
A THOROUGH ANALYSIS OF UNSUPERVISED DEPTH AND EGO-MOTION
ESTIMATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ALP EREN SARI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

AUGUST 2020





Approval of the thesis:

A THOROUGH ANALYSIS OF UNSUPERVISED DEPTH AND
EGO-MOTION ESTIMATION

submitted by ALP EREN SARI in partial fulfillment of the requirements for the de-
gree of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
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ABSTRACT

A THOROUGH ANALYSIS OF UNSUPERVISED DEPTH AND
EGO-MOTION ESTIMATION

SARI, Alp Eren

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Aydın Alatan

Co-Supervisor: Assoc. Prof. Dr. Sinan Kalkan

August 2020, 77 pages

Recent years have shown unprecedented success in depth estimation by jointly solv-

ing unsupervised depth estimation and pose estimation. In this study, we perform

a thorough analysis for such an approach. Initially, pose estimation performances of

classical techniques, such as COLMAP [1], are compared against recent unsupervised

learning-based techniques. Simulation results indicate the superiority of Bundle Ad-

justment step in classical techniques. Next, the effect of the number of input frames

to the pose estimator network is investigated in detail. The experiments performed at

this step revealed that the state-of-the-art can be improved by providing extra frames

to the pose estimator network. Finally, the semantic labels of objects in the scene

are utilized individually during pose and depth estimation stages. For this purpose,

pre-trained semantic segmentation networks are utilized. The effect of computing

losses from different regions of the scene and averaging different pose estimations

with learnable weights are investigated. The poses and losses corresponding to differ-

ent semantic classes are summed with learnable weights yielding comparable results

against state-of-the-art methods.
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ÖZ

GÜDÜMSÜZ DERİNLİK VE HAREKET KESTİRMİ ÜZERİNE DETAYLI
BİR ANALİZ

SARI, Alp Eren

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. A. Aydın Alatan

Ortak Tez Yöneticisi: Doç. Dr. Sinan Kalkan

Ağustos 2020 , 77 sayfa

Derinlik kestirimi konusunda güdümsüz derinlik ve hareket kestirimi yöntemlerinin

eş zamanlı eğitimi ile geçmiş yıllarda eşsiz bir başarı sağlanmıştır. Bu çalışmada ise

böyle bir yaklaşımın detaylı bir analizi yapılmıştır. Öncelikle, COLMAP [1] gibi kla-

sik yöntemler ile yeni güdümsüz öğrenme tabanlı yaklaşımların hareket kestirimi per-

formansları karşılaştırılmıştır. Simülasyon sonuçları Demet Düzeltimi tabanlı yön-

temlerin üstünlüğüne işaret etmektedir. Sonra, hareket kestirimi yapay sinir ağına

girdi olarak verilen kare sayısının etkileri detaylıca incelenmiştir. Son teknoloji yak-

laşımların fazladan kare sağlanarak iyileştirilebileceği bu aşamadaki deneyler ile gös-

terilmiştir. Son olarak, bir sahnedeki farklı semantik nesnelerden hareket ve derinlik

kestirmi sırasında ayrı ayrı yararlanılmıştır. Bu amaçla ise önceden eğitilmiş bölüt-

leme algoritmaları kullanılmıştır. Bir sahnenin farklı semantik sınıflarına ait farklı

hareket kestirimlerinin öğrenilebilen katsayılar ile doğrusal kombinasyonunu alma-

nın etkileri araştırılmıştır. Farklı semantik sınıflara ait olan hareket ve maliyetlerin

öğrenilebilen katsayılar ile doğrusal kombinasyonunun alınması ile son teknoloji ile
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karşılaştırılabilir sonuçlar elde edilmiştir.

Anahtar Kelimeler: denetimsiz öğrenme, derinlik kestirimi, poz kestirimi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

One of the fundamental capabilities of humans is the 3D perception of the environ-

ment in which they reside. This situation has been vital for our ancestors to hunt,

commute, and eliminate the potential dangers in the wild. Computer vision research

on 3D perception has been ongoing for decades for this reason. Classical methods

such as Structure from Motion (SfM) method Bundler [11], OpenMVG [12], and

COLMAP [1], visual odometry methods Direct Sparse Odometry [13], D3VO [14],

simultaneous localization and mapping methods (SLAM) ORB-SLAM2 [15], LSD-

SLAM [16] are all outstanding attempts to solve 3D perception problem by approach-

ing the problem from different aspects.

After deep neural networks (DNN) have become popular and best results in many

different computer vision areas have been achieved with DNNs, computer vision re-

searchers have begun an expedition to reveal what DNNs can offer to 3D computer

vision problems. A considerable portion of this research focuses on monocular dense

depth estimation, which is the problem of estimating each pixel’s depth from just a

monocular image. Since it was not possible to predict dense depth maps that can be

utilized for practical applications before DNNs have become popular, the DNNs pro-

vide the computer vision researchers an excellent opportunity to build systems that

were not possible in the past. Moreover, existing SLAM methods can yield higher

performance with RGB-D inputs, which are both RGB image and the depth map,

depth estimation is a fundamental problem for applications leveraging SLAM such

as autonomous drones [17], augmented reality (AR) kits [18], virtual reality (VR)

1



Figure 1.1: An illustration of the depth estimation concept. A depth value is predicted

for each pixel in the monocular input image.

kits [19] and autonomous cars. Autonomous car applications have caught significant

attention over the previous years, so a generous portion of dense depth estimation

research mainly focuses on autonomous car applications. Therefore, dataset targeting

autonomous car applications such as KITTI [2] and Cityscapes [20] has appeared,

and most of the dense depth estimating studies utilize these datasets.

Some of the significant attempts to estimate a dense depth map from monocular im-

ages include [10, 22, 23]. However, these methods have a significant drawback; in

fact, they require training with ground truth depth maps, which is costly to obtain.

Therefore, unsupervised depth estimation methods attracted attention and some out-

standing methods have been proposed, such as SfMLearner [24], Competitive Collab-

oration (CC) [8], Every Pixel Counts ++ (EPC++) [25], PackNet [5] and Monodepth2

[26]. This study focuses on unsupervised depth and pose estimation. These methods

offer great opportunities to make reliable estimations for dense depth maps and rela-

tive pose without any need for costly ground truth.
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(a) Hololens 2 [18] (b) Vive Cosmos [19]

(c) Skydio 2 [17] (d) Waymo One Service [21]

Figure 1.2: Dense depth estimation can open the way of many practical applications

such as AR [18], VR [19], autonomous drones [17], and autonomous cars [21].

1.2 Scope of the Thesis

In this study, the performance of unsupervised depth and pose estimation methods

is analyzed with different input data configurations. Almost all of the unsupervised

depth and pose estimation methods in the literature use 3 input frames for the train-

ing process. Therefore, this study aims to investigate the possible benefits of using

more than three frames and fill this gap in the literature. The effect of pose estima-

tion performance on the depth estimation performance is investigated. Some novel

approaches utilizing semantic segmentation for pose estimation and loss computation

are proposed to improve the depth and pose estimation of the proposed network. The

foresight of this contribution is that unsupervised methods are trained under the as-

sumption that all scene is stable. However, this is not the case for all images in the

datasets used. A way to tackle this issue with semantic segmentation is searched in
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our proposed method. All of the work in this thesis is based on Monodepth2 [26]

since it is one of the best and up-to-date unsupervised methods for depth and pose

estimation and since its source code is publicly available which is well-written and

easy to manipulate. Although Monodepth2 achieves promising results, there is still a

great place for possible improvements.

1.2.1 Methodological Contributions of the Thesis

To sum up the two main contribution of this study can be expressed as

• A thorough inspection to find an input frame combination to boost the perfor-

mance of Monodepth2.

• A novel framework utilizes the semantic segmentation of the scenes and com-

putes different poses and losses for each of the semantic classes. Then, the

computed poses and losses are combined with learnable weights normalized by

the softmax function.

1.3 The Outline of the Thesis

This thesis work consists of five chapters. The first chapter introduces our problem

motivation and contributions. In Chapter 2, the fundamentals of various camera mod-

els and 3D geometry, which are vital for unsupervised depth and pose estimation

methods, are presented. In Chapter 3, the current literature and approaches on the

unsupervised depth and pose estimation are introduced. In Chapter 4, the tests and

our proposed methods are introduced. In this part, every network trained is tested for

its depth and pose estimation performance, and the relationship between the depth

and pose estimation performance is investigated. The thesis finalizes by stating the

conclusions based on experimental analysis.
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CHAPTER 2

FUNDAMENTALS OF MULTI-VIEW GEOMETRY

The unsupervised depth and pose estimation methods discussed in Chapter 3 rely on a

fundamental understanding of multi-view geometry, which is covered in this chapter.

2.1 Notation

A certain mathematical notation is used in this chapter to prevent any misunderstand-

ings, which are

• Matrices are denoted with bold letters. (e.g. A = UΣVT )

• Vectors are denoted with bar. (e.g. t̄ = [1 0 0]T )

2.2 Camera Models and Optical Distortion

A camera can be regarded as a device that maps the information of the 3D world into

a 2D image plane. This section of the thesis discusses the underlying mechanisms of

this mapping process. Camera models are divided into two categories: finite cameras

and cameras at infinity [3]. Finite camera models are employed almost always in

computer vision literature; therefore, this thesis and all of the literature discussed in

this thesis assume finite camera models.
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2.2.1 Pinhole Cameras

The basic pinhole model. This is the most specialized and simplest finite camera

model. Suppose that a central projection is performed on plane Z = f , which is

called the image plane or focal plane and that the center of the camera is also the

origin of the corresponding Euclidean coordinate system. The projection of a 3D

point X̄ = (X, Y, Z) can be computed as the intersection of the line passes through

both X and camera center and the image plane, which is illustrated in Figure 2.1.

Figure 2.1: The pinhole camera projection model in [3]. The camera center is C and

p is the principal point.

This projection mechanism of the pinhole camera model can be represented as fol-

lows:

(X, Y, Z)T 7→ (fX/Z, fY/Z). (2.1)

The line which goes from the camera center to the image plane is called the principal

axis, and the point where the principal axis intersects the image plane is called the

principal point. The plane, which goes through the camera center and parallels the

image plane, is called principal plane of the camera.

Central projection using homogeneous coordinates. Since the mapping in the

Equation 2.1 is a non-linear transformation, this mapping cannot be expressed us-

ing matrices. Homogeneous coordinate system is employed to tackle this problem:

An extra dimension with value 1 is added to the point coordinates defined in Eu-

clidean coordinate system. Consider a 3D point X = (X, Y, Z)T can be expressed as

(X, Y, Z, 1)T in homogeneous coordinate systems. Similarly, a 2D point x̄ = (u, v)T

can expressed as (u, v, 1)T . By using homogeneous coordinate system the Equation
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2.1 can be expressed as:


fX

fY

Z

 =


f 0

f 0

1 0



X

Y

Z

1

 , (2.2)

where the 3-by-4 matrix is called the camera projection matrix, which can be used to

simplify Equation 2.2 as:

x̄ = PX̄, (2.3)

where x̄ = (fX, fY, Z)T and X̄ = (X, Y, Z, 1)T . Moreover, the matrix P can be

decomposed as:

P = diag(f, f, 1)[I|0]. (2.4)

Figure 2.2: Image and camera coordinate systems are illustrated. Figure source: [3].

Principal point offset. The pinhole camera projection defined in Equation 2.1 as-

sumes the origin of the image plane is at the principal point, which may not hold in

practice. Therefore, the Equation 2.1 should be extended as:

(X, Y, Z)T 7→ (fX/Z + px, fY/Z + py)
T . (2.5)

Then, the projection defined in Equation 2.2 can be rearranged as follows:


fX

fY

Z

 =


f px 0

f py 0

1 0



X

Y

Z

1

 , (2.6)
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The 3x3 sub-matrix is called the camera calibration matrix and denoted by K:

K =


f px

f py

1

 . (2.7)

Then, the projection equation defined in Equation 2.6 can be rewritten in a compact

form as follows

x̄ = K[I|0]X̄cam, (2.8)

where the 3D point (X, Y, Z, 1)T to be projected is denoted as X̄cam

2.3 Fundamentals of Multi-view Geometry

In this section, the relationship between two or more cameras in a world frame is

discussed. The relation expressed in Equation 2.3 can be also expressed as:

λx̄ = PX̄ (2.9)

where x̄ is the homogeneous 2D pixel coordinate, X̄ is the homogeneous 3DD world

coordinate, P is the projection matrix, and λ is the depth of the 3D world point

X̄ . Previously, Equation 2.3 is decomposed as in Equation 2.8. A more general

decomposition of the projection matrix can be expressed as

P = K[R|t̄] (2.10)

where K is the intrinsic matrix of the camera, and R and t̄ are the rotation matrix and

translation vector from world coordinate system to camera frame coordinate system

so that a 3D world coordinate X̄world can be converted into a 3D camera coordinate

X̄cam as

X̄cam = RX̄world + t̄. (2.11)

2.3.1 Epipolar Geometry

The relation between two cameras is described with epipolar geometry, which is de-

fined by the observed 3D point and the camera centers. The plane which crosses
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the observed 3D point and the camera centers is called the epipolar plane, which is

showed as the green triangle in Figure 2.3.

