

]

R̄µν
ρσ

=
γ

2
(1 + ā)

(n−2)
2 δκ

γ

[

∂2Aγ
κ

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µν
ρσ

− γ2

2
(1 + ā)

(n−4)
2 δκ

ξ δζ
γ





∂Aξ
ζ

∂Rηθ
ατ





R̄µν
ρσ

[

∂Aγ
κ

∂Rµλ
ρσ

]

R̄µν
ρσ

+
γ2

4
(1 + ā)

(n−4)
2 δκ

γ δζ
ξ

[

∂Aγ
κ

∂Rµλ
ρσ

]

R̄µν
ρσ





∂Aξ
ζ

∂Rηθ
ατ





R̄µν
ρσ

. (48)

Here, a difference between the odd and even dimensional cases arises: it is important to
notice that only finite integer powers of ā appears in these expansions for even dimensions.
But, for odd dimensions, infinite powers of ā appears. This observation is crucial, because
the same second order expansion in curvature around an (A)dS background can be obtained
by first performing an infinite order expansion in Aµν “around Aµν = 0”, then carrying out
the second order expansion in curvature by using this infinite order series in Aµν . A priori, all
orders in Aµν contribute to the second order expansion in curvature in (A)dS backgrounds;
however, as we just observed for even dimensions only a finite number of terms in the Aµν

expansion contribute to the EQCA: More specifically for even n-dimensions expansion up to

O
(

A
n
2
µν

)

is necessary and sufficient. In four dimensions, we need to expand up to O
(

A2
µν

)

as given in (6). On the other hand, one needs all the powers of Ai
µν for odd dimensions.

Since there are nontrivial cancellations, it pays to make this observation more explicit in
four dimensions. To construct the EQCA of the O

(

A2
µν

)

which is

[

√

det
(

δβ
ν + γAβ

ν

)

]

O(A2)

= 1 +
γ

2
Aµ

µ +
γ2

8
Aµ

µAν
ν − γ2

4
Aν

µAµ
ν , (49)
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one first needs the (A)dS background evaluated value of the O
(

A2
µν

)

Lagrangian which can

be calculated by putting γĀρ
ν = āδρ

ν in (49) as
[

√

det
(

δβ
ν + γĀβ

ν

)

]

O(A2)

= 1 + 2ā + 2ā2 − ā2 = (1 + ā)2 , (50)

which is an exact expression represented by finite number of terms in the Aµν expansion
and matches (46) when n = 4. Moving on to the first and second derivatives (49), one
respectively gets

∂

∂Rλν
ρσ

[

√

det
(

δβ
ν + γAβ

ν

)

]

O(A2)

=
γ

2
∂Aκ

κ

∂Rλν
ρσ

+
γ2

4
Aβ

β

∂Aκ
κ

∂Rλν
ρσ

− γ2

2
Aβ

κ

∂Aκ
β

∂Rλν
ρσ

, (51)

and

∂2

∂Rηθ
ατ ∂Rµλ

ρσ

[

√

det
(

δβ
ν + γAβ

ν

)

]

O(A2)

=
γ

2
∂2Aκ

κ

∂Rηθ
ατ ∂Rλν

ρσ

+
γ2

4
Aβ

β

∂2Aκ
κ

∂Rηθ
ατ ∂Rλν

ρσ

− γ2

2
Aβ

κ

∂2Aκ
β

∂Rηθ
ατ ∂Rλν

ρσ

+
γ2

4

∂Aβ
β

∂Rηθ
ατ

∂Aκ
κ

∂Rλν
ρσ

− γ2

2
∂Aβ

κ

∂Rηθ
ατ

∂Aκ
β

∂Rλν
ρσ

. (52)

These derivatives can be evaluated for the (A)dS background respectively as




∂

∂Rλν
ρσ

[

√

det
(

δβ
ν + γAβ

ν

)

]

O(A2)





R̄µν
ρσ

=
γ

2

[

∂Aκ
κ

∂Rλν
ρσ

]

R̄µν
ρσ

+ γā

[

∂Aκ
κ

∂Rλν
ρσ

]

R̄µν
ρσ

− γ

2
āδβ

κ

[

∂Aκ
β

∂Rλν
ρσ

]

R̄µν
ρσ

=
γ

2
(1 + ā) δβ

κ

[

∂Aκ
β

∂Rλν
ρσ

]

R̄µν
ρσ

, (53)





∂2

∂Rηθ
ατ ∂Rµλ

ρσ

[

√

det
(

δβ
ν + γAβ

ν

)

]

O(A2)





R̄µν
ρσ

=
γ

2
(1 + a)





∂2Aκ
κ

∂Rηθ
ατ ∂Rλν

ρσ





R̄µν
ρσ

+
γ2

4





∂Aβ
β

∂Rηθ
ατ





R̄µν
ρσ

[

∂Aκ
κ

∂Rλν
ρσ

]

R̄µν
ρσ

− γ2

2

[

∂Aβ
κ

∂Rηθ
ατ

]

R̄µν
ρσ

[

∂Aκ
β

∂Rλν
ρσ

]

R̄µν
ρσ

(54)

which respectively matches (47) and (48) when n = 4 . Hence, we have achieved our goal of
showing that in four dimensions to get the vacuum and the spectrum of a determinantal BI
gravity theory one needs to expand only up to O

(

A2
µν

)

around Aµν = 0. It is a remarkable

fact about this determinantal actions that at every order O
(

A2+i
µν

)

, contributions of the
various terms to the EQCA cancel among each other, that is they do not contribute to the
free theory around the maximally symmetric background. Moreover, this cancellation works
in such a way that O (γ0), O (γ1) and O (β) terms cancel among each other. This fact also
means that when Aµν is at most quadratic in curvature as in (4), one can also get the same
result by performing a Taylor series expansion in small curvature, that is around Rµν

ρσ = 0,
up to O (R4) in four dimension; hence, end up with a quartic gravity theory. This also
immediately leads to the fact that a priori there will be four possible maximally symmetric
vacua of the theory which we next study.
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IV. DETERMINING THE VACUA OF THE BI THEORY

Let us find the maximally symmetric vacua (generically there will be four different vacua
in four dimensions as noted above) of our theory

κL =
2
γ

[

√

det (δρ
σ + γAρ

σ) − (λ0 + 1)
]

, (55)

with Aµν as (4) and we have defined a dimensionless cosmological parameter λ0 ≡ γΛ0 which
we shall use from now on. We resort to the equivalent linear action formalism described
above which in this basis follows from the zeroth and the first order Taylor series expansion
of the action (55)

κLELA =
2
γ

[

√

det
(

δρ
σ + γĀρ

σ

)

− (λ0 + 1)

]

+

[

∂L
∂Cµν

αβ

]

R̄µν
ρσ

Cµν
αβ +

[

∂L
∂Sµ

ν

]

R̄µν
ρσ

Sµ
ν +

[

∂L
∂Rµ

ν

]

R̄µν
ρσ

(

Rµ
ν − R̄µ

ν

)

. (56)

Note that the background values C̄µν
αβ and S̄µ

ν are zero, and R̄µν
ρσ is given in (23) with n = 4 and

R̄µ
ν = Λδµ

ν . The background values of the Lagrangian density and its first order derivatives
are calculated in the Appendix-E, and using these results, the equivalent linearized action
of the BI theory given in (3) becomes

LELA =
1
κl

(

R − 2
γ

λ0,l

)

, (57)

the Newton’s constant and the cosmological constant, upon using the computations in
Appendix-E, turn out to be

1
κl

= (1 + ā) [1 + 2λ (a3 + b2)] , ā = λ + λ2 (a3 + b2) ,

λ0,l = κl

(

1 + λ0 − (1 + ā)2
)

+ 2λ, (58)

where we assumed 1/κl is not zero, otherwise the theory would not reproduce Einstein’s
gravity. Then, since the vacua of the equivalent linear theory is determined by

λ = λ0,l, (59)

one arrives at the quartic equation that gives the four possible maximally symmetric vacua

c2λ4 + cλ3 − λ + λ0 = 0, (60)

where we have defined c ≡ a3 +b2. Let us not depict the solutions in their general form since
they are not needed, but let us note some specific points. If c = 0 then we have a unique
vacuum with λ = λ0. If c 6= 0, then there are real and complex solutions depending on the
values of c and λ0. It is possible to have four real solutions if 0 < c < 1

4
and if a complicated

condition on λ0 is satisfied. As an example, let us take c = 1
8

and λ0 = 3
4
, then we have

λ =
(

−6, −2
(

1 ±
√

2
)

, 2
)

. But, as we shall see later on, unitarity will demand that c = 1
4
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and λ < 1, and the nonvanishing of the effective Newton’s constant demands that λ 6= −2.
These conditions are satisfied if: λ0 < 11

16
and λ0 6= −1. One can compute the discriminant

to be ∆ = 1
256

(1 + λ0)
2 (−11 + 16λ0) which is always negative in the allowed region. This

says that there are two real and two complex-conjugate roots. One of the real roots does
not satisfy the λ < 1 condition; but, the other one always satisfies this condition. Therefore,
we have a unique viable vacuum.

V. UNITARITY AROUND FLAT BACKGROUNDS

First, let us start with the flat space λ = 0 for which we must take the bare cosmological
parameter to be λ0 = 0. From (60) we see that flat space is the vacuum of the theory but
it is not the only vacuum since the equation reduces to

λ
(

c2λ3 + cλ2 − 1
)

= 0, (61)

with at least one more real solution with a non-zero λ with the exception that c = 0. For
example, for c = 1

4
, whose relevance will appear below, one has λ ≈ 1.679.

Let us focus on the flat vacuum. In this case our job is not complicated at all: All
we need to do is to expand (3) up to O (R2) and demand that it matches either with the
Einstein-Hilbert action or with the Einstein-Gauss-Bonnet action.

The determinant [det (1 + M)]1/2 can be expanded up to O (M4) as

[det (1 + M)]1/2 = 1+
1
2

TrM+
1
8

(TrM)2−1
4

Tr
(

M2
)

+
1
6

Tr
(

M3
)

−1
8

TrMTr
(

M2
)

+
1
48

(TrM)3 ,

(62)
where TrM = gµνMµν . Using this expression, the O (R2) expansion of (3) yields the
quadratic Lagrangian

κLO(R2) =R + γb1CµρσλCµρσλ

+ γ
(

a3 + b2 +
1
2

)

RµρRµρ + γ

(

a4 + b3 − 1 − β (β + 2)
2

)

SµρSµρ. (63)

Here, note that a2 does not appear in the O (R2) expansion, so unitarity constraints around
the flat background do not put any condition on the CµρνσRρσ term. As already noted, there
are two unitary theories that (63) can reduce to: The Einstein theory and the EGB theory
which need separate attention even though they are classically equivalent in four dimensions.
Let us start with the reduction to Einstein’s theory.