It is also possible to observe from Figure 2.3 that the projections of the 3D point have

to lie in the epipolar plane. Then, if one of the right or left projections (x̄L or x̄R)

is known, it is possible to recover the epipolar plane since three points lie in it are

known. The unknown projection on the other camera has to lie in this plane, and

the intersection of this plane and camera projection plane is a line called epipolar

line. That is, if one of the projected points is known, a line that consists of the other

projection on the other camera can be computed. This relation can be expressed as

follows [3] :

x̄TL(R[tx])x̄R = 0 (2.12)

where x̄L and x̄R are the left and right image projections in homogeneous coordinate

system, R is the rotation matrix between left and right camera, and [tx] is the cross

product matrix for translation between left and right image planes. The matrix in the

center is called essential matrix and defined as:

E = R[tx]. (2.13)

Left view

X

x
L

xR

OL OR

Right view

eL eR

X
1X

2X
3

Figure 2.3: Epipolar geometry defines the nature of a two-camera system.

2.3.2 Triangulation

Estimating the 3D coordinate of a point from just one 2D image observation is not

possible. On the other hand, if more than one 2D observation of this 3D point is
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available, an estimation of this 3D point can be made. This method is known as

Triangulation and illustrated in Figure 2.4.

x

O O

y y2

2

1

1

Figure 2.4: A simple triangulation process is basically intersecting two lines at one

point.

2.4 Structure from Motion

The problem of estimating 3D points from multiple images of the same scene is

known as "Structure from Motion (SfM)" in the computer vision literature. This

problem has been studied for decades. Thus, several SfM pipelines were proposed,

and new ones keep appearing every year. Bundler [11], VisualSFM [27], OpenMVG

[12], and COLMAP [1] are some of the well-known and best SfM pipelines which are

proposed. COLMAP [1] is one of the latest SfM pipelines, and the computer vision

community widely uses it for different tasks such as ground truth generation for depth

images [28, 29] or pose ground truth generation [30].

2.4.1 Bundle Adjustment

Bundle Adjustment (BA) is a non-linear optimization procedure commonly applied

in classical computer vision methods such as SfM or SLAM. BA is known to sig-

nificantly improve the pose and 3D point estimations of many classical applications,

making it essential for almost all 3D computer vision applications. A classical BA
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formulation for estimating the camera poses and the 3D points in the scene is as fol-

lows:

min
aj ,bi

n∑
i=1

m∑
j=1

vij d(Q(aj, bi), xij)
2, (2.14)

where vij denotes a binary variable indicating whether point i is visible from camera

j, xij denotes the projection of point i onto camera j, aj denotes each camera j, bi

denotes each 3D point i. Q(aj, bi) denotes the predicted projection of point i onto

camera j, and d denotes a distance metric.

2.4.2 Pose Evaluation Metrics

The relative pose error (RPE) and absolute trajectory error (ATE), which are proposed

by [31] are used in this study to investigate the pose estimation performance of various

pose estimation networks. A detailed explanation about RPE and ATE are provided

in the upcoming subsections.

Relative Pose Error (RPE). Relative pose error is a measure to assess the odometry

systems by comparing the relative pose estimations with the ground truth values. In

our experiments, the RPE is defined as

RMSE(E1:n) =

(
1

m

m∑
i=1

‖trans(Ei)‖2

)1/2

(2.15)

where trans(Ei) is the translational component of Ei. Ei is defined as

Ei =
(
Q−1
i Qi+1

)−1 (P−1
i Pi+1

)
(2.16)

where P1, . . . ,Pn ∈ SE(3) are estimated poses and Q1, . . . ,Qn ∈ SE(3) are the

ground poses for the same sequence.

Absolute Trajectory Error (ATE). Absolute trajectory error is also proposed in [31],

and the same metric is also adapted for our tests. ATE is defined as

RMSE(F1:n) =

(
1

m

m∑
i=1

‖trans(Fi)‖2

)1/2

(2.17)

where trans(Fi) is the translational component of Fi. Fi is defined as

Fi = Q−1
i SPi (2.18)
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where P1:n are the estimated trajectory, Q1:n are the ground truth trajectory, and

S ∈ SE(3) is the optimal pose transformation which minimizes the error defined

in Equation 2.17.
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CHAPTER 3

RELATED WORK ON LEARNING BASED DEPTH ESTIMATION

3.1 Introduction

Deep learning-based methods are dominating the fundamental problems of the com-

puter vision field for a while. Along with the many high-level recognition tasks, such

as image classification [32, 33, 34], object detection [35, 36, 37, 38, 39], semantic

segmentation [40, 41, 37, 42, 43], deep networks have proved themselves in low and

mid-level vision task such as optical-flow estimation [44, 45, 46], interest point de-

tection and description [47, 48, 49] and image denoising [50, 51]. Therefore, many

researchers working on vision tried to apply deep learning techniques to visual odom-

etry (VO) and simultaneous localization and mapping (SLAM) systems.

The most crucial part of these systems is to infer the 3D world observed by the cam-

era. Estimating each pixel’s depth value is one of the most straightforward solutions

to this problem; hence, there are several studies aiming to estimate the depth from

monocular images have aroused in the last few years. Some of the earlier supervised

monocular depth estimation works can be listed as [52] and [53].

After deep CNNs have gained credibility and popularity, CNN-based supervised monoc-

ular depth estimation methods, such as [10, 22, 23] appeared. However, grountruth

dense depth maps are required to train these networks, which avoids these networks’

applicability, since to gather ground depth, LIDARs or RGB-D sensors have to be

utilized, which is expansible and tedious.

In order to ease the strict requirement on supervised methods for gathering datasets

with ground truth depth values, unsupervised (or self-supervised) monocular depth

13



prediction methods are explored widely in the community. Godard et al. [4] proposed

to exploit the stereo camera system used in gathering of KITTI dataset [2]; indeed,

they trained an unsupervised depth estimation network to reconstruct the left image

from the right image and vice versa. On the other hand, Zhou et al. [24] proposed to

train a depth estimation network from just video sequences by calculating the relative

pose transformation between consecutive frames and dense depth for each frame.

Many relevant works extending this idea, also appeared in the following years, such

as [8, 25, 26, 14].

The unsupervised depth and pose-estimation methods can be broadly divided into two

main categories with the following subcategories:

1. Stereo Based Methods

2. Mono-view Based Methods

(a) Intensity Based Methods

(b) Optical Flow and Motion Segmentation Based Methods

(c) Semantic Segmentation Based Methods

3.2 Stereo-based Methods

One of the first efforts [4] proposes training a CNN to regress the dense depth field in

an unsupervised fashion. The authors propose to exploit the stereo camera setup that

is already used in capturing process of the KITTI dataset [2]. The dense depth pre-

diction network is trained by computing the photometric loss between the right stereo

image and its prediction from the left stereo image. It is possible to reconstruct the

right stereo image from the left stereo image, if the corresponding depth values for the

each pixel of the left stereo image is estimated, since the relative pose transformation

between left and right cameras is provided by KITTI dataset [2].

The authors [4] extend this idea by training a disparity estimation network which esti-

mates the disparities for left-to-right image transformation dr and right-to-left image

transformation dl from just left image. This method, namely Monodepth (see Fig.
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Figure 3.1: Different approaches for Monodepth to train the disparity network [4].

3.1) , enables the network to predict better disparities instead of just reconstructing

the right image Ir from the left image I l by using the disparity computed from left

image dl (illustrated as naive in Fig 3.1) or reconstructing the left image from right

image using the disparity computed from left image (Fig. 3.1) .

If the reconstructed left and right images are denoted as Ĩ l and Ĩr, the correspond-

ing disparity estimation network is trained to minimize the following loss after the

predicting the disparities and the reconstructed left and right images,

Cs = αap(C
l
ap + Cr

ap) + αds(C
l
ds + Cr

ds) + αlr(C
l
lr + Cr

lr), (3.1)

where C l
ap and Cr

ap denotes the photometric loss between left (I l) and right (Ir) im-

ages, and corresponding prediction of left (Ĩ l) and right images (Ĩr) which is a com-

bination of L1 loss and SSIM [54] metric shown as

C l
ap =

1

N

∑
i,j

α
1− SSIM(Irij, Ĩ

r
ij)

2
+ (1− α)|Irij − Ĩrij|, (3.2)

for only left loss. C l
ds and Cr

ds losses forces the disparity estimation network to make

smooth predictions on the textureless regions by punishing the abrupt changes in

disparity and C l
ds is expressed as

C l
ds =

1

N

∑
i,j

|∂xdlij|e−‖∂xI
l
ij‖ + |∂ydlij|e−‖∂yI

l
ij‖, (3.3)
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Cr
ds is also expressed in a similar way. C l

lr term defined as

C l
lr =

1

N

∑
i,j

|dlij − drij+dlij |, (3.4)

and Cr
lr is also expressed in a similar way. These two losses force the network’s left

and right disparity predictions to be consistent with each other.

3.3 Mono-view Based Methods

Mono-view methods are more ambitious compared to their stereo counterparts, since

the structure and the pose are estimated during the ego-motion of a single camera.

As mentioned before, mono-view methods can broadly classified into 3 main subcat-

egories as follows:

1. Intensity-based Methods

2. Optical Flow and Motion Segmentation-based Methods

3. Semantic Segmentation-based Methods

In the upcoming sections, the methods in these categories are examined in detail.

3.3.1 Intensity-based Methods

Zhang et al. [24] proposed a mono-view method for self-supervised learning of dense

depth maps and ego-motion from unlabelled video sequences. The proposed architec-

ture contains two different networks to estimate the dense depth map and the relative

pose (rotation and translation) between two consecutive frames, which can be seen

in Fig. 3.2. DispNet [55], which is based on an encoder-decoder structure with skip

connections and utilizes multi-scale prediction, is adapted as the monocular depth es-

timation network. Later, the estimated dense depth map and relative poses are used

to estimate a video frame from consecutive frames. The absolute difference between

the target frame and the estimated frames are utilized as cost function.
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Abstract

We present an unsupervised learning framework for the
task of monocular depth and camera motion estimation
from unstructured video sequences. In common with re-
cent work [10, 14, 16], we use an end-to-end learning ap-
proach with view synthesis as the supervisory signal. In
contrast to the previous work, our method is completely un-
supervised, requiring only monocular video sequences for
training. Our method uses single-view depth and multi-
view pose networks, with a loss based on warping nearby
views to the target using the computed depth and pose. The
networks are thus coupled by the loss during training, but
can be applied independently at test time. Empirical eval-
uation on the KITTI dataset demonstrates the effectiveness
of our approach: 1) monocular depth performs comparably
with supervised methods that use either ground-truth pose
or depth for training, and 2) pose estimation performs fa-
vorably compared to established SLAM systems under com-
parable input settings.

1. Introduction

Humans are remarkably capable of inferring ego-motion
and the 3D structure of a scene even over short timescales.
For instance, in navigating along a street, we can easily
locate obstacles and react quickly to avoid them. Years
of research in geometric computer vision has failed to
recreate similar modeling capabilities for real-world scenes
(e.g., where non-rigidity, occlusion and lack of texture are
present). So why do humans excel at this task? One hypoth-
esis is that we develop a rich, structural understanding of the
world through our past visual experience that has largely
consisted of moving around and observing vast numbers of
scenes and developing consistent modeling of our observa-
tions. From millions of such observations, we have learned
about the regularities of the world—roads are flat, buildings
are straight, cars are supported by roads etc., and we can
apply this knowledge when perceiving a new scene, even
from a single monocular image.

∗The majority of the work was done while interning at Google.
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Target view

Nearby views

Depth CNN

Pose CNN

R, t

(a) Training: unlabeled video clips.

(b) Testing: single-view depth and multi-view pose estimation.

Figure 1. The training data to our system consists solely of un-
labeled image sequences capturing scene appearance from differ-
ent viewpoints, where the poses of the images are not provided.
Our training procedure produces two models that operate inde-
pendently, one for single-view depth prediction, and one for multi-
view camera pose estimation.