A. Reduction to the Einstein theory

We will compare (63) with

κL = R, (64)

which yields the elimination of three parameters

b1 = 0, a3 = −1
2

− b2, a4 =
β (β + 2)

2
+ 1 − b3, (65)
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leaving a theory with four dimensionless parameters that can be built from

Aµν =Rµν + βSµν +
γ

4
gµν (b2RρσRρσ + b3SρσSρσ)

+ γ

[

a2CµρνσRρσ −
(1

2
+ b2

)

RµρRρ
ν +

(

β (β + 2)
2

+ 1 − b3

)

SµρSρ
ν

]

. (66)

It is important to understand that the BI gravity defined with this Aµν describes a massless,
unitary spin-2 graviton about its flat vacuum in all finite orders in the curvature expansion
and as well as the full theory, namely in the infinite order in the curvature expansion. This
is because in flat backgrounds, only terms up to quadratic in curvature contribute to the
propagator of the theory but this theory does not have quadratic terms and when expanded
in curvature it symbolically reads L = R + R3 + . . . .

Let us also note that if we require the uniqueness of the vacuum namely that the flat
space is the unique vacuum then one cannot reduce the theory to Einstein’s gravity since
unique vacuum condition is achieved with c = 0 but Einsteinian reduction is achieved with
c = −1

2
as seen from the second equation of (65), hence the contradiction. Therefore, the

theory (66) has two vacua one with λ = 0 and the other with λ ≈ 2.594. Of course, to have
a consistent theory we must check its unitarity about the second vacuum. As we shall see
in the next section, c = −1

2
is excluded. Before that discussion, let us consider some specific

theories by taking the undetermined dimensionless parameters to be zero.
Unitarity about its flat vacuum does not constrain this theory any further: Let us use

the notion of minimality and fix the undetermined parameters. There could be many ways
to define minimal theories here: For example, if we set β = a2 = a3 = a4 = 0 we arrive at a
unitary theory around its flat background with the action

I =
2

κγ

ˆ

d4x







√

√

√

√−det

[

gµν + γRµν +
γ2

8
gµνRσρGσρ

]

−
√

−det g







, (67)

which was already given in [1]. Another option is choosing β = b2 = b3 = a2 = 0 which
yields another theory

I =
2

κγ

ˆ

d4x







√

√

√

√−det

[

gµν + γRµν +
γ2

2

(

GµρGρ
ν − 1

8
gµνR2

)

]

−
√

−det g







. (68)

Of course, with four free parameters there are many other options, but in any case the
most general theory that has a unitary massless spin-2 excitation around its flat vacuum is
constructed with (66).

B. Reduction to the Einstein–Gauss-Bonnet theory

The next possible option is to try to reduce (63) to the EGB theory which has the same
spectrum, field equations, etc in four dimensions with Einstein’s gravity. We will compare
(63) with (10) for λ0 = 0 which yields the following relations between the parameters:

a3 =
2
3

b1 − b2 − 1
2

, a4 =
β (β + 2)

2
− 8

3
b1 − b3 + 1, (69)
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eliminating two of them and yielding the following Aµν tensor with five parameters :

Aµν =Rµν + βSµν

+ γ

(

a2CµρνσRρσ +
(2

3
b1 − b2 − 1

2

)

RµρRρ
ν +

(

β (β + 2)
2

− 8
3

b1 − b3 + 1

)

SµρSρ
ν

)

+
γ

4
gµν

(

b1CρσλγCρσλγ + b2RρσRρσ + b3SρσSρσ
)

. (70)

This defines the most general theory that has a massless unitary graviton about its flat
vacuum. Unlike the previous case, we can further require that the flat vacuum is the unique
vacuum, that is c = 0, then we arrive at the relations

a3 = −b2, b1 =
3
4

, a4 =
β (β + 2)

2
− b3 − 1, (71)

which reduces the general Aµν tensor to

Aµν =Rµν + βSµν

+ γ (a2CµρνσRρσ + a3RµρRρ
ν + a4SµρSρ

ν)

+
γ

4
gµν

[

3
4

CρσλγCρσλγ − a3RρσRρσ +

(

β (β + 2)
2

− a4 − 1

)

SρσSρσ

]

, (72)

Hence, the unitarity and the unique vacuum conditions gave us a four parameter theory.
By judiciously choosing some of these parameters to vanish we can define various minimal
theories. First choice can be to set β = a2 = b2 = b3 = 0 yielding

Aµν = Rµν +
3γ

16
gµνχGB +

3γ

8
gµνRσρGσρ − γRµρGρ

ν . (73)

Another minimal theory option is obtained after setting β = a2 = a3 = a4 = 0 yielding an
Aµν in terms of the Ricci tensor and the metric tensor multiplied with specific quadratic
terms as

Aµν = Rµν +
γ

8
gµν

(3
2

χGB + RρσGρσ
)

, (74)

where we have made use of the GB identity. The second option leads to the action

I =
2

κγ

ˆ

d4x







√

√

√

√-det

[

gµν + γRµν +
γ2

8
gµν

(3
2

χGB + RσρGσρ

)

]

−
√

−det g







, (75)

which should be considered as an exact theory for all values of the curvature: At any order
in the curvature expansion the flat vacuum is the unique vacuum solution and the theory
describes a unitary massless graviton. Now, let us see in small curvature expansion what
kind of a theory we get up to O (R3). For this purpose we use (62) and get from (75) the
following effective theory

I =
1
κ

ˆ

d4x
√

−det g

{

R +
3γ

4
χGB +

γ2

48

(

9RRµσνρRµσνρ + 16Rα
µRβ

αRµ
β − 42RRµνRµν + 8R3

)

}

.

(76)
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The Gauss-Bonnet term does not contribute to the field equations. In case it is not apparent
that this theory has a unique vacuum and a unitary massless spin-2 excitation from our
construction above, let us show this here in a different way. In fact these can be seen either
from the field equations or from the equivalent quadratic curvature action that the flat space
is the unique vacuum. Let us follow the second path and find the vacuum and the excitations
for this BI-generated cubic curvature modification of Einstein’s theory. Unitarity and the
particle spectrum of all cubic curvature gravity theories based on the Riemann tensor and
its contractions were studied in [31]. The most general cubic curvature gravity is defined
with the action as

I =
1
κ

ˆ

d4x
√−g

[

R − 2Λ0 + αR2 + βRµνRµν + γχGB + F
(

Rµν
ρσ

)]

, (77)

where F
(

Rµν
ρσ

)

represents the eight possible cubic curvature terms with no derivatives

F
(

Rµν
ρσ

)

≡c1R
µν
ρσRρβ

µαRσα
νβ + c2Rµν

ρσRαβ
µν Rρσ

αβ + c3R
µ
ν Rρσ

αµRαν
ρσ + c4RRµν

ρσRρσ
µν

+ c5R
µ
ν Rρ

σRνσ
µρ + c6Rµ

ν Rρ
µRν

ρ + c7RRµ
ν Rν

µ + c8R
3. (78)

The EQCA of (77) was calculated in [31] as

I =
ˆ

d4x
√

−g
[1
κ̃

(

R − 2Λ̃0

)

+ α̃R2 + β̃R2
ab + γ̃

(

R2
abcd − 4R2

ab + R2
)

]

, (79)

with effective parameters

1
κ̃

≡1
κ

− Λ2

3κ
[c1 + 4c2 + 6 (c3 + 4c4) + 9 (c5 + c6 + 4c7 + 16c8)] ,

Λ̃0 ≡ κ̃

κ
Λ0 +

2Λ
3

(

1 − κ̃

κ

)

,

α̃ ≡α

κ
+

Λ
3κ

[3c1 − 6c2 − 8c4 + c5 + 3 (−c3 + 2c7 + 12c8)] ,

β̃ ≡β

κ
+

Λ
3κ

[−9c1 + 24c2 + 16c3 + 5c5 + 3 (16c4 + 3c6 + 4c7)] ,

γ̃ ≡γ

κ
+

Λ
κ

[−c1 + 2c2 + (c3 + 4c4)] . (80)

Comparing (77) with (76), one obtains the following parameters for the EQCA from (80)

1
κ̃

=
1
κ

, Λ̃0 = 0, α̃ = − Λ
4κ

γ2, β̃ =
Λ
2κ

γ2, γ̃ =
3γ

4κ
(1 + Λγ) , (81)

which give the equivalent quadratic curvature action of (76)

I =
1
κ

ˆ

d4x
√

−det g

{

R +
3
4

γχGB +
γ2Λ

4

(

3χGB + 2RµνRµν − R2
)

}

. (82)

Here, we still have to find Λ which corresponds to the maximally symmetric vacuum. There
are two ways to do this: One can either derive the field equations of the cubic theory
(82) and get the vacuum from those equations or one can find the field equations of the
equivalent quadratic theory (82) instead. Of course the second method is easier and in fact
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these field equations were given in [39], and hence, no need to repeat them here. Inserting
Rµσνρ = Λ

3
(gµνgσρ − gµρgσν) to the field equations, one finds that Λ = 0. Therefore, flat

space is the unique vacuum. In fact more importantly Λ = 0 also kills the ghost term
(RµνRµν) in the action. As expected (76) has a unitary massless spin-2 excitation just like
its exact “mother” (75). Happily, this state of affairs is intact for any O (Ri) truncation of
the exact theory: That is at any order the vacuum is uniquely flat and the theory has a
massless unitary graviton.

VI. UNITARITY AROUND (A)DS BACKGROUNDS

Let us now study the unitarity of the BI gravity around its (A)dS background. It is
important to establish what we mean by the tree-level unitarity of the BI theory in (A)dS
backgrounds: As we noted in the Introduction, we require that the theory is tree-level
unitary at any finite order in the curvature expansion and at infinite order in the curvature
expansion which is the full theory. Namely, the full theory or any truncated version of
the theory, for example the linear Einstein theory, quadratic gravity or in general O (Ri)
theory should be unitary. Note that this condition on unitarity is stronger than the unitarity
condition in string theory generated effective gravity models. For example, the full string
theory is unitary yet O (R3) effective theory is non-unitary for bosonic string theory [32]
as shown in [31]. In (A)dS backgrounds, unlike the flat space case, infinitely many terms
contribute to the propagator and to the free theory; i.e. the vacuum etc. Therefore, as
explained above, we need the equivalent quadratic curvature theory of

κL =
2
γ

[

√

det (δρ
ν + γAρ

ν) − (λ0 + 1)
]

, (83)

which upon use of (34) in the Weyl–traceless-Ricci–Ricci (CSR) basis, reads as

κLEQCA =
2
γ

[

√

det
(

δρ
ν + γĀρ

ν

)

− (λ0 + 1)

]

+

[

∂L
∂Cµν

αβ

]

R̄µν
ρσ

Cµν
αβ +

[

∂L
∂Sµ

ν

]

R̄µν
ρσ

Sµ
ν +

[

∂L
∂Rµ

ν

]

R̄µν
ρσ

(

Rµ
ν − R̄µ

ν

)

+
1
2





∂2L
∂Cµν

αβCηθ
λτ





R̄µν
ρσ

Cµν
αβCηθ

λτ +
1
2

[

∂2L
∂Sµ

ν ∂Sα
β

]

R̄µν
ρσ

Sµ
ν Sα

β

+
1
2

[

∂2L
∂Rµ

ν ∂Rα
β

]

R̄µν
ρσ

(

Rµ
ν − R̄µ

ν

) (

Rα
β − R̄α

β

)

+

[

∂2L
∂Cµν

αβ∂Sη
θ

]

R̄µν
ρσ

Cµν
αβSη

θ +

[

∂2L
∂Cµν

αβ∂Rη
θ

]

R̄µν
ρσ

Cµν
αβ

(

Rη
θ − R̄η

θ

)

+

[

∂2L
∂Sµ

ν ∂Rα
β

]

R̄µν
ρσ

Sµ
ν

(

Rα
β − R̄α

β

)

, (84)

where the bracketed and barred quantities denote the maximally symmetric background
values for the corresponding expressions. Note again that C̄µν

αβ = 0 and S̄µ
ν = 0. The

terms up to quadratic order are just the ELA given in (57), so we just need the quadratic
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contributions which are again given in the Appendix-E. By using these results, the equivalent
quadratic curvature action of (3) can be compactly written as

κLEQCA =
1
κ̃

(

R − 2
γ

λ̃0 + α1C
µν
ρσ Cρσ

µν + α2R
ν
µRµ

ν + α3Sν
µSµ

ν

)

, (85)

where the effective Newton’s constant and the effective “bare” cosmological constant are
given as

1
κ̃

= 1 + ā − λ (2λc + 1) 2, (86)

λ̃0 = κ̃ [λ (1 + ā) (2λc + 1) − ā (2 + ā) + λ0] + λ, (87)

and the quadratic curvature parameters read as

α1 = γb1κ̃ (1 + ā) , (88)

α2 =
γ

2λ
[κ̃ (1 + ā) (2λc + 1) − 1] , (89)

α3 =
γ

2λ

[

κ̃
(

(1 + ā) (2λ (a4 + b3) − 1) − λ (2a3λ + β + 1)2
)

+ 1
]

. (90)

Here, ā represents the combination

ā = λ + λ2c. (91)

Note that in the λ → 0 limit, the equivalent quadratic action of the full theory (85) reduces
to the second order of the full theory in small curvature expansion (63) as expected.

Let us list the conditions that our full theory should satisfy:

1. It should reduce to the cosmological Einstein or Einstein-Gauss-Bonnet theory at the
lowest order,

2. It should describe unitary massless spin-2 excitations at any finite order in the curva-
ture expansion and infinite order in the curvature expansion. We have shown that if
the theory is unitary at O (R4) it is unitary at any order of the form O (R4+i) including
i → ∞. Therefore, together with the first condition, once exact unitarity of the theory
is checked all that is required is to check the unitarity at O (R3).

A. Reduction to Cosmological Einstein Theory:

To reduce (85) to Einstein’s theory one should set α1 = α2 = α3 = 0. These conditions
together with the condition that the theory is unitary at O (R2), that are

b1 = 0, a3 = −1
2

− b2, a4 =
β (β + 2)

2
+ 1 − b3, (92)

lead to the following relation

0 = κ̃ (1 + ā) (−λ + 1) − 1, (93)
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which is obtained from α2 = 0, and

0 = κ̃

{

(1 + ā)

[

2λ

(

β (β + 2)
2

+ 1

)

− 1

]

− λ
[

−2
(1

2
+ b2

)

λ + β + 1
]2
}

+ 1, (94)

which is obtained from α3 = 0. Note that for c = −1
2
, 1

κ̃
and a take the forms

1
κ̃

= 1 − λ3 +
3λ2

2
, ā = λ − λ2

2
. (95)

With these results, α2 = 0 condition becomes

λ (λ − 2) = 0, (96)

which is consistent only if λ0 = 2 or λ0 = 0, namely λ = λ0. We have studied the λ = 0 case
before. For the other case, that is λ = 2, the theory is not unitary since κ̃ = −1 as follows
from (95). This says that we cannot reduce our theory to the cosmological Einstein theory.

B. Reduction to Einstein-Gauss-Bonnet Theory:

The next possible option is to try to reduce it to the EGB theory. Unitarity of the theory
at O (R2) yields

a3 =
2
3

b1 − b2 − 1
2

, a4 =
β (β + 2)

2
− 8

3
b1 − b3 + 1, (97)

and using in (86) and (87), one gets the effective Newton’s constant and the effective “bare”
cosmological constant as

1
κ̃

= 1 + ā − λ
(

2λ
(2

3
b1 − 1

2

)

+ 1
)2

, (98)

λ̃0 = κ̃
[

λ (1 + ā)
(

2λ
(2

3
b1 − 1

2

)

+ 1
)

− ā (2 + ā) + λ0

]

+ λ. (99)

In addition, the quadratic curvature parameters of EQCA also become

α1 = γb1κ̃ (1 + ā) , (100)

α2 =
γ

2λ

[

κ̃ (1 + ā)
(

2λ
(2

3
b1 − 1

2

)

+ 1
)

− 1
]

, (101)

α3 =
γ

2λ

[

κ̃

(

(1 + ā)

(

2λ

(

β (β + 2)
2

− 8
3

b1 + 1

)

− 1

)

− λ (2a3λ + β + 1)2

)

+ 1

]

. (102)

Here, ā represents the combination

ā = λ + λ2
(2

3
b1 − 1

2

)

. (103)

To reduce our theory to the EGB theory, we must impose two conditions that are

α2

α1
=

2
3

,
α3

α1
= −8

3
,
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which respectively lead to the following two equations

3γ

2λ

[

κ̃ (1 + ā)
(

2λ
(2

3
b1 − 1

2

)

+ 1
)

− 1
]

=2γb1κ̃ (1 + ā) , (104)

3γ

2λ

[

κ̃

(

(1 + ā)

(

2λ

(

β (β + 2)
2

− 8
3

b1 + 1

)

− 1

)

− λ (2a3λ + β + 1)2

)

+ 1

]

= −8γb1κ̃ (1 + ā) . (105)

Simplification of (104) yields
(

b1 − 9
8

)(

b1 − 3
4

)

λ = − 3
2

(

b1 − 9
8

)

. (106)

Note that it is immediately clear that b1 6= 3
4
. Here, the discussion bifurcates: Either b1 6= 9

8

or b1 = 9
8
. We have to study both cases:

Case 1: b1 6= 9
8

Then, from (106), one gets

λ =
−3

2
(

b1 − 3
4

) , (107)

and inserting this in (103) leads to ā = 0 which also gives 1
κ̃

= 1 − λ; therefore, one has the
constraint λ < 1 for the unitarity of the theory. From (107) λ < 1 yields |b1| > 3

4
. Note that,

this condition on b1also guarantees that λ 6= 1. Now, let us look at the second constraint
(105) which simplifies to

−4a3λ (a3λ + β + 1) =0. (108)

Since we are studying the λ 6= 0 case, this equation is satisfied when either a3 = 0 or
a3λ + β + 1 = 0. We must consider these subclasses separately.

Case 1a: a3 = 0

Using (69) b2 can be determined as

b2 =
2
3

(

b1 − 3
4

)

. (109)

Making use of (107) one obtains b2 = − 1
λ
. Since b2 = c in this case the vacuum equation

(60) leads to λ = λ0. Then we have the following Aµν tensor

Aµν =Rµν + βSµν

+ γ

(

a2CµρνσRρσ +

(

β (β + 2)
2

+
4
λ0

− b3 − 1

)

SµρSρ
ν

)

+
γ

4
gµν

((3
4

− 3
2λ0

)

CρσλγCρσλγ − 1
λ0

RρσRρσ + b3SρσSρσ
)

. (110)
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Case 1b: a3λ + β + 1 = 0

Together with (107) one has

a3 =
2
3

(β + 1)
(

b1 − 3
4

)

. (111)

Then from (69) b2 can be determined as

b2 = − 2
3

β
(

b1 − 3
4

)

, (112)

which leads to

c =
2
3

(

b1 − 3
4

)

. (113)

From (60) these lead to λ = λ0, b1 = 3
4

− 3
2λ0

, b2 = β
λ0

and a3 = −β+1
λ0

yielding

Aµν =Rµν + βSµν

+ γ

(

a2CµρνσRρσ − β + 1
λ0

RµρRρ
ν +

(

β (β + 2)
2

+
4
λ0

− b3 − 1

)

SµρSρ
ν

)

+
γ

4
gµν

(

(3
4

− 3
2λ0

)

CρσλγCρσλγ +
β

λ0

RρσRρσ + b3SρσSρσ

)

. (114)

Note that, since λ0 appears in the inverse power there is no λ0 → 0 limit for (110) and
(114). Therefore, we will not study these theories anymore even though they describe
unitary massless spin-2 excitations at all orders in the curvature expansion about their
(A)dS vacuum. Let us study the second case.