In this work, we mimic this approach by training a model
that observes sequences of images and aims to explain its
observations by predicting likely camera motion and the
scene structure (as shown in Fig. 1). We take an end-to-
end approach in allowing the model to map directly from
input pixels to an estimate of ego-motion (parameterized as
6-DoF transformation matrices) and the underlying scene
structure (parameterized as per-pixel depth maps under a
reference view). We are particularly inspired by prior work
that has suggested view synthesis as a metric [44] and recent
work that tackles the calibrated, multi-view 3D case in an
end-to-end framework [10]. Our method is unsupervised,
and can be trained simply using sequences of images with
no manual labeling or even camera motion information.

Our approach builds upon the insight that a geomet-
ric view synthesis system only performs consistently well
when its intermediate predictions of the scene geometry
and the camera poses correspond to the physical ground-

1

Figure 3.2: A diagram of the proposed method of [4]. One network estimates the

depth for every input pixel and the other network estimates the relative rotation and

translation. Figure source: [4].

The main idea of this network is to reconstruct a target image from a nearby image

taken from close time instants. To reconstruct each pixel of the target image from a

nearby image, the 3D coordinate corresponding to each point and the transformation

between the target image’s camera coordinate system and the nearby camera’s coor-

dinate system, which can be represented as a rotation matrix and a translation vector.

Therefore, the authors attempted to train two different networks simultaneously to

reconstruct the target image with a small error. Suppose that pt is a pixel coordinate

in the target image. Then, the corresponding pixel coordinate ps in the nearby image

can be calculated as pixel coordinate ps in the nearby image can be calculated as

ps ∼ KT̂t→sD̂t(pt)K
−1pt, (3.5)

whereK is the intrinsic camera matrix, T̂t→s is the transformation from target camera

to source camera, D̂t(pt) is the estimated depth value at pt. Once calculating the ps

for every possible pt, the target image is reconstructed from a nearby image using
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bilinear sampling, which is a differentiable operation. The reconstructed image is

evaluated by calculating the absolute difference between the reconstructed and target

images, which is available at Equation 3.6. Then, the network tries to produce results

that minimize the following loss function:

Lvs =
∑
s

∑
p

|It(p)− Îs(p)|, (3.6)

where I1, ..., IN are the target images using in the training procedure, and Is(1 ≤ s ≤
N, s 6= t) are the nearby or source images to be used for reconstructing the target

images.

However, this model only covers the static regions in the image. The non-stationary

objects in the images cannot be explained with this model. Therefore, the authors

tried to tackle this issue by using a novel explainability mask to segment the pixels

belonging to the stationary and dynamic objects. The explainability mask is got with

up-scaling the network’s output, which calculates the relative poses between target

and source images. Hence, the proposed image reconstruction loss with explainability

mask becomes

Lvs =
∑
s

∑
p

Ês(p)|It(p)− Îs(p)|. (3.7)

On the other hand, training the network with the above loss will result in a solution

where Ês(p) = 0 for every p, since this solution drops Lvs for every image pair.

The authors proposed to add a regularization loss Lreg(Ês) to tackle this issue which

forces Ês(p) to become 1 for every pixel location.

The gradients are calculated using the difference between the It(pt) and Is(ps), and

this fact could potentially curb the learning process, if pt is in a low texture region.

Therefore, the authors propose a smoothness loss, which forces the predicted depth

image to be smooth; in other words, the depth image’s average gradient magnitude

is forced to be small. After that, the final loss function to be optimized during the

training becomes the equation

Lfinal =
∑
l

Llvs + λsLlsmooth + λe
∑
s

Lreg(Êl
s), (3.8)

where l denotes the different image scales, s denotes the different source images, and

λs and λe are the weights for the depth smoothness loss and the regularization term

for explainability mask.
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The network is trained on KITTI dataset [2] with train and test splits proposed by

Eigen et al. [10]

In a different approach, Guizilini et al. [5] improves [26] with 3 main modifications.

The first main contribution is a novel architecture, called PackNet, for depth estima-

tion utilizing not only 2D convolution layers but also 3D convolution layers. The

second contribution is to adapting the measured velocity during the dataset shooting

to gain the ability to estimate the relative poses on a real-world scale. The third con-

tribution is a novel autonomous driving dataset, which consists of an assortment of

driving sequences.

The authors [5] argue that this type of CNNs adapting 3D convolution layers is su-

perior in estimating high-level information, such as depth values compared to the

classical encoder-decoder architectures utilizing popular encoder structures ResNet

[33] or VGG [34] networks. The proposed PackNet network is constructed with two

types of blocks stages, called packing block and unpacking block, which are analo-

gous to the convolution layer and transpose convolution layer of the classical depth

estimation networks.

The packing block first applies Space2Depth [56] operation which transfers the in-

formation in the spatial dimensions to the channel dimension. After that step, a 3D

convolution, a reshape and a 2D convolution operations follow. The unpacking blocks

are just the opposite of packing blocks with a 2D convolution, a reshape, a 3D con-

volution, and Space2Depth [56]. The structure of packing and unpacking blocks are

illustrated in Figure 3.3. Packing blocks are used in the encoder part, and the unpack-

ing parts are used in the decoder part along with the Resnet [33] modules, which is

illustrated in Figure 3.4.

The proposed depth and pose estimation networks are trained with the proposed loss

function in

L(It, Ît) = Lp(It, Is)�Mp �Mt + λ1L(D̂t), (3.9)

where L(It, Ît) is the photometric loss between target and predicted image defined in

Equation 3.17, Mp and Mt are same the binary masks formulated in the Equation

3.20, and L(D̂t) is the depth smoothness loss defined in (3.19).
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Figure 3.3: The inside architecture of the proposed packing and unpacking blocks.

Figure source: [5].

One of the main drawbacks of the self-supervised depth estimation networks is that

their estimation is not in real-world scales due to the well-known scaling ambiguity

for mono-view sequences. A novel loss based on the measured velocity of the cars

for which the KITTI dataset [2] were gathered, is proposed to solve this issue. This

velocity loss basically forces the network to make relative pose estimations whose

translation component to be close as possible as to the estimated translation com-

puted by multiplying the velocity measured at that timestamp and the measured time

difference between two consecutive frames which is formulated as

Lv(t̂t→s, v) = |‖t̂t→s‖ − |v|∆Tt→s|, (3.10)

where t̂t→s is the estimated translation vector between frame t and s, v is measured

velocity, and ∆Tt→s is the time difference between frames t and s. After calculating

Lv(t̂t→s, v), the final loss is calculated as

Lscale(It, Ît, v) = L(It, Ît) + λ2Lv(t̂t→s, v), (3.11)

where λ2 is a weight term to balance the losses L(It, Ît) and Lv(t̂t→s, v), to train

scale-aware networks.
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Figure 3.4: The complete architecture with depth estimation network of PackNet [5]

which proposes to use packing and unpacking blocks inside the network. Figure

source: Guizilini et al. [5].

Yang et al. [14] propose a similar method, namely D3VO, to [26] to train a depth

and a pose estimation network. The proposed depth estimation network predicts an

uncertainty map and the depth map, since the proposed network is part of the visual

odometry (VO) system, and uncertainty is critical in VO and simultaneous local-

ization and mapping (SLAM) systems. The depth estimation and pose estimation

architecture proposed in [26] is utilized with slight modifications. Unlike the other

unsupervised depth estimation methods, D3VO [14] does not directly compute the

loss between the reconstructed image from nearby and the source image. Instead,

an affine transformation is applied to the intensity values of the source image first.

This modification aims to cope with the effect of the changing exposure and lighting

conditions between two consecutive frames. The transformed image is computed as

Ia,b = aI + b. (3.12)

The pose estimation network computes the affine transformation parameters a and b.

Moreover, the depth estimation network also predict the uncertainty map along with
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the depth map which is used the loss formulation as

Lself =
1

|V |
∑
p∈V

mint′r(I
at′ ,bt′
t , It′→t)

Σt

+ logΣt (3.13)

where Σt is the uncertainty map predicted by the depth estimator. A regularization

loss also used to keep the affine transformation parameters a and b close to 1 and 0

just as

Lab =
∑
t′

(at′ − 1)2 + b2
t′ . (3.14)

Then, the total loss is calculated as

Ltotal =
1

s

∑
s

(Lsself + λLsreg), (3.15)

where s is equal to 4 and represents the number of image scales and Lreg = Lsmooth+

βLab.

Shi et al. [7] propose a relatively different unsupervised depth and pose estimation

method by leveraging the bundle adjustment (BA) concept. The idea is to apply BA

to the predicted depth and pose values so that the backpropagation is performed from

update depth and pose values, which results in an improved depth and pose estimation

network. A differentiable BA module [6] is adapted for this purpose. However, this

BA module optimizes the loss computed from the computed feature pyramid instead

of computing directly from the target and reconstructed images as

efeati,j (S) = Fi(π(Ti, dj · qj))− F1(qj). (3.16)

where Fi is the feature vector representing image Ii, S is the parameters to optimize

(depth map and relative in this case), qj is an image coordinate of image Ii, Ti is the

relative pose between image Ii and the target image, dj is the depth estimation for

pixel qj in image Ii, and π is the projection function which projects a 3D coordinate

onto a 2D image plane. After updating the depth and pose values according to loss

function defined in (3.16), the depth and pose networks are updated with the sum of

same photometric, and smoothness losses defined in (3.29), and 3.3. A schematic of

the proposed algorithm can examined on Figure 3.5.
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Figure 3.5: The proposed unsupervised depth and pose estimation network which

adapts the differentiable BA layer [6]. Figure source: Shi et al. [7].

3.3.1.1 Monodepth2

This section is devoted to Monodepth2 [26] algorithm, since it is the main method

utilized throughout the thesis. This method is an enhanced self-supervised depth and

relative pose estimation method, which is an improved version of [24]. Since this

method provides one of the most competing results in the literature and its source

code is publicly available. it is preferred to be used in this study.

Monodepth2 contains two deep networks that predict the dense depth and ego-motion

between two images simultaneously. The training procedure is similar to [24]. The

target image is reconstructed by using the dense depth prediction of the target image

and the relative pose between the target frame and the nearby frames using the equa-

tions 3.5 and bilinear interpolation. After that step, a loss function is calculated to

assess the quality of the reconstructed image that is a weighted sum of L1 distance

and the SSIM [54] metric, defined as

pe(Ia, Ib) = α
1− SSIM(Ia, Ib)

2
+ (1− α)‖(Ia − Ib)‖1. (3.17)

On contrary to [24], the authors preferred to construct the final loss to optimize by

only taking one of the nearby image whose loss defined in (3.17) is minimum, instead

of averaging them. The authors claim that this approach enables the network to dis-
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card the occluded pixels. Therefore, the network reconstructs the input image with

minimum possible loss, which is defined as

Lp = min
t′

(pe(It, It′→t)) (3.18)

where pe is photometric error defined Equation 3.17. The low gradient issue in the

textureless regions considered by [24] is tackled by using an edge aware smoothness

loss Ls shown in

Ls = |∂xd∗t |e−|∂xIt| + |∂yd∗t |e−|∂yIt|, (3.19)

where d∗t = dt/dt is the inverse depth value normalized by its mean, and ∂x and ∂y

are partial derivative operators operate on x and y axes of the images. This loss forces

the depth network to predict smooth depth values in the regions, where no edge or

corner exist in the input image.

One of the assumptions for the reconstruction process of target image is that all the

pixels in the image belong to stationary objects. However, this is a erroneous as-

sumption in many available datasets. Therefore, the authors propose a way to mask

the pixels belonging to stationary objects. For this purpose, the loss between the re-

constructed image It′→t and the target image It is calculated. Then, the loss between

corresponding nearby frame It′ and the target image It is calculated. Calculated these

two losses are compared, and the pixels with a lower loss between the reconstructed

and target images are assumed to belong to the stationary objects, using the following

relation:

µ =
[
min
t′

(pe(It, It′→t)) < min
t′

(pe(It, It′))
]
. (3.20)

Multi-scale depth prediction and loss calculation on that scales is utilized in this ap-

proach to push to the network through global minimum value. The loss is calculated

at each scale is combined, so that the total loss is calculated. The final training loss to

be optimized is constructed by using a weighting factor λ as

L = µLp + λLs. (3.21)

The depth estimation network of Monodepth2 utilizes U-Net [57] architecture with

a ResNet18 [33] based encoder initialized with weights trained on ImageNet dataset

[58]. The decoder network is the same decoder network used by [24] with sigmoid

function at the output and ELU nonlinearity [59] at the other layers. ResNet18 [33]
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is also utilized for pose estimation networks and modified to output 6 values which

represent a 6 degree of freedom similarity transformation.