Case 2: b1 = 9
8

In this case, λ is not determined from (106). This choice reduces (97) and (98) to

a3 =
1
4

− b2, a4 =
β (β + 2)

2
− 2 − b3, (115)

1
κ̃

= (1 − λ)

(

1 +
λ

2

)2

. (116)

Again, positivity of the Newton’s constant leads to λ < 1, and we demand that λ 6= −2, so
that the Newton’s constant does not vanish. The vacuum equation (60) boils down to

λ4

16
+

λ3

4
− λ + λ0 = 0. (117)

The solutions of this equations were discussed in Section-IV hence we do not repeat here,
but just note that there is a unique viable solution with λ < 1 as long as λ0 < 11

16
. Note also

that for λ 6= −2, one must have λ0 6= −1. The second condition (105) gives

1
2

(λ + 2) (β + 1) = ± (2a3λ + β + 1) . (118)
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We must study both signs separately.
Let us consider the minus sign case which yields

a3 = −(λ + 4) (β + 1)
4λ

. (119)

Since we would like to have a smooth λ → 0 limit, we must have β = −1 and a3 = 0. Then,
the theory is

Aµν =Rµν − Sµν

+ γ
(

a2CµρνσRρσ −
(

b3 +
5
2

)

SµρSρ
ν

)

+
γ

4
gµν

(9
8

CρσλγCρσλγ +
1
4

RρσRρσ + b3SρσSρσ
)

, (120)

which will also appear as a subcase below.
Let us consider the final case that is choosing the plus sign in (118) which leads to

a3 = β+1
4

. The Aµν tensor reads

Aµν =Rµν + βSµν

+ γ

(

a2CµρνσRρσ +
β + 1

4
RµρRρ

ν +

(

β (β + 2)
2

− 2 − b3

)

SµρSρ
ν

)

+
γ

4
gµν

(

9
8

CρσλγCρσλγ − β

4
RρσRρσ + b3SρσSρσ

)

, (121)

with a2, b3 and β are arbitrary real parameters.
Let us summarize the properties of this theory:

1. With a given λ0 < 11
16

, it has a unique viable maximally symmetric vacuum with a cos-

mological parameter λ < 1, and an effective Newton’s constant 1
κ̃

= (1 − λ)
(

1 + λ
2

)2
.

2. It describes a unitary massless spin-2 excitation around this vacuum for any value of
λ0 < 11

16
including λ0 = 0, except λ0 = −1, which yields λ = −2 and so ruled out by

the requirement of a non-zero effective Newton’s constant. This statement means that
the theory has the same propagator structure as Einstein’s gravity in (A)dS and flat
backgrounds.

3. It provides an infinite order unitary extension of Einstein’s gravity.

All these features are quite attractive but we still have to show that the theory is also healthy
at the truncated orders O (R2) and O (R3). At O (R2) since the theory is equivalent to the
Einstein-Gauss-Bonnet theory it is unitary as long as κ is positive. Let us now check the
O (R3) theory. Expanding the Lagrangian density built with (121) up to O (R3) we arrive
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at

κLO(R3) =R − 2Λ0 + γ

(

−2b1

3
− a4 + b3

4
+

(β + 1)2

8
+

1
8

)

R2

+γ

(

2b1 + b2 + a3 + b3 + a4 − (β + 1)2

2

)

RµνRµν + γb1χGB

+γ2 b1

4
RRµρνσRµρνσ − γ2 (β + 1) a2RµνRµσνρRσρ

+γ2

(

7 (β + 1) a2

6
+

b2 + b3 − 2b1

4
+

(3β + 4) a4

4
+

(β + 2) a3

4
− (β + 1)3

4

)

RRµνRµν

+γ2

(

b1

12
− (2β + 3) a4

16
− b3

16
− (β + 1) a2

6
+

(β + 1)3

24

)

R3

+γ2 (β + 1)

(

−a2 − a3 − a4 +
(β + 1)2

3

)

RµνRν
ρRρµ. (122)

The question is if one takes this theory as the full theory what kind of excitations will it
have? We can answer this question with the methods we have employed several times in this
work. Namely we can construct an equivalent quadratic action that has the same vacuum
and excitations as this theory. Using the above cubic curvature parameters in (80) yields
the EQCA parameters for (122) as

1
κ̃

≡1
κ

[

1 − 3λ2 (a3 + b2)
]

, (123)

λ̃0 ≡ κ̃

κ
λ0 +

2λ

3

(

1 − κ̃

κ

)

, (124)

κα̃ ≡γ

(

−2b1

3
− a4 + b3

4
+

(β + 1)2

8
+

1
8

)

+
λγ

3

(

−2b1 +
3b2

2
− 3b3

4
+

3 (β + 2) a3

2
− 3a4

4

)

,

(125)

κβ̃ ≡γ

(

2b1 + b2 + a3 + b3 + a4 − (β + 1)2

2

)

+ λγ (2b1 + b2 − (2β + 1) a3 + b3 + a4) , (126)

κγ̃ ≡γ (1 + λ) b1. (127)

For this theory to describe unitary massless spin-2 excitations we must set α̃ = 0 = β̃. These
conditions are automatically satisfied because of the conditions (104) and (105) of the full
unitary theory. We only need to show that the effective Newton’s constant remains positive:
Thus we have

1
κ

(

1 − 3λ2

4

)

> 0, (128)

which is satisfied only if − 2√
3

< λ < 2√
3
. The upper bound is weaker than λ < 1 but a lower

bound is introduced. Thus, unitarity of our theory at O (R3) is achieved if − 2√
3

< λ < 1. Of
course now the vacuum equation should allow such a solution. Here the vacuum equation
at this order is

λ3 − 4λ + 4λ0 = 0, (129)

and if − 4
3
√

3
< λ0 < 4

3
√

3
then there is such a real λ. Observe that the upper bound is larger

than 11
16

. Hence, the condition on λ0 is − 4
3
√

3
< λ0 < 11

16
.
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Therefore, with these constraints coming from the unitarity of the theory at O (R3) we
can now summarize the properties of the theory (121) as: It describes a unitary massless
spin-2 excitation about its unique viable vacuum (with − 2√

3
< λ < 1) at every order in the

curvature expansion including the infinite order expansion as long as κ > 0, − 4
3
√

3
< λ0 < 11

16

for arbitrary real β, a2 and b3. What is fascinating is that no new condition arises at any
O (R4+i) expansion. Namely, at every such order, contributions to the effective parameters
vanish among each other, therefore, for example effective Newton’s constant or the vacuum
equation do not receive any corrections from the terms of the O (R4+i) theory. This is
the first known theory in four dimensions which is unitary at every order in the curvature
expansion in its (A)dS vacuum.

Having three arbitrary parameters at our disposal we can define various minimal theories
out of which one is particularly interesting: For β = −1, a2 = 0 and b3 = −5

2
, one has the

BI action

I =
2

κγ

ˆ

d4x







√

√

√

√-det

[

gµν +
γ

4
gµνR +

9γ2

32
gµν

(

χGB − 1
9

R2

)

]

− (λ0 + 1)
√

−det g







,

(130)
which actually can be recast as

I =
2

κγ

ˆ

d4x
√

−det g







[

1 +
γ

4
R +

9γ2

32

(

χGB − 1
9

R2
)

]2

− (λ0 + 1)







, (131)

or more explicitly

I =
1
κ

ˆ

d4x
√

−det g

{

R − 2Λ0 − γ2

32
R3 +

9γ2

32
RχGB +

γ3

512
R4 − 9γ3

256
R2χGB +

81γ3

512
χ2

GB

}

,

(132)
where we dropped the boundary term. The important point here is that as an O (R4) theory,
this describes massless unitary excitations about its (A)dS vacuum; but, it also describes
massless unitary excitations at order O (Ri) for i ≤ 4, when expanded in small curvature.

VII. CONCLUSION AND FURTHER DISCUSSIONS

Using physical requirements such as the existence of a unique viable maximally symmetric
vacuum with a zero or a non-zero curvature, unitary massless spin-2 excitations about this
vacuum at tree-level, and the reduction to the cosmological Einstein theory for weak field
gravity, we have constructed Born-Infeld gravity actions with the metric being the only
independent variable following the route of [1]. To the best of our knowledge, the theory we
have constructed is the only known theory in four dimensions that is unitary at every order
in the curvature expansion about its (A)dS vacuum.

One interesting observation is that four dimensional Gauss-Bonnet term, being a total
derivative, which has no classical effect, plays an important role in the construction of the
actions: Namely, at the lowest order BI gravity reduces to the Einstein-Gauss-Bonnet theory
and not to its classically equivalent partner the Einstein’s theory. In addition to the above
mentioned physical requirements, we have also employed the notion of minimality which is
essentially constructing determinantal actions which are as simple as possible, and that do
not involve many powers of curvature and derivatives of curvature. This leads to a quadratic
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theory inside the determinant. In the most general form, the set of such theories has three
dimensionless and one dimensionful parameter which is the BI parameter that comes from
the coefficient of the Gauss-Bonnet term. To further restrict the viable BI theories, one
must turn to their phenomenological applications. By construction, the theory matches
Einstein’s gravity for small curvature; and hence, deviations from the results of Einstein’s
theory should be expected at the strong gravity regime.

In this work, we have concentrated in pure gravity and not worried about matter couplings
which can be either done with the usual way of assuming a

´

d4x
√−ggµνTµν type interaction

in the action or in the non-minimal way by inserting matter fields into the determinant. As
an example to the latter case, one can couple Maxwell theory by simply taking Aµν →
Aµν + αFµν , with Fµν being the field strength tensor. Conformally invariant versions of the
actions can also be found following [41, 42].

We shall study cosmological and black hole type solutions in a separate work, but here
with the tools in our hands, we can find some exact solutions of the BI gravity (121). These
solutions are the AdS-wave solutions of the cosmological Einstein’s theory [36–38]. These
solutions not only solve the exact cosmological Einstein’s theory, but also its linearized
version. These solutions remain intact in the BI gravity (121), and the only thing that one
needs to change is the effective cosmological constant which can be found from the vacuum
equation (117). This comes from the fact that the equivalent quadratic curvature action of
a theory determines the linearized field equations which in turn determine the properties
of its AdS-wave solutions [36, 38], and here we have shown that for BI-gravity this action
is the Einstein–Gauss-Bonnet action whose linearized field equations are the same as the
Einstein’s theory. The same fact gives a way to construct the conserved charges of the BI
theory which we now do.