3.3.2 Optical Flow and Motion Segmentation Based Methods

Luo et al. [25] proposed a method which tackles the problem of learning the optical

flow estimation, relative pose estimation and monocular depth estimation at the same

from videos sequences. Their proposed network estimates explicitly the flow maps

for forward and backward direction (Ft→s, Fs→t), relative rigid body motion of the

camera (Tt→s), and the depth maps (Dt, Ds) given two consecutive frames (Is and

It). The predicted information is fed to a network block called holistic motion parser

(HMP). The HMP is calculates a visibility mask (V), a moving object segmentation

mask (S) predicting the pixel belonging to the moving objects in the scene, 3D motion

of the each pixel belonging to background (Mb), and moving objects (Md). Then, the

corresponding matching pixels calculated from 3D rigid-body motion pst and from

optical flow psf for each pixel pt in the target image can be calculated as

h(pst) = π(K[Tt→sDt(pt)K−1h(pt) + M∗d(pt)]) (3.22)

psf = pt + Ft→s(pt), (3.23)

and

Mb(pt) = Tt→sφ(pt|Dt)− φ(pt|Dt) (3.24)

Md(pt) = V(pt)[φ(pt + Ft→s|Ds)− φ(pt|Dt)−Mb(pt)] (3.25)

V(pt) = 1(
∑
ps

(1− |pt − (ps + Fs→t)|) > 0) (3.26)

Spt = 1− exp{−αs(‖Md(pt)‖2)}. (3.27)

Therefore, it is possible to reconstruct the source image’s target image since matching

pixel coordinate for each pixel in the source image is known. The final photometric

reconstruction loss is a combination of the absolute difference and SSIM as

Lvs(O) =
∑
pt

V∗(pt,O)s(It(pt), Ît(pt)), (3.28)

s(It(pt), Ît(pt)) = (1− β)|It(pt)− Ît(pt)|+ β
1− SSIM(It(pt), Ît(pt))

2
. (3.29)

25



Ranjan et al. [8] extends [24] by adding two networks to predict the optical flow

between the frames and segment the target image into two segments as moving objects

and stationary objects. The depth network’s training procedure and the pose network

are similar to [24] with one difference. The input images of the depth and pose

networks are masked by the motion segmentation network so that only the pixels

belonging to the stationary objects are taking account.

Figure 3.6: A schematic diagram of the Ranjan et al. [8]. Four different network

performs dense depth estimation, relative pose estimation, optical flow estimation,

and motion segmentation. Figure source: Ranjan et al. [8].

This work’s main idea is to segment the scene into two segments as moving and

static objects. Then, the static part of the target image is reconstructed from nearby

images similar to [24], and the moving part of the target image is reconstructed by

using the optical flow estimation. The training of these four different deep networks

is performed in two main steps. Assume that an unlabeled datasetD = {Di : i ∈ N}.
In the first step, the loss defined as

E1 =
∑
i

∑
Ω

m·LR(R(Di)) + (1−m)·LF (F (Di)), (3.30)

is optimized while keeping the motion segmentation network fixed, where m rep-

resents the motion segmentation mask, · represents the element-wise multiplication,

LR(R(Di)) represents the loss of the static scene reconstruction with depth and rela-

tive pose estimation and LF (F (Di)) denotes the loss of dynamic scene reconstruction

with optical flow estimation. After the loss E1 is optimized the second loss E2 de-
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noted in

E2 = E1 +
∑
i

∑
Ω

LM(Di, R, F ), (3.31)

is optimized while keeping the depth, pose and optical flow networks fixed, which

mean that only the motion segmentation network is optimized in the second step,

where LM denotes the consensus between two network R and F where R denotes the

depth and pose networks together, and F denotes the optical flow network. The total

loss is reconstructed as follows

E = λRER + λFEF + λMEM + λCEC + λSES. (3.32)

The losses E1 and E2 denoted in the equations 3.30 and 3.31 are derived from E

by adjusting the weights λR, λF , λM , λC , λS . The loss ER which calculates loss for

dynamic scene reconstruction is calculated as follows

ER =
∑

s∈{+,−}

∑
Ω

ρ(I, ωc(Is, es, d)) ·ms, (3.33)

where I−, I, I+ denotes the image sequence used for training; in fact, I is the target

image. Ω is the spatial pixel domain, ρ is the error function to compare the original

and reconstructed images, and ωc warps the reconstructed image from nearby images

I− and I+ using the depth d and camera motion estimates e− and e+. The networks

used for estimate the depth, pose, camera motion, optical flow and motion segmen-

tation are denoted as {Dθ, Cφ, Fψ,Mχ}. The depth estimation d, the camera motion

estimation es, and motion segmentation masks m− and m+ are estimated as

d = Dθ(I) (3.34)

e−, e+ = Cφ(I−, I, I+) (3.35)

m−,m+ = Mχ(I−, I, I+). (3.36)

The reconstruction loss for the dynamic scenes using the image sequence I−, I, I+

and optical flow estimates are calculated as

EF =
∑

s∈{+,−}

∑
Ω

ρ(I, ωf (Is, us)) · (1−ms), (3.37)

where ωf reconstructs the target image I from I− and I+ using the optical flow esti-

mates u− and u+. The optical flow estimates are calculated as

u− = Fψ(I, I−), u+ = Fψ(I, I+). (3.38)
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The error function ρ(x, y) is similar to Eq. 3.29 with small differences as

ρ(x, y) = λp
√

(x− y)2 + ε2 + (1− λp)(1− SSIM(x, y)). (3.39)

The loss EM is the cross entropy between the motion segmentation mask and a unit

tensor to prevent a solution which always predicts every pixel in every input image as

dynamic object pixels, and calculated as

EM =
∑

s∈{+,−}

∑
Ω

H(1,ms). (3.40)

The consensus loss EC ensures the results of the motion segmentation, depth, pose

and optical flow estimation networks are consistent. It is computed as

EC =
∑

s∈{+,−}

∑
Ω

H(IρR<ρF ∨ I‖v(es,d)−us‖2<λc ,ms), (3.41)

where I ∈ {0, 1} is an indicator function whose value is equal to 1 if the statement

in subscript is true, v(es, d) denotes the optical flow of the dynamic scene which is

calculated using the depth and relative pose provided by the depth and pose networks

Dθ, and Cφ, ρR = ρ(I, ωc(Is, es, d)) and ρF = ρ(I, ωf (Is, us)) which denotes the

photometric reconstruction loss for static and dynamic regions of the target image.

Finally, a smoothness loss is introduced to force the depth, optical flow and motion

segmentation results to be smooth as

ES =
∑

Ω

‖λe∇d‖2 + ‖λe∇u−‖2 + ‖λe∇u+‖2 + ‖λe∇m−‖2 + ‖λe∇m+‖2. (3.42)

3.3.3 Semantic Segmentation Based Methods

Guizilini et al. [9] proposed a method to train an unsupervised depth and an ego-

motion estimation network by leveraging a pre-trained semantic segmentation net-

work and applying a novel two-stage training method to eliminate the faulty depth

estimates placed at the infinity. The architecture proposed in [5] adapted for depth

estimation and pose estimation networks. The loss formulations in the Equations

3.17, 3.18, 3.19 and the auto-masking method defined in Equation 3.20 proposed by

[26] utilized to train the networks. Apart from the other existing methods, the depth

28



Figure 3.7: A diagram of the semantically guided depth estimation network proposed

by [9]. Figure source: Guizilini et al. [9].

estimation network in [9] is trained with the guidance of the pre-trained semantic seg-

mentation network [60] by utilizing pixel-adaptive convolutions [61]. This guidance

process is illustrated in Figure 3.7.

A 3×3 and a 1×1 convolutions, group normalization [62] and ELU non-linearity [59]

are applied to each fixed feature map of the guidance network. Thus, the guidance

features in the Figure 3.7 are constructed. These guidance features are convolved with

the geometric features as formulated as

v′i =
∑
j∈Ω(i)

K(fi, fj)W[pi − pj]vj + b, (3.43)

where f ∈ RD denotes the vectors of the guidance features, p = (x, y)T denotes the

pixel coordinates, [pi − pj] denotes the 2D offset between pixels i and j, Wk timesk

is the weight matrix to used in the window Ω(i), b ∈ R1 denotes the bias term, and

K denotes the kernel function used. In this case, the authors prefer to use a standard

Gaussian kernel as formulated

K(fi, fj) = exp(−1

2
(fi − fj)

TΣ−1
ij (fi − fj)), (3.44)

where Σ−1
ij = σID, ID is an identity matrix with shape of D ×D and σ is a variable

to learned during the training.

Other than the semantic guidance, [9] proposed a novel method to filter out the data

producing erroneous results. The ground plane is detected using RANSAC [63], and

the points estimated below this ground plane are detected. If more than 10% of all
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points lie under the plane corresponding image is filtered out and not used in the

upcoming epochs for training.

3.4 Comparison of Methods in the Literature

A comparison of the depth estimation performance of all methods in this chapter is to

be provided. For this purpose, the definitions of the depth estimation metrics that are

used throughout this study are also given next.

3.4.1 Error Metrics for Depth Estimation

All the unsupervised depth estimation methods discussed in Chapter 3 utilizes the

metrics proposed in [10] for comparing depth estimation results. These metrics are

defined in this section for completeness.

It should be noted that before computing the metrics between the estimated depth

maps and the ground truth depths, the estimated depth maps are scaled by using me-

dian scaling, as proposed in [24]. In this technique, each estimated depth map’s depth

values are multiplied with a scale ŝ, which is computed by using the ratio of the me-

dian of the depths in estimated depth map and the ground truth depths. Hence, the

following relation is obtained ŝ = Median(Dgt)/Median(Dpred).

The error metric relations defined below use y as the depth estimate, whereas ŷ as the

ground truth depth.

• Absolute Relative Difference: 1
|T |
∑

y∈T |y − ŷ|/ŷ

• Squared Relative Difference: 1
|T |
∑

y∈T ‖y − ŷ‖
2/ŷ

• Root Mean Square Error (RMSE) Linear:
√

1
|T |
∑

y∈T ‖y − ŷ‖
2

• RMSE Log:
√

1
|T |
∑

y∈T ‖log(y)− log(ŷ)‖2

• Threshold: % of y s.t. max(y
ŷ
, ŷ
y
) = δ < thr
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The lower values of absolute relative difference, squared relative difference, root

means square error (RMSE), RMSE Log, and the higher values of threshold (δ < thr)

indicate the superior performance and vice versa.

3.4.2 Depth Estimation Performance Comparison

The results of the leading depth estimation algorithms are tabulated in Table 3.1 based

on their own reports in the original papers.

Table 3.1: Experimental results of the aforementioned unsupervised depth estimation

network. In the trains column "S" denotes the stereo supervision and "M" denotes the

monocular video sequence supervision (The best metric in each column is denoted

with bold characters, while the lower is better for Abs. Rel., Sq. Rel., RMSE, and

RMSE Log, whereas the higher is bette forr δ < 1.25, δ < 1.252, and δ < 1.253)

Method Train Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth [4] S 0.133 1.142 5.533 0.230 0.830 0.936 0.970

SfMLearner [24] M 0.183 1.595 6.709 0.270 0.734 0.902 0.959

CC [8] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973

EPC++ [25] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Monodepth2 [26] M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

PackNet [5] M 0.111 0.785 4.601 0.189 0.878 0.960 0.982

Guizilini et al. [9] M + Sem 0.102 0.698 4.381 0.178 0.896 0.964 0.984

D3VO [14] MS 0.099 0.763 4.485 0.185 0.885 0.958 0.979

Shi et al. [7] M 0.113 1.079 4.931 0.206 0.853 0.947 0.979

Among all these methods, Guizilini et al. [9] achieves the best results on 6 metrics

out of the provided 7 metrics, whereas D3VO [14] returns the best results only on the

absolute relative error metric. Although D3VO utilizes both mono and stereo images

during its training, it is surpassed by Guizilini et al. [9] on 6 metrics of all 7, that

might indicate that semantic guidance is promising for unsupervised depth and pose

estimation. A better guidance network and a way to guide the depth estimation could

be proposed to extend this study as well.

31



32



CHAPTER 4

EFFECTS OF MULTIPLE FRAMES AND SEMANTIC OBJECTS FOR

DEPTH AND POSE ESTIMATION

In this chapter, we perform three crucial analyses for unsupervised depth and ego-

motion estimation:

• Analysis 1: The comparison of the pose estimation performance for classical

and DNN-based methods,

• Analysis 2: The effects of using various frame combinations input to DNN-

based method,

• Analysis 3: The idea of leveraging the unsupervised depth and ego-motion by

utilizing semantic segmentation.