Conserved Charges in the BI Gravity

The conserved charges of a given f
(

Rµν
αβ

)

theory can be written in terms of the conserved
charges of cosmological Einstein’s gravity as was shown in [34]. This follows from the
linearized field equations of the generic f

(

Rµν
αβ

)

theory given in Appendix-D and the charge
construction in [39, 40]. Without going into further details, let us recall the expression in
[34]

Q0
f(ξ̄) =

(

1
κ̃

+
4Λn

n − 2
α +

4Λ
n − 2

β +
4Λ (n − 3) (n − 4)

(n − 1) (n − 2)
γ

)

Q0
Einstein(ξ̄), (133)

where ξ̄ is the background Killing vector which for energy reads ξ̄µ = (−1, 0, 0, 0). Q0
Einstein

is the Abbott-Deser charge for asymptotically (A)dS spacetimes in cosmological Einstein’s
gravity [35]. For the viable BI-gravity theory given in (121), α = 0, β = 0, and n = 4;
hence, the conserved charges of asymptotically (A)dS spacetimes read

Q0
BI(ξ̄) = (1 − λ)

(

1 +
λ

2

)2

Q0
Einstein(ξ̄). (134)
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For example, for asymptotically rotating (A)dS-Schwarzschild black hole7, the energy and
the angular momentum read

E = (1 − λ)

(

1 +
λ

2

)2

m, J = (1 − λ)

(

1 +
λ

2

)2

ma,

where m is the mass parameter and a is the rotation parameter. It is also clear that the
black hole has a positive mass when the graviton has a positive kinetic energy, that is λ < 1.
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Appendix A: Naive BI Gravity

Let us consider the following BI-gravity action:

I = − 2
κγ

ˆ

dnx
[

√

− det (gµν + γGµν + γβgµνR) −
√

− det g
]

, (A1)

Expanding to the O (R2) yields

LO(R2) =
n − 2

2κ

[

R +
γ

n − 2

(

RµνRµν − n2 − 6n + 12
8

R2

)]

− β
n

κ

[

R +
n − 2

4
γβR2

]

. (A2)

For n = 3 and β = 0 one gets the BINMG action which describes a unitary massive spin-2
graviton but for any other dimension there is a massive spin-2 ghost due to RµνRµν term
[43].

Appendix B: Conversions Between CSR Basis and RRR Basis

In this Appendix, we discuss the conversions between the Weyl–traceless-Ricci–Ricci
(CSR) basis and Riemann–Ricci–curvature-scalar (RRR) basis.

The Aµν tensor written in the CSR basis, that is

Aµν =Rµν + βSµν

+ γ
(

a1CµρσλC ρσλ
ν + a2CµρνσRρσ + a3RµρRρ

ν + a4SµρSρ
ν

)

+
γ

4
gµν

(

b1CρσλγCρσλγ + b2RρσRρσ + b3SρσSρσ
)

, (B1)

can be converted to the RRR basis, that is

7 By construction, this solution asymptotically exists in BI gravity since at large distances cosmological

Einstein’s theory is dominant.
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Aµν =
(

1 + β̃
)

Rµν − β̃

4
gµνR + c1gµνR2 + c2RRµν + c3gµνRρσRρσ

+ c4Rσ
µRνσ + c5RµσνρRσρ + c6gµνRρσλγRρσλγ + c7R σρτ

µ Rνσρτ , (B2)

by using Sµν = Rµν − 1
4
gµνR and the definition of the Weyl tensor in four dimensions

Cµανβ = Rµανβ − gµ[νRβ]α + gα[νRβ]µ +
R

3
gµ[νgβ]α, (B3)

in place. Then, the coefficients in (B2) becomes

β̃ =β, c1 =
γ

48
(−8a1 + 8a2 + 3a4 + 4b1 − 3b3) ,

c2 =γ
(

a1 − 2
3

a2 − 1
2

a4

)

, c3 =
γ

4
(2a1 − 2a2 − 2b1 + b2 + b3) ,

c4 =γ (−2a1 + a2 + a3 + a4) , c5 = γ (−2a1 + a2) ,

c6 =
γ

4
b1, c7 = γa1. (B4)

Sometimes the inverse transformation is also needed; therefore, we shall give it here

β =β̃, a1 =
c7

γ
, a2 =

1
γ

(c5 + 2c7) ,

a3 =
1
γ

(

2c2 + c4 +
c5

3
+

2c7

3

)

, a4 =
1
γ

(

−2c2 − 4c5

3
− 2c7

3

)

,

b1 =
4c6

γ
, b2 =

1
γ

(

16c1 + 2c2 + 4c3 +
2c5

3
+

8
3

c6

)

b3 =
1
γ

(

−16c1 − 2c2 +
4c5

3
+

16c6

3
+ 2c7

)

. (B5)

In the RRR basis, the EQCA takes the form

LEQCA = − 2Λ0 +
2
3

(

2 +
l1Λ
γ

)

l1Λ3 +

{

1 − l1Λ2 − 4
9γ

l2
1Λ3

}

R

+
1
γ







(4c1 + c2)

(

1 + γΛ +
l1
3

Λ2

)

+
1
8

(

γ
(

β̃ + 1
)

+ 2l2Λ
)2

+
1
2

(

γ

2
+

l1
3

Λ

)2






R2

+
1
γ

{

(4c3 + c4 + c5)

(

1 + γΛ +
l1
3

Λ2

)

− 1
2

(

γ
(

β̃ + 1
)

+ 2l2Λ
)2
}

R2
µν

+
1
γ

(4c6 + c7)

(

1 + γΛ +
l1
3

Λ2

)

R2
µσνρ, (B6)

where the coefficients read

l1 = 48c1 + 12c2 + 12c3 + 3c4 + 3c5 + 8c6 + 2c7, (B7)

l2 =
1
3

(6c2 + 3c4 + c5 + 2c7) . (B8)
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Appendix C: An Example on EQCA Construction

The unitarity discussions using the EQCA construction involve various Taylor series
expansions of functions depending on tensor quantities which sometimes complicate the
inherent physical meaning. To understand the basic idea of the EQCA and the relation
between various expansions, it may be worth to consider analogue expansions for a function
with a single scalar variable. First, remember that the EQCA of a gravity theory is given
with the second order Taylor series expansion of the Lagrangian in the curvature around
the maximally symmetric background, R̄µν

ρσ , which is either already determined by using the
ELA of the theory or will be determined by using the EQCA of the theory. Then, for a
function f (x), the analogue of EQCA is the following second order Taylor series expansion
around x = x;

fEQCA (x) = f (x̄) + f ′ (x̄) (x − x̄) +
1
2

f ′′ (x̄) (x − x̄)2 , (C1)

which can be recast in the form

fEQCA (x) =f (x̄) − f ′ (x̄) x̄ +
1
2

f ′′ (x̄) x̄2

+ [f ′ (x̄) − f ′′ (x̄) x̄] x +
1
2

f ′′ (x̄) x2. (C2)

Here, note that in the gravitational setting, O (x) term represents the Einstein-Hilbert piece
and its coefficient is the effective Newton’s constant of the theory whose positivity puts
a constraint on the theory. The O (1) term determines the effective “bare” cosmological
constant while the O (x2) term are the quadratic curvature terms.

In addition to this EQCA expansion, we also discussed the small curvature expansion
of a gravitational theory which corresponds to the Taylor series expansion of f (x) around
x = 0 as

f (x) =
∞
∑

n=0

f (n) (0)
n!

xn. (C3)

Note that unless f (n) (0) is zero, each order in (C3) will contribute to EQCA as

(xn)EQCA =

(

1 − 3n

2
+

n2

2

)

x̄n + n2x̄n−1x +
n (n − 1)

2
x̄n−2x2. (C4)

This result implies that to see the contributions to the EQCA of a gravity theory coming
from the O (Ri) terms in the small curvature expansion of the theory, one needs to look at
the Λi−2 terms at the quadratic curvature level, the Λi−1 terms in the effective Newton’s
constant part 1

κ̃
, and Λi terms in the effective bare cosmological part Λ̃0

κ̃
.

Another implication of this result is that once the EQCA analogue of f (x) is found, there
is no need to calculate the EQCA analogue of any finite order truncation of (C3) separately.
One just needs to have O (x̄i), O (x̄i−1), and O (x̄i−2) expansions of O (1), O (x), and O (x2)
terms in (C2), respectively, around x̄ = 0. For example, let us write the O (x3) truncation
of (C3);

fx3 (x) = f (0) + f ′ (0) x +
1
2

f ′′ (0) x2 +
1
6

f ′′′ (0) x3,
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whose EQCA analogue expansion is

fx3−EQCA (x) =f (0) +
1
6

f ′′′ (0) x̄3

+
[

f ′ (0) − 1
2

f ′′′ (0) x̄2
]

x

+
1
2

[f ′′ (0) + f ′′′ (0) x̄] x2, (C5)

Up to O (x̄3) expansion of the O (1) term in (C2), that is f (x̄)−f ′ (x̄) x̄+ 1
2
f ′′ (x̄) x̄2, around

x = 0 gives the first line of (C5). Then, up to O (x̄2) expansion of the O (x) term in (C2),
that is f ′ (x̄) − f ′′ (x̄) x̄, around x = 0 gives the coefficient of x in (C5). Finally, up to O (x̄)
expansion of the O (x2) term in (C2), that is 1

2
f ′′ (x̄), around x = 0 gives the coefficient of

x2 in (C5).
The same approach can be used in the gravitational setting. For example, the EQCA of

the BI-theory defined by (121) can be obtained by using (85) as

κLEQCA = −2
λ0

γ
+

λ3

γ

(

1 +
3λ

8

)

+ R (1 − λ)

(

1 +
λ

2

)2

+
9
8

γ

(

1 +
λ

2

)2

χGB. (C6)

Then, the EQCA of the O (R3) expansion of the BI-theory defined by (121) can be obtained
by taking up to λ3

γ
order in the cosmological constant term, up to λ2 order in the effective

Newton’s constant term, and up to λ order in the quadratic curvature parameters in (C6)
as

κLEQCA−O(R3) = −2
λ0

γ
+

λ3

γ
+ R

(

1 − 3
4

λ2
)

+
9
8

γ (1 + λ) χGB. (C7)

which can also be obtained by using the EQCA result for κLO(R3) given in (122). In addition,
the vacuum equation for O (R3) truncation can be calculated from (C7) as

λ =
λ0 − λ3

2
(

1 − 3
4
λ2
) ⇒ λ − λ0 − 1

4
λ3 = 0, (C8)

which can again be obtained from the vacuum equation of the whole theory which is

λ − λ0 − λ3

16
(4 + λ) = 0, (C9)

by eliminating the highest power coming from the O (R4) truncation.