4.1 Experimental Settings

4.1.1 Selected Architecture

Monodepth2 [26] is used to conduct all the experiments and propose extension meth-

ods that are discussed in this chapter. As explained in the literature work, Monodepth2

is composed of two different deep networks, which are depth estimation and pose es-

timation networks, which consist of around 15M and 13M parameters, respectively.
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4.1.2 Optimization

The default training settings of Monodepth2 is kept the same for all of our experi-

ments. Adam [64] optimizer used with initial learning rate of 1.0× 10−4, step size 15

with ratio 0.1 and it is trained for 20 epochs.

4.1.3 Dataset

The training, validation, and test splits of KITTI Dataset [2] that are proposed in [10]

is utilized during all of our depth estimation experiments, since the Monodepth2 is

also trained on this split as the other unsupervised depth and pose estimation meth-

ods discussed in Chapter 3. KITTI Odometry Dataset [2] is utilized for all exper-

iments where pose estimation performance is computed, since this dataset contains

the ground pose data for all frames. KITTI Odometry Dataset is also utilized for our

depth estimation experiments in Section 4.2.1.

4.2 Analysis 1: Comparison of Classical and DNN-based Methods for Pose Es-

timation

The unsupervised depth estimation networks discussed in Chapter 3 requires a re-

liable pose estimation between two images. Therefore, the pose estimation perfor-

mance of the various pose estimation networks and the classical SfM pipelines are

compared. For this comparison, absolute trajectory error (ATE) and relative pose

error (RPE) are typically used in the literature [31].

All the available sequences (i.e. Sequence-0,-1,-3,-4,-5,-6,-7,-9,-10) of KITTI 2012

Odometry Dataset [2] are utilized in this section. However, this section mainly fo-

cuses on the results of Sequence-9, since the unsupervised depth and pose estimation

methods in the literature mostly report the pose estimation performance for Sequence-

9. It should also be noted that our experimental observations on the performances of

all the sequences are consistent with that of Sequence-9.

In the first test, Sequence-9 is processed as 3 frames, since most of the pose estimation
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networks in the literature take 3 frames as input. For example, Sequence-9 has 1591

frames, so the first frames 0, 1, 2 are fed to networks, then 1,2,3, and so on. Therefore,

the pose estimation networks estimate the relative pose between the center to nearby

frames. It is possible to compute the estimation errors, since ground truth pose data

is available on KITTI 2012 Odometry Dataset [2]. The ATE and RPE values are

calculated for each 3 frame snippet; then, the mean and standard deviation of these

errors of every snippet are computed and provided in Table 4.1. The best performing

method for all metrics in this table is COLMAP.

The unsupervised pose estimation networks proposed in SfMLearner [24], Competi-

tive Collaboration (CC) [8] and Monodepth2 [26] are used during these test. On the

other hand, the pose of each frame are also computed in global manner using BA

with COLMAP [1] and OpenMVG [12], but then 3 pose snippets from these results

are gathered from all poses to compare these SfM pipelines against the deep learning-

based methods.

According to Table 4.1, the relative pose errors are obtained better for all learning-

based techniques, possibly due to utilizing the image pixel intesity for the whole

image, while calculating relative poses, whereas the absolute trajectory errors are

smaller for conventional pose estimators, which optimizes the results in an holistic

way including 3D feature coordinates and poses by using BA.

Table 4.1: Mean and standard deviation of ATEs and RPEs of the chosen deep learn-

ing based and classical SfM methods calculated on Sequence-9 of KITTI Odometry

Dataset are provided in the table. The upper part is DNN based methods and the lower

part is classical SfM methods. (The best results are shown in bold letters)

Method ATE-Mean (m) ATE-Std (m) RPE-Mean (m) RPE-Std (m)

SfMLearner [24] 1.1776 0.6059 1.5890 0.7410

CC [8] 1.0970 0.600 1.5026 0.7553

Monodepth2 [26] 1.1083 0.5881 1.5154 0.7449

COLMAP [1] 0.0036 0.0025 0.0055 0.0040

OpenMVG [12] 0.0079 0.0795 0.0430 0.1138

After computing the ATE and RPE from 3-frame length snippets from sequences, the
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full trajectory errors with metrics ATE, and RPE as before are computed by using

the whole Sequence-9 from KITTI 2012 Odometry Dataset [2]. For that purpose, the

relative pose between each consecutive frame in the Sequence-9 is computed with

SfMLearner [24], CC [8] and Monodepth2. After this step, by setting the pose at

t = 0 to identity, each frame’s absolute pose is computed by multiplying the relative

poses with each other. Conversely, the poses of each frame are directly computed by

COLMAP and OpenMVG [12]. The comparisons are provided in Table 4.2. More-

over, the estimated trajectories and ground truth trajectory of Sequence-09 can be

examined in Figure 4.1.

Table 4.2: Full trajectory pose estimation results for Sequence-09 from KITTI 2012

Odometry Dataset [2] are provided in the table. The upper part is DNN based methods

and the lower part is classical SfM methods. (The best results are shown in bold

letters)

Method ATE (m) RPE (m)

SfMLearner [24] 46.6107 1.4586

CC [8] 31.5470 1.2828

Monodepth2 [26] 37.3393 1.2868

COLMAP [1] 4.4360 1.7961

OpenMVG [12] 6.6950 1.8216

The full trajectory experiments are also performed on Sequence-0, -1, -3, -4, -5, -6, -7,

-8, and -10 of the KITTI Odometry Dataset to compare Monodepth2 and COLMAP to

generalize the results computed only on Sequence-9 of the KITTI Odometry Dataset

and provided in Appendix-A as detailed results, plots of the estimated trajectories

and ground truth trajectories . These results also confirm our initial conclusion that

COLMAP is superior in absolute pose estimation; especially, with trajectories with

loop closures. Based on the full results provided in Table A.1 and the resultant mean

of the ATEs of RPEs of these sequences in Table 4.3, it is possible to observe that

COLMAP is much superior during pose estimation with trajectories with several loop

closures. On the other hand, if the trajectory does not include any loops, it should be

emphasized that the pose estimation network of Monodepth2 provides a quite com-

petitive performance with COLMAP.
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(a) Trajectory Estimate of SfmLearner [24] (b) Trajectory Estimate of CC [8]

(c) Trajectory Estimate of Monodepth2 (d) Trajectory Estimate of COLMAP

(e) Trajectory Estimate of OpenMVG [12] (f) Ground Truth Trajectory

Figure 4.1: The illustration of the estimated trajectory of Sequence-9 from KITTI

2012 Odometry Dataset [2] and the ground truth trajectory. For 2D illustration pur-

poses only x and z component of the estimated poses are used which define the car’s

2D movement in KITTI dataset [2] on Earth surface.
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Table 4.3: Mean pose estimation errors for all sequences from KITTI 2012 Odometry

Dataset [2]. The best metrics are shown in bold letters.

Method ATE (m) RPE (m)

Monodepth2 [26] 25.1558 1.1459

COLMAP [1] 12.7905 0.8257

For improving the pose estimation errors of the unsupervised neural networks that

are provided in Table 4.2, bundle adjustment (BA) is tested. Since Sequence-9 of the

KITTI 2012 Odometry Dataset [2] is circular, the first frame and the last frame are

coinciding frames. By exploiting this fact, the relative pose between the first and the

last frame is also computed using the unsupervised pose estimation networks, then

using all the computed relative poses between each consecutive frames and minimiz-

ing the mean square error between the pose difference computed from absolute poses

of the frames and the estimated relative poses the absolute poses are computed using

Nelder-Mead method [65]. The optimized results of the unsupervised pose estima-

tion networks can be seen in Table 4.4. The results of the SfM methods COLMAP

and OpenMVG [12] are kept the same, since these methods apply BA within their

pipelines. as it can be observed in Table 4.4, ATE of Monodepth2 is improved from

37.3m to 12.5m. The improved trajectories of learned methods with BA can be exam-

ined in Figure 4.2, although such a loop closure is manually enforced to the solution;

i.e. it is impractical.

Table 4.4: The resultant table for improved pose estimation on Sequence-9 of KITTI

Odometry Dataset with bundle adjustment is provided where the upper part is DNN

based methods and the lower part is classical SfM methods. The best metrics are

shown in bold letters.

Method ATE (m) RPE (m)

SfMLearner [24] 10.0869 1.1510

CC [8] 14.7501 1.0750

Monodepth2 [26] 12.4692 1.0817

COLMAP [1] 4.4360 1.7961

OpenMVG [12] 6.6950 1.8216
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(a) Improved Trajectory Estimate of Sfm-

Learner [24] with BA

(b) Improved Trajectory Estimate of CC [8]

with BA

(c) Improved Trajectory Estimate of Mon-

odepth2 with BA (d) Ground Truth Trajectory

Figure 4.2: The improved trajectory estimates by applying the BA with closing

the loop by estimating the relative pose between the first and the last frame of the

Sequence-9 from KITTI 2012 Odometry Dataset [2].
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4.2.1 Providing Relative Poses Estimated with Classical SfM to Monodepth2

The relative poses are computed with a classical SfM pipeline to assess the relative

pose estimation effect on the quality of the depth estimation. COLMAP is selected

for this task, since it is one of the most recent and best SfM pipelines available in

the literature. Hence, it is widely used by the computer vision community also for a

variety of tasks. Initially, each frame’s pose belongs to KITTI Dataset [2] is attempted

to compute by COLMAP. The frames whose pose can be estimated by COLMAP are

listed and used during training of Monodepth2. In this configuration, the relative pose

between two different frames can be easily obtained, since pose of each frame in the

dataset is available; i.e. the pose estimation network of Monodepth2 is neither trained

nor used. The relative pose calculation is obtained from the absolute pose, Pi as

Prel = P−1
i+δPi. (4.1)

Target Image

Target and Nearby Images

Monocular Depth 
Estimation Network

COLMAP

Pose 
Estimation 

Estimated Depth

Estimated Target Image

Loss

Figure 4.3: Schematic diagram of the training methodology. During training, relative

poses are computed by using COLMAP instead of a pose estimator DNN.

This approach has a problem due to scaling ambiguity. KITTI Dataset [2] consists

of different shots taken from different places and under varying circumstances, and

COLMAP computes the 3D point cloud of these different shots independently. This

situation results in inconsistent scales between different shots, since COLMAP can

only reconstruct the scene up to an unknown scale. In order to tackle this issue, IMU
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measurements that are available in the KITTI Dataset [2] are utilized. The idea is to

estimate the pose of N number of frames from each shot and compute the scale value

to convert COLMAP’s reconstructions to the real-world scale. For this purpose, the

first 3 frames pose from each shot is estimated by multiplying the car’s velocity with

the time difference between frames, and the scale between this 3 estimated pose and

COLMAP’s estimated pose is calculated.

Figure 4.4: Disparity estimation results for Monodepth2 whose network is trained by

using COLMAP pose estimates. (Bright regions indicate closer points)

A similar experiment with IMU data available in the KITTI Dataset is also performed.

In this experiment, the relative pose between target and nearby views are estimated by

using the absolute orientation and velocity information measured IMU. The relative

translation is computed by multiplying the velocity with the time difference between

frames. The depth estimation results are presented in Table 4.5, in which COLMAP

41



Pose and IMU Pose are behind the baseline. Various justifications could be possible

for this case, which are tried to be explained in the next two paragraphs.

Since COLMAP matches the frames with classical feature descriptors, such as SIFT

[66], computing poses between all frames in KITTI Dataset [2] is impossible, since

sufficient number of matches cannot be obtained between every image pair. There-

fore, only a portion of the dataset is reconstructed in terms of pose. Monodepth2 uses

Eigen et al. [10] split for training and validation, which is also a portion of the KITTI

Dataset [2]. The number of frames in the training split of Eigen et al. [10], which has

a COLMAP pose, is 19,962, while the total number of frames in this dataset is 45,200.

Using only these frames might lead to lose training data, so losing performance. On

the other hand, the number frames in KITTI Dataset [2] which has a COLMAP pose

is 50,010, which is to Eigen et al. [10] The network is trained with both dataset op-

tions and the best performed reported in Table 4.5 is achieved with the second dataset

with 50,010 frames.

The architecture or hyperparameters used for training are incompetent for such an ex-

periment. However, the network is trained with a different dataset from the rest of the

network configurations in Table 4.5. Hence, comparing this network’s performance

with the other ones may not be a fair comparison since they are not trained with the

same data. Some sample depth estimations are provided in Figure 4.4. Moreover, the

same ground truth depth estimation samples are provided in Figure 4.5.

On the other hand, possible explanation about IMU Pose case is that IMU measure-

ment could be noisy or erroneous.

Table 4.5: Experimental results of the depth estimation with SfM instead of a DNN

in Monodepth2 trained and tested on KITTI Dataset are provided in the table. The

best metrics are shown in bold letters.