Appendix D: Linearization of the Field Equations of f
(

R
µν
αβ

)

In this Appendix, we carry out the linearization of the field equations of a f
(

Rµν
αβ

)

theory, that is a gravity theory whose Lagrangian is constructed from the contractions of
the Riemann tensor but not its derivatives, and show that this linearized field equations are
the same as those of a quadratic curvature gravity theory with redefined parameters. First,
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note that the field equations of a f
(

Rµν
αβ

)

theory is

1
2

(

gνρ∇λ∇σ − gνσ∇λ∇ρ

) ∂f

∂Rµλ
ρσ

− 1
2

(

gµρ∇λ∇σ − gµσ∇λ∇ρ

) ∂f

∂Rλν
ρσ

−1
2

(

∂f

∂Rµλ
ρσ

R λ
ρσ ν − ∂f

∂Rλν
ρσ

R λ
ρσ µ

)

− 1
2

gµνf
(

Rµν
αβ

)

= 0. (D1)

In Sec. III, we showed that the (A)dS spacetime solutions of this theory satisfy

− 2ζR̄µν + gµνf
(

R̄αβ
ρσ

)

= 0, (D2)

where ζ is defined in (26) as
[

∂f
∂Rµν

ρσ

]

R̄µλ
ρσ

Rµν
ρσ ≡ ζR. Let us linearize (D1) in the metric

perturbation hµν ≡ gµν − ḡµν where ḡµν is the (A)dS background solving (D2). Starting with
the last term in (D1), which becomes

[

gµνf
(

Rµν
αβ

)]

L
= hµνf

(

R̄µν
αβ

)

+ ḡµν

[

∂f

∂Rαβ
ρσ

]

R̄αβ
ρσ

(

Rαβ
ρσ

)

L
, (D3)

and using the equation defining ζ , one finds
[

∂f

∂Rµλ
ρσ

]

R̄µλ
ρσ

= ζδ[ρ
µ δσ]

ν , (D4)

as discussed in Sec. III, one gets
[

gµνf
(

Rµν
αβ

)]

L
= hµνf

(

R̄αβ
ρσ

)

+ ḡµνζRL. (D5)

Moving to the first term in the second line of (D1): One has the linearization
(

∂f

∂Rµλ
ρσ

R λ
ρσ ν

)

L

=

[

∂2f

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µλ
ρσ

(

Rηθ
ατ

)

L
R̄ λ

ρσ ν +

[

∂f

∂Rµλ
ρσ

]

R̄µλ
ρσ

(

R λ
ρσ ν

)

L
. (D6)

Here, remember that
[

∂2f

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µλ
ρσ

has the following form as we discussed in Sec. III

[

∂2f

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µν
ρσ

= 2αδ[α
η δ

τ ]
θ δ[ρ

µ δ
σ]
λ + β

(

δα
[ηδ

[ρ
θ]δ

|τ |
[µ δ

σ]
λ] − δτ

[ηδ
[ρ
θ]δ

|α|
[µ δ

σ]
λ]

)

+ 12γδ[α
η δτ

θ δρ
µδ

σ]
λ . (D7)

Using this result together with (D4) and R̄µλ
ρσ = 2Λ

(n−1)(n−2)

(

δµ
ρ δλ

σ − δµ
σδλ

ρ

)

, one has

(

∂f

∂Rµλ
ρσ

R λ
ρσ ν

)

L

= −
(

α
4Λ

(n − 2)
+ β

nΛ
(n − 1) (n − 2)

)

RLḡµν

+

(

γ
8Λ (n − 3)

(n − 1) (n − 2)
− β

2Λ
n − 1

)(

RL
µν − 1

2
ḡµνRL − 2Λ

n − 2
hµν

)

− ζRL
µν .
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Now, let us linearize the first term in (D1), gνρ∇λ∇σ
∂f

∂Rµλ
ρσ

, and to do this, first note that the

linearization of the metric compatibility, ∇µgνρ = 0, yields

∇̄µhνρ =
(

Γσ
µν

)

L
ḡσρ +

(

Γσ
µρ

)

L
ḡνσ. (D8)

Then, for a two tensor Aµν with the background value Āµν = āḡµν , the linearization of
∇µAνρ yields

(∇µAνρ)L = ∇̄µAL
νρ − ā

[(

Γσ
µν

)

L
ḡσρ +

(

Γσ
µρ

)

L
ḡνσ

]

, (D9)

and with (D8), one has
(∇µAνρ)L = ∇̄µAL

νρ − ā∇̄µhνρ. (D10)

Next, let us consider the linearization of (∇σ∇µAνρ)L;

(∇σ∇µAνρ)L =∇̄σ∇̄µAL
νρ −

(

Γλ
σµ

)

L
∇̄λĀνρ −

(

Γλ
σν

)

L
∇̄µĀλρ −

(

Γλ
σρ

)

L
∇̄µĀνλ

− ∇̄σ

((

Γλ
µν

)

L
Āλρ

)

− ∇̄σ

((

Γλ
µρ

)

L
Āνλ

)

, (D11)

which boils down to
(∇σ∇µAνρ)L = ∇̄σ

(

∇̄µAL
νρ − ā∇̄µhνρ

)

. (D12)

Finally, we have

(

gνρ∇λ∇σ
∂f

∂Rµλ
ρσ

)

L

= ḡνρḡλβ∇̄β∇̄σ

(

∂f

∂Rµλ
ρσ

)

L

+ ḡνρḡλβ∇̄β



(Γα
σ)L

(

∂f

∂Rµλ
ρσ

)

R̄µλ
ρσ



 , (D13)

where the second term represents

(Γα
σ)L

(

∂f

∂Rµλ
ρσ

)

R̄µλ
ρσ

≡ (Γρ
σα)L

(

∂f

∂Rµλ
ασ

)

R̄µλ
ρσ

+ (Γσ
σα)L

(

∂f

∂Rµλ
ρα

)

R̄µλ
ρσ

−
(

Γα
σµ

)

L

(

∂f

∂Rαλ
ρσ

)

R̄µλ
ρσ

− (Γα
σλ)L

(

∂f

∂Rµα
ρσ

)

R̄µλ
ρσ

, (D14)

and using (D4), one has

(Γα
σ)L

(

∂f

∂Rµλ
ρσ

)

R̄µλ
ρσ

= 0. (D15)

On the other hand,
(

∂f

∂Rµλ
ρσ

)

L
takes the following form by using (D7);

(

∂f

∂Rµλ
ρσ

)

L

=

[

∂2f

∂Rηθ
ατ ∂Rµλ

ρσ

]

R̄µλ
ρσ

(

Rηθ
ατ

)

L

=2αδ[ρ
µ δ

σ]
λ RL + 2βδ

[ρ
θ δ

|τ |
[µ δ

σ]
λ]

(

Rθ
τ

)

L

+ 2γδ[ρ
µ δ

σ]
λ RL − 8γδ

[ρ
θ δ

|τ |
[µ δ

σ]
λ]

(

Rθ
τ

)

L
+ 2γδ[ρ

η δ
σ]
θ

(

Rηθ
µλ

)

L
, (D16)
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Using these results, one arrives at
(

gνρ∇λ∇σ
∂f

∂Rµλ
ρσ

)

L

=α
(

ḡµν∇̄λ∇̄λRL − ∇̄ν∇̄µRL

)

+
β

2



ḡνρ∇̄λ∇̄λ

(

Rρ
µ

)

L
− ḡνρ∇̄λ∇̄µ (Rρ

λ)L

− ∇̄ν∇̄σ

(

Rσ
µ

)

L
+ ḡµν∇̄λ∇̄σ (Rσ

λ)L





+ γ



ḡµν∇̄λ∇̄λRL − 2ḡνρ∇̄σ∇̄σ

(

Rρ
µ

)

L

+ 2ḡνρ∇̄λ∇̄µ (Rρ
λ)L + 2ḡνρ∇̄λ∇̄σ

(

Rρσ
µλ

)

L





− γ
[

∇̄ν∇̄µRL − 2∇̄ν∇̄σ

(

Rσ
µ

)

L
+ 2ḡµν∇̄λ∇̄σ (Rσ

λ)L

]

. (D17)

Let us recap the definitions of the linearized Ricci tensor
(

Rρ
µ

)

L
, linearized Ricci scalar;

(

Rρ
µ

)

L
= (gραRµα)L = ḡραRL

µα − 2Λ
n − 2

hρ
µ, RL =

(

Rρ
ρ

)

L
, (D18)

and the linearized Einstein tensor;

GL
µν ≡ RL

µν − 1
2

ḡµνRL − 2Λ
n − 2

hµν , (D19)

which satisfies the linearized Bianchi identity ∇̄µGL
µν = 0. With these two background tensors

and RL, one has
(

gνρ∇λ∇σ
∂f

∂Rµλ
ρσ

)

L

=α
(

ḡµν�̄RL − ∇̄µ∇̄νRL

)

+
β

2

[

�̄GL
µν − ḡνρ∇̄λ∇̄µ (Rρ

λ)L − 1
2

∇̄ν∇̄µRL + ḡµν�̄RL

]

+ γ

[

−2�̄RL
µν +

4Λ
n − 2

�̄hµν + 2ḡνρ∇̄λ∇̄µ (Rρ
λ)L + 2ḡνρ∇̄λ∇̄σ

(

Rρσ
µλ

)

L

]

,

(D20)

where ḡνρ∇̄λ∇̄µ (Rρ
λ)L can be calculated as

ḡνρ∇̄λ∇̄µ (Rρ
λ)L =

1
2

∇̄µ∇̄νRL +
2nΛ

(n − 1) (n − 2)
GL

µν +
Λ

n − 1
ḡµνRL. (D21)

Finally, the last term in (D20) requires linearized form of

∇µ∇νRνβ
µα = �Rβ

α − ∇µ∇αRβ
µ, (D22)

which can be obtained from the once-contracted Bianchi identity

∇νRµανβ = ∇µRαβ − ∇αRµβ , (D23)
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and the linearization yields

∇̄µ∇̄ν

(

Rνβ
µα

)

L
= �̄

(

Rβ
α

)

L
− ∇̄µ∇̄α

(

Rβ
µ

)

L
. (D24)

Then, putting the pieces together, one arrives at the desired expression
(

gνρ∇λ∇σ
∂f

∂Rµλ
ρσ

)

L

=
(2α + β)

2

(

ḡµν�̄RL − ∇̄µ∇̄νRL

)

+
β

2
�̄GL

µν

− β

2

(

2nΛ
(n − 1) (n − 2)

GL
µν +

Λ
n − 1

ḡµνRL

)

. (D25)

Now, let us start collecting terms in the linearization of the field equations (D1). Note
that the linearization of the other three terms in the first line of (D1) yields the same

contribution as
(

gνρ∇λ∇σ
∂f

∂Rµλ
ρσ

)

L
. In addition, the linearization of the first two terms in the

second line of (D1) gives the same contribution. As a result, the linearized field equations
become

[

ζ − β
2Λ

(n − 1) (n − 2)
− γ

4Λ (n − 3)
(n − 1) (n − 2)

]

GL
µν

+ (2α + β)
(

ḡµν�̄RL − ∇̄µ∇̄νRL

)

+ β�̄GL
µν (D26)

+

(

α
4Λ

(n − 2)
+ β

2Λ
(n − 1) (n − 2)

)

RLḡµν

−hµν

[

1
2

f
(

R̄αβ
ρσ

)

− 2Λ
n − 2

]

= 0. (D27)

The last line vanishes because of the background equation (D2). The final equation can be
recast in the form of the linearized field equations coming from the quadratic gravity theory

L =
1
κ̃

(

R − 2Λ̃0

)

+ αR2 + βRλ
σRσ

λ + γχGB, (D28)

given in [40] as
[

1
κ̃

+
4Λnα

n − 2
+

4Λβ

n − 1
+

4Λγ(n − 4)(n − 3)
(n − 2)(n − 1)

]

GL
µν

+(2α + β)(ḡµν✷̄ − ∇̄µ∇̄ν +
2Λ

n − 2
gµν)RL + β(✷̄GL

µν − 2Λ
n − 1

ḡµνRL) = 0. (D29)

To match (D27) and (D29), one must have

1
κ̃

= 2ζ − 4Λ
n − 2

[

(nα + β) + γ
(n − 2) (n − 3)

(n − 1)

]

. (D30)

In addition, we have to require that both theories have the same vacua which determines
Λ̃0 as

Λ̃0

κ̃
= −f

(

R̄αβ
ρσ

)

+
2nΛ
n − 2

ζ − 2Λ2n

(n − 2)2

[

(nα + β) + γ
(n − 2) (n − 3)

(n − 1)

]

, (D31)
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which follows from the vacuum field equation of (D28)

Λ − Λ̃0

2κ̃
+ Λ2

[

(nα + β)
(n − 4)

(n − 2)2 + γ
(n − 3) (n − 4)
(n − 1) (n − 2)

]

= 0, (D32)

and (D2).

Appendix E: Terms in ELA and EQCA

In order to calculate ELA and EQCA for the BI gravity theory defined by the Lagrangian
density

L
(

Cµν
αβ , Rµ

ν , Rµ
ν

)

=
2
γ

[

√

det (δρ
σ + γAρ

σ) − (λ0 + 1)
]

, (E1)

one needs to calculate the background values of L, and its first and second order derivatives.
To find the background value of L, one needs the background value of Aρ

σ which can be
found as

γĀρ
σ ≡ δρ

σā = δρ
σλ [1 + λ (a3 + b2)] . (E2)

In calculating the first order derivatives of (E1), we use

∂
(

√

det (δµ
ν + γAµ

ν )
)

=
γ

2

√

det (δµ
ν + γAµ

ν )Bσ
ρ ∂Aρ

σ, (E3)

where Bσ
ρ is defined as Bα

ρ

(

δρ
β + γAρ

β

)

= δα
β with the background value B̄σ

ρ = (1 + ā)−1 δσ
ρ .

Thus, we just need the derivatives of Aρ
σ which can be found as

∂Aρ
σ

∂Cµν
αβ

=γa1

(

Cαβ
σν δρ

µ + Cρβ
µν δα

σ

)

+
γb1

2
Cαβ

µν δρ
σ + γa2R

β
ν δα

σ δρ
µ, (E4)

∂Aρ
σ

∂Sµ
ν

=βδν
σδρ

µ + γa4

(

Sν
σδρ

µ + Sρ
µδν

σ

)

+
γb3

2
Sν

µδρ
σ, (E5)

∂Aρ
σ

∂Rµ
ν

=δν
σδρ

µ + γa2C
ρν
σµ + γa3

(

Rν
σδρ

µ + Rρ
µδν

σ

)

+
γb2

2
Rν

µδρ
σ, (E6)

and their background values are
[

∂Aρ
σ

∂Cµν
αβ

]

R̄µν
ρσ

= λa2δ
β
ν δα

σ δρ
µ, (E7)

[

∂Aρ
σ

∂Sµ
ν

]

R̄µν
ρσ

= βδν
σδρ

µ, (E8)

[

∂Aρ
σ

∂Rµ
ν

]

R̄µν
ρσ

= δν
σδρ

µ + 2λ

(

a3δ
ρ
µδν

σ +
b2

4
δν

µδρ
σ

)

. (E9)

Using these results, one can calculate the linear order terms in ELA and EQCA. However,
prior to any calculation, it is clear that the Weyl term,

[

∂L
∂Cµν

αβ

]

R̄µν
ρσ

Cµν
αβ =

√

det
(

δρ
ν + γĀρ

ν

)

B̄σ
ρ

[

∂Aρ
σ

∂Cµν
αβ

]

R̄µν
ρσ

Cµν
αβ, (E10)
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and the traceless-Ricci term
[

∂L
∂Sµ

ν

]

R̄µν
ρσ

Sµ
ν =

√

det
(

δρ
ν + γĀρ

ν

)

B̄σ
ρ

[

∂Aρ
σ

∂Sµ
ν

]

R̄µν
ρσ

Sµ
ν , (E11)

yield zero as they involve traces of Cµν
αβ and Sµ

ν . The unique contribution comes from the
Ricci term

[

∂L
∂Rµ

ν

]

R̄µν
ρσ

(

Rµ
ν − R̄µ

ν

)

=
√

det
(

δρ
ν + γĀρ

ν

)

B̄σ
ρ

[

∂Aρ
σ

∂Rµ
ν

]

R̄µν
ρσ

(

Rµ
ν − R̄µ

ν

)

, (E12)

which becomes
[

∂L
∂Rµ

ν

]

R̄µν
ρσ

(

Rµ
ν − R̄µ

ν

)

= (γR − 4λ)
1
2

(1 + ā) [1 + 2λ (a3 + b2)] . (E13)

Adding the background value of L,

L =
2
γ

[

(1 + ā)2 − (λ0 + 1)
]

, (E14)

to this result yields the ELA given in (57).
Moving to the second order derivatives of L which can be calculated by using

∂2
(

√

det (δρ
ν + γAρ

ν)
)

=
γ

2

√

det (δρ
ν + γAρ

ν)
[

Bλ
γ ∂2Aγ

λ − γBλ
θ Bτ

γ

(

∂Aθ
τ

)

∂Aγ
λ +

γ

2

(

Bλ
γ ∂Aγ

λ

)2
]

,

(E15)
where the second order derivatives of Aρ

σ are needed. First, the second derivative of Aρ
σ with

respect to the Weyl tensor is




∂2Aρ
σ

∂Cµν
αβ∂Cηθ

λτ





R̄µν
ρσ

= γa1δα
σ δβ

θ δλ
µδτ

ν δρ
η + γδα

η δβ
θ δτ

ν

(

a1δλ
σδρ

µ +
b1

2
δλ

µδρ
σ

)

, (E16)

where the result does not have the symmetries of the Weyl tensor on the left-hand side.
However, note that the result becomes symmetric accordingly when it is multiplied with
Cµν

αβCηθ
λτ in finding the final contribution to the expression





∂2Aρ
σ

∂Cµν
αβ∂Cηθ

λτ





R̄µν
ρσ

Cµν
αβ∂Cηθ

λτ . (E17)

Then, the other derivatives can be calculated as
[

∂2Aρ
σ

∂Cµν
αβ∂Rη

θ

]

R̄µν
ρσ

= γa2δβ
η δθ

νδα
σ δρ

µ,

[

∂2Aρ
σ

∂Sµ
ν ∂Sα

β

]

R̄µν
ρσ

= γa4

(

δν
σδβ

µδρ
α + δν

αδβ
σδρ

µ

)

+
γb3

2
δν

αδβ
µδρ

σ,

(E18)
[

∂2Aρ
σ

∂Rµ
ν ∂Rα

β

]

R̄µν
ρσ

= γa3

(

δν
σδβ

µδρ
α + δν

αδβ
σδρ

µ

)

+
γb2

2
δν

αδβ
µδρ

σ. (E19)
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It is clear that the remaining ones are just zero

∂2Aρ
σ

∂Cµν
αβ∂Sη

θ

= 0,
∂2Aρ

σ

∂Sµ
ν ∂Rα

β

= 0. (E20)

Using these results in (E15) let us compute the second order contributions to the EQCA
term by term. First, the Weyl square term takes the form

1
2





∂2L
∂Cµν

αβCηθ
λτ





R̄µν
ρσ

Cµν
αβCηθ

λτ =
1
2

√

det
(

δµ
ν + γĀµ

ν

)

×






B̄σ
ρ





∂2Aρ
σ

∂Cµν
αβ∂Cηθ

λτ





R̄µν
ρσ

− γB̄σ
ζ

[

∂Aζ
ǫ

∂Cηθ
λτ

]

R̄µν
ρσ

B̄ǫ
ρ

[

∂Aρ
σ

∂Cµν
αβ

]

R̄µν
ρσ

+
γ

2
B̄σ

ρ

[

∂Aρ
σ

∂Cµν
αβ

]

R̄µν
ρσ

B̄ǫ
ζ

[

∂Aζ
ǫ

∂Cηθ
λτ

]

R̄µν
ρσ







Cµν
αβCηθ

λτ , (E21)

which then yields

1
2





∂2L
∂Cµν

αβCηθ
λτ





R̄µν
ρσ

Cµν
αβCηθ

λτ =
1
2

γ2 (1 + ā) (a1 + b1) Cµν
ρσ Cρσ

µν . (E22)

Then, the term involving the square of the traceless-Ricci tensor has the form

1
2

∂2L
∂Sµ

ν ∂Sα
β

Sµ
ν Sα

β =
1
2

√

det
(

δµ
ν + γĀµ

ν

)

×






B̄σ
ρ

[

∂2Aρ
σ

∂Sµ
ν ∂Sα

β

]

R̄µν
ρσ

− γB̄σ
ζ

[

∂Aζ
ǫ

∂Sα
β

]

R̄µν
ρσ

B̄ǫ
ρ

[

∂Aρ
σ

∂Sµ
ν

]

R̄µν
ρσ

+
γ

2
B̄σ

ρ

[

∂Aρ
σ

∂Sµ
ν

]

R̄µν
ρσ

B̄ǫ
ζ

[

∂Aζ
ǫ

∂Sα
β

]

R̄µν
ρσ







Sµ
ν Sα

β , (E23)

yielding
1
2

∂2L
∂Sµ

ν ∂Sα
β

Sµ
ν Sα

β = γ2
[

−1
4

β2 +
1
2

(1 + ā) (a4 + b3)
]

Sν
µSµ

ν . (E24)