Method Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 0.1165 0.923 4.853 0.1932 0.8735 0.9583 0.9807

COLMAP Pose 0.1382 1.029 5.416 0.2126 0.8232 0.9437 0.9780

IMU Pose 0.1638 1.134 5.811 0.2418 0.7580 0.9267 0.9730

Additional experiments are performed on KITTI Odometry Dataset [2] to verify the
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results found above. Monodepth2 is trained on this dataset with the default setting, the

estimated poses of COLMAP, and its ground truth poses. Our findings are consistent

with the last part, which uses external pose data such as COLMAP pose or ground

truth pose does not provide any improvements. In these experiments, it is observed

that some poses of specific sequences could be estimated very poorly by COLMAP

if a suitable parameter setting is not performed. Therefore, our experiments in which

Monodepth2 is trained with COLMAP poses could be distorted by the false pose

estimation of the COLMAP. The depth estimation results of these experiments can be

seen in Table 4.6.

Table 4.6: Experimental results of the depth estimation with SfM instead of a DNN

in Monodepth2 trained on on KITTI Odometry Dataset and tested on KITTI Dataset.

The best metrics are shown in bold letters.

Method Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 0.1165 0.923 4.853 0.1932 0.8735 0.9583 0.9807

Using GT Pose 0.1300 0.946 5.256 0.2097 0.8359 0.9474 0.9774

Using COLMAP Pose 0.1534 1.187 5.918 0.2350 0.7878 0.9307 0.9730

4.2.2 Discussions on Analysis 1

The following conclusions can be stated based on the pose estimation performances

of both classical and DNN based methods:

• Classical pose estimation methods are more suitable for estimating the whole

trajectory and their trajectory estimates have much smaller drift, since typical

classical SfM pipelines use BA. This situation is especially apparent for the

trajectories with loop closures. If the trajectory does not include any loops,

DNN-based methods could also provide quite competitive performance against

the classical methods.

• The pose estimation performance of DNN-based methods could also be im-

proved by incorporating relevant constraints, such as loop closure.

• It is possible to further improve the trajectories estimated for DNN-based meth-

ods by applying BA that ends up with competitive trajectory estimates with SfM
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methods.

• DNN-based methods provide a higher pose estimation performance based on

the RPE metric. However, the inferior performance of ATE indicates that at

specific frame instants, possibly due to unlearned motion of the camera, DNN-

based methods make crucial mistakes, resulting in an inferior ATE.

• The best DNN-based pose estimation performance is provided CC method [8].

Motion segmentation and optical flow utilized in this method could be the rea-

son behind this fact.

• Finally, it is interesting to observe the ineffectiveness of the groundtruth or

COLMAP relative poses which are provided during training of the depth esti-

mator network (Table 4.6). Although, pose estimator network burden is elimi-

nated in such a scenario, the resulting depth estimator is unable to yield better

results compared to the baseline Monodepth2, possibly due to quite accurate

relative poses of Monodepth2 for intensity matching.

4.3 Analysis 2: The effects of input frame selection for Monodepth2

Every unsupervised depth estimation method discussed in Chapter 3 utilizes 3 consec-

utive frames from KITTI dataset [2] which are captured sequentially at time instants

ti, and ti±1. However, direct odometry methods, such as D3VO [14] or DSO [13],

and direct odometry based simultaneous localization and mapping (SLAM) systems,

such as LSD-SLAM [16], perform a BA step over the selected frames from the whole

trajectory, which are called "keypoint" frames. In this section, the opportunities for

utilizing different frame combinations other the default input frame settings in the

methods in the literature. The experiments performed in this section are

• Training Monodepth2 with wider baseline by using frames within a larger tem-

poral neighborhood. In other words, Monodepth2 is trained with nearby views

taken at ti±δ where δ > 1,

• Training Monodepth2 with two extra frames taken at ti±δ where δ > 1, while

keeping the consecutive frames,
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• Training Monodepth2 with four extra frames taken at ti±5 and ti±7.

A frame taken at ti+δ will be denotes as Iδ in following parts of this section.

Figure 4.5: Some images and their depth estimation results, when Monodepth2 is

trained with its default settings.

4.3.1 Training with Wider Baseline

The learning-based unsupervised depth and pose estimation methods in the literature

utilizes one target and two consecutive frames during their training process. However,

none of these methods utilizes wider baseline for training procedure and it is not clear,

whether it is possible to train these networks with wider baseline between consecutive

frames (e.g. captured from a faster car) compared to the one from KITTI Dataset.
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Therefore, Monodepth2 is trained with a wider baseline in this section by simply

skipping frames. Frame combinations from the temporal neighborhood, such as I±2,

I±3, I±5, and I±7 are utilized in these experiments. The results are presented in Table

4.7, indicating a poor performance for depth estimation.

In order to improve the results, another approach is tested by training with spatially

decimated frames to suppress the effect of large pixel displacement between target

and nearby images. However, the resultant performance does not also improve sig-

nificantly. This situation might be due to the fact that pose estimation can not pro-

duce "good" pose estimates, when the scene changes significantly compared to the

target image, which is two frames different in about experiments with Monodepth2

on KITTI 2012 Dataset [2] which is taken with a 30 frame per second (FPS) stereo

camera system mounted on a car. These experiments clearly show that removing the

consecutive frames I±1 from the training process degrades the depth and pose esti-

mation performance.

Pose estimation performance of the trained networks on sequnce 9 of KITTI Odome-

try Dataset is provided in Table 4.8. The pose estimation performance of the networks

directly trained with I±2, I±3, I±5, and I±7 are much more poorer than the baseline as

expected. However, the experiments in which pose estimator takes decimated input

images can make competitive pose estimations compared to the baseline. In fact, the

experiment with decimated I±2 frames surpasses the baseline in the ATE metric al-

though baselie is still superior in RPE. The interesting point here is that this networks

performs significantly worse in depth estimation than the baseline. The reason of poor

depth estimation despite the competitive pose estimation could be the auto-masking

procedure of Monodepth2. Higher errors compared to the low baseline could result

in filtering a great portion of image which significantly harms the training of depth

estimator. Occlusions in the images, brightness change between nearby and target

views could be another reason.

4.3.2 Training with Two Extra Frames

A vast majority of unsupervised depth and pose estimation methods in the litera-

ture utilizes one target frame and two consecutive nearby frames. It is not unclear
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Table 4.7: Depth estimation performance of wider baseline Monodepth2 is provided

in the table. "dec." means that the input of the pose estimator is decimated by a ratio

of frame difference. The best metrics are shown in bold letters.

Method Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 0.1165 0.923 4.853 0.1932 0.8735 0.9583 0.9807

Monodepth2 w/ only I±2 0.2080 3.852 6.229 0.2723 0.8075 0.9222 0.9580

Monodepth2 w/ only dec. I±2 0.1878 2.815 5.815 0.2574 0.8126 0.9291 0.9629

Monodepth2 w/ only I±3 0.3451 6.017 7.705 0.3837 0.6537 0.8309 0.9001

Monodepth2 w/ only dec. I±3 0.3161 4.998 7.308 0.3647 0.6696 0.8434 0.9097

Monodepth2 w/ only I±5 0.7180 18.217 15.377 0.7023 0.2570 0.4947 0.6832

Monodepth2 w/ only I±7 0.5462 13.168 14.160 0.6166 0.3663 0.6215 0.7692

Table 4.8: Pose estimation performance on the Sequence-9 of KITTI Odomery

Dataset of wide baseline Monodepth2 experiments are shown in the table. The best

metrics are shown in bold letters.

Method ATE (m) RPE (m)

Baseline 37.3393 1.2868

Monodepth2 w/ only I±2 244.621 2.25086

Monodepth2 w/ only dec. I±2 26.379 2.6732

Monodepth2 w/ only I±3 244.357 4.0996

Monodepth2 w/ only dec. I±3 44.727 3.801

Monodepth2 w/ only I±5 169.941 12.161

Monodepth2 w/ only I±7 252.515 26.6737

the effect of utilizing more than 3 frames in such methods. However, it should be re-

membered that providing five frames increases the size of the network; hence training

becomes relatively more difficult.

This test aims to investigate the depth estimation performance of Monodepth2 trained

with two more extra nearby views together with ti, ti±1 frames. Table 4.9 presents

the results for training of Monodepth2 whose inputs are taken at ti, ti±1 and ti±δ,

where δ = {2, 5, 6, 7, 8, 9, 10} is utilized at each row in Table 4.9. The best depth

estimation results are attained with Monodepth2, whose 5 input frames belong to the

time instants ti, ti±1 and ti±7.
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Table 4.9: Depth estimation performance of Monodepth2 trained with two extra

frames are provided in the table. The best metrics are shown in bold letters.

Method Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 0.1165 0.923 4.853 0.1932 0.8735 0.9583 0.9807

Monodepth2 w/ I±2 0.1197 0.988 4.878 0.1973 0.8703 0.9570 0.9797

Monodepth2 w/ I±5 0.1140 0.884 4.794 0.1912 0.8784 0.9597 0.9812

Monodepth2 w/ I±6 0.1138 0.908 4.822 0.1911 0.8770 0.9599 0.9810

Monodepth2 w/ I±7 0.1135 0.881 4.762 0.1902 0.8787 0.9604 0.9817

Monodepth2 w/ I±8 0.1155 0.931 4.871 0.1921 0.8772 0.9592 0.9811

Monodepth2 w/ I±9 0.1146 0.939 4.857 0.1920 0.8779 0.9589 0.9810

Monodepth2 w/ I±10 0.1169 0.943 4.895 0.1931 0.8751 0.9592 0.9808

It can be argued that the underlying reason behind this interesting result is due to

the auto-masking procedure in Monodepth2. The auto-masking is designed to filter

out the pixels which fail during depth estimation, so that the noise on the weight

updates of the depth and pose estimation networks is suppressed to a some extent.

As a result of this masking strategy, some pixels of the target image is not utilized,

while computing the loss and its gradient, which are used to update the depth and

pose estimation networks.

During the experiments, it is observed that between 60 to 70% of all image pixels

are filtered out by auto-masking, which means loss computation, i.e. training, is per-

formed by only the remaining 30-40% of the all pixels of an image. After examining

the training process of Monodepth2 with the extra frame taken at ti, and ti±δ, this

approach increases the percentage of the pixels used during the training process. This

scenario is illustrated in Figure 4.8. Sample disparity estimations for δ = 5 and δ = 7

can be observed in Figure 4.6 and 4.7.

Regarding the pose estimation quality, based on Table 4.10, the best results are ob-

tained with Monodepth2 baseline for ATE and RPE metrics rather than a modified

version of Monodepth2 with extra frames, which raises an important question: How

depth estimation performance can be improved by using using extra frames, while

pose estimation becomes inferior with respect to baseline? One possible explanation

could lie in the RPE results. Although, ATE results are significantly worse than the

baseline, RPE results of the tested networks are quite close to the baseline perfor-
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mance. Since RPE is the metric for a relative pose estimator, these pose estimators

could provide poses with sufficient accuracy to train depth estimator.

Table 4.10: Different frame training full trajectory pose estimation results on

Seqeunce-9 of KITTI Odometry Dataset can be seen in the table. The best metrics

are shown in bold letters.

Method ATE (m) RPE (m)

Monodepth2 37.3393 1.2868

Monodepth2 w/ extra I±5 137.983 1.1232

Monodepth2 w/ extra I±7 195.873 1.1176

Monodepth2 w/ extra I±10 56.193 1.1302

Figure 4.6: Some images and their depth estimation when Monodepth2 is trained

with frames I±5 as extra frames.
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Figure 4.7: Some images and their depth estimation when Monodepth2 is trained

with frames I±7 as extra frames.

After inspecting the predicted images from images I±1, and I±δ, it is also observed

that the reconstructions from the earliest and latest images, i.e. I±δ, of the target

image look quite similar to the original I±δ images, whereas reconstructions from

I±1 look very similar to target image as seen in Figure 4.9.

4.3.3 Training with Four Extra Frames

After observing the improvement in Monodepth2, depth estimation training due to

two extra frames, the question remains whether adding more frames could further

improve depth estimation results. In Table 4.11, the results of this test with extra

frames I±5, and I±7 are provided. Moreover, the depth estimation results with extra
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Figure 4.8: Illustration of the filtered pixels for the input images from training split

proposed by Eigen et al. [10] in KITTI 2012 Dataset [2]. The input images are located

in the row, the selected pixels with default setting of Monodepth2 are shown in the

second row, and the selected pixels when frames taken at ti±7 are added to training

process are shown in the third row. The white pixels are selected for loss calculation

and black pixels are filtered out and not being used for training.

frame I±5, and I±7 from Section 4.3.2 is also included in this table for completeness.

In these tests I±5, and I±7 frames are included during training, since the best depth

estimation results are attained with these frames while adding only two extra frames

to the training procedure. Even though depth estimator performs significantly better

in this case compared to the baseline, depth estimation is still behind the two extra

frame cases as shown in Table 4.11.

Table 4.11: Depth estimation performance of Monodepth2 trained with four extra

frames are provided in the table. The best metrics are shown in bold letters.

Method Ab. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 0.1165 0.923 4.853 0.1932 0.8735 0.9583 0.9807

Monodepth2 w/ I±5 & I±7 0.1151 0.912 4.815 0.1929 0.8749 0.9585 0.9805

Monodepth2 w/ I±5 0.1140 0.884 4.794 0.1912 0.8784 0.9597 0.9812

Monodepth2 w/ I±7 0.1135 0.881 4.762 0.1902 0.8787 0.9604 0.9817

The reason for four extra frame method being outperformed by two extra frame

method could be erroneous pose estimation of the pose estimator. The pose esti-

mators’ pose predictions for I±5, and I±7 is observed to be very close to the identity

after a brief examination. In other words, R ≈ I and t̄ ≈ 0̄ where R, and t̄ are the

relative rotation matrix and translation vector between a target and a nearby image.
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Figure 4.9: The first row shows the images I0, the second row show I0’s prediction

from I+1, the third row shows the I+5 and the fourth row shows the prediction of I0

from I+5

This situation degrades the training of depth estimator network, since the network

takes different nearby views estimated at the same place. This situation is less prob-

lematic in two extra frame case since the pixels chosen by auto-masking process of

Monodepth2 is usually sky pixels which are far away from camera and it is not a bad

assumption for these pixels the camera movement is close to zero.

4.3.4 Mimicking Bundle Adjustment by Adding Random Frames

Direct odometry methods, such as D3VO [14] or DSO [13] apply BA by selecting

keyframes and computing the BA loss from all these selected keyframes. Almost all

unsupervised depth and pose estimation methods discussed in Chapter 3 utilizes 3

frames from the KITTI Dataset [2] sequences, which are the target, immediate next

and previous frames. With the intuition that D3VO [14] or DSO [13] uses multiple

frames to improve the depth and pose estimations, and the results presented in Section

4.2 which indicates that BA can significantly improve the pose estimation, a network

based on Monodepth2, which uses more than 3 frames, are implemented. The dif-

ference of this network from the previously discussed in Section 4.3 is that the index

difference between the target and the extra frames are selected randomly between 10

and 30. Moreover, to estimate the pose between these extra frames and the target

frame, a different approach is developed. In the first epoch of the training, relative
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Figure 4.10: Some images and their depth estimation when Monodepth2 is trained

BA mimicking method described in Section 4.3.4

poses between all frames are estimated and saved. In this first epoch, the extra frames

are not used during training. In the second and other epochs extra frames are involved

in training, and their pose is estimated by concatenating all the poses between these

extra frames and the target frames, which could save the network from the distortion

when the pose of the I±1 and I±δ are estimated by the same network. The results can

be found in Table 4.12 denoted as "BA mimicking."

Our experiments with "BA mimicking" reached a slightly worse depth estimation per-

formance than the baseline model, which indicates that the extra information provided

by frames further than ten does not boost the performance of Monodepth2, since the

scene in these frames and the target frame are quite different. Moreover, the cameras’
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automatic exposure system for recording the KITTI Dataset [2] is another issue. The

fundamental assumption for calculating the training loss of Monodepth2 is that the

same 3D points’ intensities on different images are the same, which is a legitimate

hypothesis if the input used for training is I−1, I0, and I1. However, this assumption

breaks down, if frames I±δ where |δ| > 2 are involved in training, since the automatic

exposure system of the camera adjusts the exposure on every new frame considering

the lighting conditions of the scene.

Table 4.12: Depth estimation performance when Monodepth2 is trained with BA

mimicking method and baseline are showed in the table. The best metrics are shown

in bold letters.

Method Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 0.1165 0.923 4.853 0.1932 0.8735 0.958 0.9807

BA Mimicking 0.1176 0.893 4.850 0.1949 0.8714 0.9588 0.9809

4.3.5 Discussions on Analysis 2

The simulation results in Section 4.3 indicate adding certain frame combinations to

Monodepth2 during training might improve depth estimation performance.

• Using the immediate temporal neighbors of a reference frame as input yields

the best depth estimation for Monodepth2. Such learning-based systems seem

to prefer small displacements between frames, in case of corresponding pixels

satisfying constant intensity assumption.

• Adding two extra frames generally improves the depth estimation performance,

as in Table 4.9 with the optimal result being achieved when the frame differ-

ence between the target and the extra view is equal to 7. Using wider baseline,

size of displacements and brightness change in the images become more sig-

nificant or the structure of the scene changes dramatically, preventing the extra

information to become useful.

• Training Monodepth2 with four extra frames improves the depth estimation;

nevertheless, the performance improvement is below the improvement of adding
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two extra frames, possibly due to training inefficiencies of such a larger net-

work.

• Noting the observed improvements for pose estimation due to BA utilization, a

naive approach to mimic BA is also proposed that takes multiple frames with

random time differences into a learned system. Depth estimation performance

is competitive with the baseline method, although a clear improvement is not

observed.

4.4 Analysis 3: Improving Depth and Ego-Motion Estimation with Semantic

Segmentation

The fundamental idea of the Monodepth2 and the other unsupervised depth and pose

estimation methods discussed in Chapter 3 is the assumption that the scene observed

is static. Although this assumption is valid for most of the pixels of an image in the

Eigen et al. [10] split of KITTI Dataset [2], it is not valid. The possible opportunities

for utilizing semantic segmentation is investigated to tackle this issue. Experiments

are performed with 4 different methods which are

• Method 1: Estimating pose and computing loss from only certain semantic

classes.

• Method 2: Separating the losses of each semantic class and weighting them

with learnable weights as illustrated in Figure 4.11,

• Method 3: Separating the poses of each semantic class, and weighting them

with learnable weights, reconstructing the target image with the average pose,

compute losses of each semantic class and weighting them with the same learn-

able weights as illustrated in Figure 4.12.

All images in the KITTI Dataset [2] are segmented with HRNets [67] trained on

Cityscapes Dataset [20]. This method has been chosen since the it is oone of the

best performing semantic segmentation methods in literature trained on Cityscapes

Dataset. Moreover, Cityscapes Dataset is also similar to KITTI Dataset which could

increase the accuracy of the final segmentation.

55



4.4.1 Method 1

The nature of objects found in an urban environment differs dramatically. Having

the segmentation masks of all images of KITTI Dataset empowers us to compare the

depth estimation performance on different semantic classes. These test are performed

in two ways in this section. First, the errors of each semantic classes is computed

separately in testing phase. In other words, different depth error metrics are computed

for each semantic class during the testing process. This experiment is performed with

pretrained Monodepth2 firstly and the resultant depth performance for some of the

semantic classes in Table 4.13 with Training class "Baseline". Semantic classes with

static and textured objects such as "Road", "Pavement", or "Building" classes are

the best performing classes as expected. This experiment is repeated with different

networks trained on the second part.

Second, the depth and pose estimation networks are trained by computing the loss

from only certain semantic classes. Monodepth2 is trained only computing losses

from "Road", "Building, and "Person" classes. The networks trained by only com-

puting the loss of X class will be denoted as "X" network in the rest of this section.

The resultant depth estimation performance for the networks trained on these classes

can be seen in Table 4.13 with different Training classes other than "Baseline". Best

depth estimation performance is achieved with the "Road" network amongst "Road",

"Building, and "Person" networks. "Building" networks provides a similar perfor-

mance to "Road" network; however, "Person" network performs dramatically poorer

than the others. These results are expected since "Road" and "Building" networks are

trained on static object pixels; however, "Person" network is trained pixels of mov-

ing objects. Performance decrease in "Road" and "Building" networks compared to

baseline shows that computing loss from the only a portion of the image decreases

the information fed to the networks during training. Although, the pixels providing

loss during the training is known to be static, the lack of information compared to the

baseline decreases depth estimation performance. The depth estimation performances

for these networks are also inspected for single classes that they are trained on. The

results also show that these networks are not superior than the baseline even in the

classes that they are trained on, which can be seen in Table 4.13.
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Monodepth2 is also trained by computing the loss from different combinations of dif-

ferent semantic classes as the results of the previous part indicate that one class is

not enough for beating baseline. First, Monodepth2 is trained with losses computed

on road, building, pavement, sky, outer wall, pole classes. road, building, pavement,

outer wall, and pole classes the best performing classes in baseline networks as indi-

cated in Table 4.13 with baseline training and different testing classes. Sky class is

added to these classes since a great portion of images in the KITTI Dataset is belong

to sky and it is also a static object. This experiment is denoted as "Best 6 Classes"

in Table 4.13 Next, Monodepth2 is trained by computing the loss only from static

classes, which are road, pavement, building, outer wall, fence, pole, traffic lamp, traf-

fic sign, vegetation, terrain, and sky classes. This experiment is denoted as "Static

Classes" in Table 4.13. Finally, Monodepth2 is trained by computing loss on a com-

bination of static and dynamic classes, where the loss computed from static classes

are weighted with 1.0 and the loss of dynamic classes are weighted with 0.3. The

results of this experiment is denoted as "Static & Dynamic W." in Table 4.13.

Table 4.13: Depth estimation for results of method 1 is showed in the table. Training

row indicates the semantic class combination that Monodepth2 is trained and the

"Class" row indicates which semantic class on which the network is trained. The best

metrics are shown in bold letters.

Training Class Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Baseline All 0.1165 0.923 4.853 0.1932 0.8735 0.9583 0.9807

Baseline Road 0.0701 0.204 1.991 0.0962 0.9629 0.9932 0.9977

Baseline Pavement 0.1026 0.468 3.032 0.1379 0.8947 0.9806 0.9943

Baseline Building 0.1681 1.731 6.723 0.2314 0.7430 0.9204 0.9744

Baseline Outer Wall 0.1745 1.882 6.940 0.2434 0.7546 0.9178 0.9658

Baseline Sky 0.2533 4.336 9.489 0.3161 0.6397 0.8450 0.9261

Baseline People 0.3001 6.584 10.544 0.3530 0.6157 0.8095 0.9000

Road Road 0.0811 0.252 2.167 0.1097 0.9460 0.9892 0.9958

Building Building 0.2213 2.367 7.935 0.2882 0.6216 0.8676 0.9533

People People 0.4775 9.703 18.482 0.7785 0.2134 0.4090 0.5606

Road All 0.1394 1.145 5.401 0.2161 0.8304 0.9412 0.9747

Building All 0.1744 1.396 5.797 0.2358 0.7604 0.9330 0.9756

Person All 0.4429 4.757 12.083 0.5876 0.3033 0.5608 0.7662

Best 6 Classes All 0.1249 1.017 4.911 0.1967 0.8628 0.9548 0.9798

Static Classes All 0.1259 0.946 4.818 0.1975 0.8582 0.9546 0.9795

Static & Dynamic W. All 0.1350 1.227 4.982 0.2066 0.8519 0.9511 0.9774
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Figure 4.11: A schematic of semantic weighting process of losses of different seman-

tic classes.

4.4.2 Method 2

A pretrained version High-resolution networks (HRNets) for Semantic Segmentation

[67] trained on Cityscapes Dataset [20] is adapted for semantic segmentation since

Cityscapes [20] is a similar dataset to KITTI 2012 Dataset [2], which are both au-

tonomous driving datasets.

In this method, only semantic loss weighting is implemented, and the Monodepth2

is trained with this loss configuration. In detail, the average losses corresponding

to each semantic class is computed. Then, these losses are averaged with learnable

weights. This method is illustrated in Figure 4.11
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Figure 4.12: A schematic of semantic weighting process of poses of different seman-

tic classes.