Moving to the Ricci square term which has the form

1
2

∂2L
∂Rµ

ν ∂Rα
β

(

Rµ
ν − R̄µ

ν

) (

Rα
β − R̄α

β

)

=
1
2

√

det
(

δµ
ν + γĀµ

ν

)

×






B̄σ
ρ

[

∂2Aρ
σ

∂Rµ
ν ∂Rα

β

]

R̄µν
ρσ

− γB̄σ
ζ

[

∂Aζ
ǫ

∂Rα
β

]

R̄µν
ρσ

B̄ǫ
ρ

[

∂Aρ
σ

∂Rµ
ν

]

R̄µν
ρσ

+
γ

2
B̄σ

ρ

[

∂Aρ
σ

∂Rµ
ν

]

R̄µν
ρσ

B̄ǫ
ζ

[

∂Aζ
ǫ

∂Rα
β

]

R̄µν
ρσ







×
(

Rµ
ν − R̄µ

ν

) (

Rα
β − R̄α

β

)

, (E25)
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becomes

1
2

∂2L
∂Rµ

ν ∂Rα
β

(

Rµ
ν − R̄µ

ν

) (

Rα
β − R̄α

β

)

= −
(

γR − 2λ − γ2

2λ
Rν

µRµ
ν +

γ2

2λ
Sν

µSµ
ν

)

× λ

2

[

2 (1 + ā) (a3 + b2) + (2λ (a3 + b2) + 1)2
]

−
γ2
(

(2a3λ + 1)2 − 2 (1 + ā) (a3 + b2)
)

4
Sν

µSµ
ν , (E26)

after using
R2 = 4

(

Rν
µRµ

ν − Sν
µSµ

ν

)

. (E27)

Then, the first two cross terms yield zero as

∂2L
∂Cµν

αβ∂Sη
θ

Cµν
αβSη

θ =
√

det
(

δµ
ν + γĀµ

ν

)

×






B̄σ
ρ

[

∂2Aρ
σ

∂Cµν
αβ∂Sη

θ

]

R̄µν
ρσ

− γB̄σ
ζ

[

∂Aζ
ǫ

∂Sη
θ

]

R̄µν
ρσ

B̄ǫ
ρ

[

∂Aρ
σ

∂Cµν
αβ

]

R̄µν
ρσ

+
γ

2
B̄σ

ρ

[

∂Aρ
σ

∂Cµν
αβ

]

R̄µν
ρσ

B̄ǫ
ζ

[

∂Aζ
ǫ

∂Sη
θ

]

R̄µν
ρσ







Cµν
αβSη

θ , (E28)

∂2L
∂Cµν

αβ∂Sη
θ

Cµν
αβSη

θ = 0, (E29)

and

∂2L
∂Cµν

αβ∂Rη
θ

Cµν
αβ

(

Rη
θ − R̄η

θ

)

=
√

det
(

δµ
ν + γĀµ

ν

)

×






B̄σ
ρ

[

∂2Aρ
σ

∂Cµν
αβ∂Rη

θ

]

R̄µν
ρσ

− γB̄σ
ζ

[

∂Aζ
ǫ

∂Rη
θ

]

R̄µν
ρσ

B̄ǫ
ρ

[

∂Aρ
σ

∂Cµν
αβ

]

R̄µν
ρσ

+
γ

2
B̄σ

ρ

[

∂Aρ
σ

∂Cµν
αβ

]

R̄µν
ρσ

B̄ǫ
ζ

[

∂Aζ
ǫ

∂Rη
θ

]

R̄µν
ρσ







Cµν
αβ

(

Rη
θ − R̄η

θ

)

, (E30)

∂2L
∂Cµν

αβ∂Rη
θ

Cµν
αβ

(

Rη
θ − R̄η

θ

)

= 0. (E31)

Lastly, the nonzero cross term is

∂2L
∂Sµ

ν ∂Rα
β

Sµ
ν

(

Rα
β − R̄α

β

)

=
√

det
(

δµ
ν + γĀµ

ν

)

×






B̄σ
ρ

[

∂2Aρ
σ

∂Sµ
ν ∂Rα

β

]

R̄µν
ρσ

− γB̄σ
ζ

[

∂Aζ
ǫ

∂Rα
β

]

R̄µν
ρσ

B̄ǫ
ρ

[

∂Aρ
σ

∂Sµ
ν

]

R̄µν
ρσ

+
γ

2
B̄σ

ρ

[

∂Aρ
σ

∂Sµ
ν

]

R̄µν
ρσ

B̄ǫ
ζ

[

∂Aζ
ǫ

∂Rα
β

]

R̄µν
ρσ







Sµ
ν

(

Rα
β − R̄α

β

)

, (E32)
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∂2L
∂Sµ

ν ∂Rα
β

Sµ
ν

(

Rα
β − R̄α

β

)

= −1
2

γ2β (1 + 2λa3) Sν
µSµ

ν , (E33)

after using
Rν

µSµ
ν = Sν

µSµ
ν . (E34)

Adding all these second order contributions to the ELA yield the EQCA given in (85).

Appendix F: Field Equations

In this part we will derive the field equations by minimizing the action

I =
2

κγ

ˆ

d4x
[

√

−det (gµν + γAµν) − (λ0 + 1)
√

−detg
]

, (F1)

where we shall work in the Riemann–Ricci–curvature-scalar curvature basis.

Aµν = (β + 1) Rµν − β

4
gµνR + c1gµνR2 + c2RRµν + c3gµνR2

σρ

+ c4R
σ

µRνσ + c5RµσνρRσρ + c6gµνR2
σραβ + c7R

σρτ
µ Rνσρτ . (F2)

One can eliminate c6 or c7 one in favor of the other but we will keep it this way.
The variation of the action is

δI =
2

κγ

ˆ

d4x
√

−detg

{

(

−1
2

gαβδgαβ
)

[

√

det
(

δν
µ + γAν

µ

)

− (λ0 + 1)

]

+

[

δ

√

det
(

δν
µ + γAν

µ

)

]}

. (F3)

The first term is already in the desired form. On the other hand, the second term can be
analyzed by using (42), that is

δ

√

det
(

δν
µ + γAν

µ

)

=
γ

2

√

det
(

δν
µ + γAν

µ

)

Bα
β δAβ

α, (F4)

where B ≡ (δ + γA)−1. For notational convenience, let us define Eα
β ≡ γ

2

√

det
(

δν
µ + γAν

µ

)

Bα
β .

Then, after considering the variations of the curvature terms in δAβ
α, a lengthy computation

yields the field equations as
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−1
2

gαβ

[

√

det
(

δν
µ + γAν

µ

)

− (λ0 + 1)

]

+ (β + 1)
(

Eµ
β Rµα − ∇µ∇βEµ

α +
1
2
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1
2
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4
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µ

)
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(
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ν Rν

µ

)
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1
2
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1
2

∇µ∇λ

(

EµλR
)
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]

+c3

(

−2∇σ∇β (ERσ
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β

)

+c4
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β + Eµ
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ν Rν

α)

+� (EβνRν
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1
2

∇µ∇σ (Eµ
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1
2

∇σ∇ν

(

EµνRσ
µ

)

gαβ

]
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[
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β R ρ

µσα Rσ
ρ + Eµ

ν R ν
µσ βRσ
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µα Rβρ

−∇σ∇λ

(

Eλ
αRσ

β

)

+
1
2

∇λ∇σ

(

EλσRαβ

)

+
1
2

∇σ∇λ

(

EαβRλσ
)

−1
2

∇γ∇β

(

Eµ
ν R γν

µ α

)

− 1
2

∇ρ∇β

(

Eµ
ν R νρ
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)

+
1
2
�

(

Eµ
ν R ν

µα β

)

+
1
2

∇ρ∇γ

(

Eµ
ν R γνρ

µ

)

gαβ
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+c6

[

−ERαρτγR ρτγ
β + ER ρπ

σβ Rσ
αρπ + ER τ π

σ α Rσ
τβπ + ER γπ

σ αRσ
γπβ

+∇λ∇τ

(

ERλ τ
α β

)

+ ∇ρ∇γ

(

ER ρ γ
β α

)

− ∇π∇λ

(

ER πλ
β α

)
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(

ERλ π
α β
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+c7

[

−EανRβσρτ Rνσρτ + Eµ
ν Rµβρτ Rν ρτ

α + Eµ
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ν RµσραRνσρ
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(
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αR λ π
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(

Eµ
β R λπ

µα

)

− 2∇λ∇π

(

EλµR π
µαβ

)]

= 0,

(F5)

where E = gµνEµν .
For the sake of comparison with the equivalent linear action technique let us find the

maximally symmetric vacuum using the field equations. Note that Ēα
β = ēδα

β with ē =
γ
2

(1 + ā). In the calculations below, all the tensor quantities are evaluated at the their
background values.

c7 contribution:

−EανRβσρτ Rνσρτ + Eµ
ν Rµβρτ Rν ρτ

α + Eµ
ν Rµσατ Rνσ τ

β + Eµ
ν RµσραRνσρ

β =
4Λ2

3
ēḡαβ . (F6)

c6 contribution:

−ERα
ρτγRβρτγ + ER ρπ

σβ Rσ
αρπ + ER τ π

σ α Rσ
τβπ + ER γπ

σ αRσ
γπβ =

16Λ2

3
ēḡαβ. (F7)

c5 contribution:

−EανR νρ
βσ Rσ

ρ + Eµ
β R ρ

µσα Rσ
ρ + Eµ

ν R ν
µσ βRσ

α + Eµ
ν R νρ

µα Rβρ =2Λ2ēḡαβ. (F8)

c4 contribution:
(

Eµ
ν RαµRν

β + Eµ
αRσ

µRβσ

)

= 2ēRσβRσ
α = 2Λ2ēḡαβ . (F9)
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c3 contribution:
8ēRαρRρ

β = 8Λ2ēḡαβ . (F10)

c2 contribution:
Eµ

ν Rν
µRαβ + Eµ

β RRαµ = 2ēRRαβ = 8Λ2ēḡαβ. (F11)

c1 contribution:
2ERRαβ = 32Λ2ēḡαβ. (F12)

Using the conversion relations between the bases (B4) and

γĀρ
σ ≡ δρ

σā = δρ
σλ [1 + λ (a3 + b2)] , (F13)

and after defining c ≡ a3 + b2,

ē =
γ

2

(

1 + λ + cλ2
)

, (F14)

one arrives at

c2λ4 + cλ3 − λ + λ0 = 0, (F15)

which is the same as the one found with ELA. Here ā is defining in (58).
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