4.4.3 Method 3

Our idea here is to compute different poses for each semantic class included in the

training of HRNets [67], so the semantic masks, which include 19 different semantic

classes, are also fed to the pose estimation network of Monodepth2, and 19 different

poses are computed at the output of the pose estimation network. The final transla-

tion is computed by a weighted sum of the available translation vectors with weights

produced by a Softmax operation to ensure that all weights are positive and their sum

is equal to 1. The same is also used for averaging the rotations; however, averaging

rotations is not trivial as in the translation case. For that purpose, quaternion repre-

sentation of rotation is chosen since weighted averaging or interpolation of rotation

is more reliable when using quaternions rather than using Euler angles or axis angle

(Lie-algebra) representations. The method proposed in [68] is adapted to compute
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the average of the quaternions. First, N weighted quaternion vectors are stacked in a

4×N Q matrix as

Q =
[
w1q̄1 w2q̄2 . . . wN q̄N

]
. (4.2)

Then, the optimal average rotation expressed as quaternion is the eigenvector of QQT

corresponding to its largest eigenvalue. The weighted average translation vector can

be found as the linear combination of the estimated N translation vectors as

tavg = w1t1 + w2t2 + · · ·+ wN tN . (4.3)

After computing the average pose out of the pose network’s estimations correspond-

ing to the different classes, the losses corresponding to the different semantic classes

are also computed. Their weighted average is then computed using the softmax out-

put of the same weights used for computing the average pose. L1, L2, . . . , LN denotes

the mean losses corresponding to each semantic class. Then, the final loss becomes

L = w1L1 + w2L2 + · · ·+ wNLN . (4.4)

The process of weighted averaging the different poses estimated for other different

classes is illustrated in Figure 4.12. The results of methods 2 and 3 can be seen in

Table 4.14

Table 4.14: Depth estimation performance of Monodepth2 trained with method 2 and

3 discussed in Section 4.4. The best metrics are shown in bold letters.

Method Loss W. Pose W. Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 0.1165 0.923 4.853 0.1932 0.8735 0.9583 0.9807

Method 2 X 0.1152 0.890 4.800 0.1911 0.8754 0.9597 0.9812

Method 3 X X 0.1219 0.942 4.897 0.1965 0.8649 0.9566 0.9804

4.4.4 Discussion of Analysis 3

To conclude, a potential is observed in our methods, leveraging semantic segmenta-

tion. Semantic segmentation is critical in computing losses and training the networks

with back-propagation since it can discriminate the static and dynamic parts of a

scene. Our main conclusion is as follows
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Table 4.15: Depth estimation performance of all methods discussed in this chapter

trained on KITTI Dataset. The best metrics are shown in bold letters.

Method Abs. Rel. Sq. Rel. RMSE RMSE Log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 0.1165 0.923 4.853 0.1932 0.8735 0.9583 0.9807

Extra I±2 0.1197 0.988 4.878 0.1973 0.8703 0.9570 0.9797

Extra I±5 0.1140 0.884 4.794 0.1912 0.8784 0.9597 0.9812

Extra I±6 0.1138 0.908 4.822 0.1911 0.8770 0.9599 0.9810

Extra I±7 0.1135 0.881 4.762 0.1902 0.8787 0.9604 0.9817

Extra I±8 0.1155 0.931 4.871 0.1921 0.8772 0.9592 0.9811

Extra I±9 0.1146 0.939 4.857 0.1920 0.8779 0.9589 0.9810

Extra I±10 0.1169 0.943 4.895 0.1931 0.8751 0.9592 0.9808

Extra I±5 and I±7 0.1151 0.912 4.815 0.1929 0.8749 0.9585 0.9805

Method 2 0.1152 0.890 4.800 0.1911 0.8754 0.9597 0.9812

Method 3 0.1219 0.942 4.897 0.1965 0.8649 0.9566 0.9804

BA Mimicking 0.1176 0.893 4.850 0.1949 0.8714 0.9588 0.9809

COLMAP Pose 0.1382 1.029 5.416 0.2126 0.8232 0.9437 0.9780

IMU Pose 0.1638 1.134 5.811 0.2418 0.7580 0.9267 0.9730

• Our method 1 experiments showed that depth of static classes could be more

successfully estimated than the dynamic classes as expected.

• Training Monodepth2 on single classes does not improve the depth estimation

performance since the information fed to the network significantly decreases in

these cases.

• Training Monodepth2 with different combinations of the semantic classes per-

forms significantly better than the single class training methods. A careful

weighting scheme has the potential to improve the depth estimation.

• Separating the loss according to the semantic class pixels belonging and weight-

ing them achieved comparable results with the state-of-the-art method in depth

estimation methods,

• Estimating different poses, averaging them, and reconstructing the target image

does not improve depth estimation performance. This situation can be observed

in method 3. The depth estimation performances of all depth estimation meth-

ods discussed in this Chapter are provided in Table 4.15. The best performing

method in this table is Monodepth2 trained with two extra frames I±7.
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4.5 Conclusions on Chapter 4

In this chapter, a number of experiments and methods are proposed to develop a

greater understanding in unsupervised depth and pose estimation. Monodepth2 is

chosen as the baseline in all of our experiments since it is one of the best performing

and common unsupervised depth and pose estimation method in the literature. The

findings of this chapter can be summarized as

• Classical methods such as COLMAP can provide a better pose estimation per-

formance compared to the unsupervised DNN-based pose estimation methods.

This situation is more apparent with trajectories with loops; however, unsuper-

vised DNN-based pose estimation methods can provide a competitive perfor-

mance with trajectories without any loops.

• Training Monodepth2 with different input frame combinations reveals impor-

tant information. First training the Monodepth2 with wider baseline than the

default setting (or without frames I±1) significantly degrades the depth esti-

mation. Next, training the Monodepth2 with two extra nearby views along the

default consecutive frames improves depth estimation since extra information is

provided by these pixels. Finally, training Monodepth2 with four extra frames

also improves the depth estimation; however, this improvement is behind the

improvement of adding two extra frames.

• An image contains different semantic classes with different properties and it

is observed that the depth of some classes can be estimated more easily such

as classes with static objects and texture such as "Road" or "Building" classes.

Next, training Monodepth2 with different semantic class and weighting combi-

nations has the potential to improve depth estimation with a carefully design.

However, estimating different poses for each semantic class is not a promising

approach and it also increases the model complexity.
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CHAPTER 5

CONCLUSIONS

In this study, different aspects in training of unsupervised depth and pose estimation

networks are investigated. Initially, the pose estimation of classical SfM methods uti-

lizing BA and unsupervised learning based method are compared. The results showed

that classical SfM methods are superior in pose estimation, especially in the trajecto-

ries with loops. Next, the fact that the pose estimation performance of unsupervised

learning based can be improved by incorporating meaningful constraints.

Second, the effect of frame selection is investigated thoroughly and it is revealed that

the frame selection in this networks are crucial for the performance of the networks.

Increasing the baseline between the target and the nearby views, significantly dis-

tort the depth and pose estimation. Sufficiently small baseline should be used for a

successful training of depth and pose estimators. Next, adding extra frames to the

training enhances the depth estimation performance in most cases since extra infor-

mation is provided to the networks with this frames. Especially, it is observed that

the pixels of the extra frames corresponding to the distant parts of the scene such as

sky contribute to the training process since the filtering method used in Monodepth2

filters the pixels with unsuccessful depth estimation and the extra frames decreases

the number of filtered pixels. In addition, our experiments with excluding the previ-

ous and next frames of the target frame from the training process showed that these

frame are vital for depth and pose estimation. The performance of both depth and

pose estimation degraded dramatically when the frame difference between the target

and the nearby frames are increased.

Final experiments discussed in Chapter 4 are based on leveraging semantic segmen-

tation to enhance the unsupervised networks by utilizing the semantic information.
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These experiments can be divided into three categories as training the networks from

only certain semantic class combinations, training the networks from a weighted

combination of the losses of each semantic class, and training the networks from

a weighted combination of the losses of each semantic and pose estimation of each

semantic class. These experiments are denoted as method 1, method 2, method 3 in

Section 4.4.

Method 1 shows that training Monodepth2 by using the loss of certain semantic

classes does not improve depth estimation compared to baseline. The approaches

are based on grouping the semantic classes regarding their characteristics and weigh-

ing them to compute loss and train the networks to seem promising. They provide

competitive depth estimation compared to the baseline. The reason behind this result

could be some classes contain moving objects by their nature (e.g., car, truck, person),

which violates the rigid scene assumption utilized in the unsupervised depth and pose

estimation methods in the literature.

Method 2 extends the approach of the weighting of certain semantic classes to another

level. The average loss corresponding to each semantic class is computed in Method

2. Next, a weighted average of each loss is computed to come up with the final loss,

where the weight of each semantic class is learnable. Similar to the results attained

in method 1, competitive results compared to the baseline are attained with method 2,

and it is promising.

Method 3 extends the method 2 further. A different pose is estimated for each se-

mantic class, and the weighted average of these poses are used to reconstruct the

target image. The loss is computed by averaging the loss of each semantic class with

weights. The weights used for averaging the pose and the loss are the same, and they

are learnable. Method 3 performs poorly in depth estimation compared to the base-

line and other methods proposed in this study. The complexity of the networks is also

increased significantly in this case. Depth estimation performance of method 1 can

be seen in Table 4.13 and the depth estimation performance of method 2 and method

3 can be seen in Table 4.14. Method 1 and method 2 seem promising for possible

future works.
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APPENDIX A

COMPREHENSIVE RESULTS FOR COMPARISON BETWEEN

CLASSICAL AND DNN-BASED METHODS FOR POSE ESTIMATION

(ANALYSIS 1)

In this part of the thesis, a detailed comparison of Monodepth2 [26] and COLMAP

[1] with respect to their pose estimation performance is provided. In Section 4.2, the

comparison is presented only on Sequence-9 of the KITTI Odometry Dataset [2]. In

this section, the pose performance of Monodepth2 [26] and COLMAP [1] is com-

pared on Sequence-1,-3,-4,-5,-6,-7,-8,-9 and -10. Sequence-2 and -8 are excluded,

since COLMAP [1] cannot estimate these trajectories.

It can be observed that COLMAP [1] is superior in pose estimation in almost all

sequences, except sequence 7. However, a careful parameter setting for COLMAP

should be performed for each sequence by regarding the trajectories’ properties. The

resultant pose estimation performance for COLMAP and Monodepth for these se-

quences can be observed in Table A.1. Moreover, the plots of the trajectories can be

examined in the following figures.

(a) Monodepth2 Estimation (b) COLMAP Estimation (c) Ground Truth

Figure A.1: Trajectory estimations with Monodepth2 and COLMAP on Sequence-0

of KITTI Odometry Dataset
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Table A.1: Pose estimation performance on different sequences of KITTI Odometry

Dataset [2]. The best metrics are shown in bold letters.

Sequences Method ATE (m) RPE (m)

00 Monodepth2 85.9410 0.8944

00 COLMAP 18.1722 0.8484

01 Monodepth2 33.4207 2.3344

01 COLMAP 37.7809 0.5647

03 Monodepth2 3.1318 0.7626

03 COLMAP 1.0713 0.02922

04 Monodepth2 2.0076 1.5035

04 COLMAP 0.3687 1.4125

05 Monodepth2 26.8637 0.8815

05 COLMAP 10.8126 0.8327

06 Monodepth2 9.9668 1.1964

06 COLMAP 3.4880 1.1277

07 Monodepth2 11.3271 0.7339

07 COLMAP 35.625 0.7096

09 Monodepth2 37.3393 1.1405

09 COLMAP 4.4360 1.0857

10 Monodepth2 16.4042 0.8658

10 COLMAP 3.3588 0.8209

(a) Monodepth2 Estimation (b) COLMAP Estimation (c) Ground Truth

Figure A.2: Trajectory estimations with Monodepth2 and COLMAP on Sequence-1

of KITTI Odometry Dataset
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(a) Monodepth2 Estimation (b) COLMAP Estimation (c) Ground Truth

Figure A.3: Trajectory estimations with Monodepth2 and COLMAP on Sequence-3

of KITTI Odometry Dataset

(a) Monodepth2 Estimation (b) COLMAP Estimation (c) Ground Truth

Figure A.4: Trajectory estimations with Monodepth2 and COLMAP on Sequence-4

of KITTI Odometry Dataset

(a) Monodepth2 Estimation (b) COLMAP Estimation (c) Ground Truth

Figure A.5: Trajectory estimations with Monodepth2 and COLMAP on Sequence-5

of KITTI Odometry Dataset
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(a) Monodepth2 Estimation (b) COLMAP Estimation (c) Ground Truth

Figure A.6: Trajectory estimations with Monodepth2 and COLMAP on Sequence-6

of KITTI Odometry Dataset

(a) Monodepth2 Estimation (b) COLMAP Estimation (c) Ground Truth

Figure A.7: Trajectory estimations with Monodepth2 and COLMAP on Sequence-7

of KITTI Odometry Dataset

(a) Monodepth2 Estimation (b) COLMAP Estimation (c) Ground Truth

Figure A.8: Trajectory estimations with Monodepth2 and COLMAP on Sequence-9

of KITTI Odometry Dataset
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(a) Monodepth2 Estimation (b) COLMAP Estimation (c) Ground Truth

Figure A.9: Trajectory estimations with Monodepth2 and COLMAP on Sequence-10

of KITTI Odometry Dataset
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