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ABSTRACT
Analysing the relationships between biomolecules and the genetic diseases is a highly
active area of research, where the aim is to identify the genes and their products
that cause a particular disease due to functional changes originated from mutations.
Biological ontologies are frequently employed in these studies, which provides re-
searchers with extensive opportunities for knowledge discovery through computational
data analysis. In this study, a novel approach is proposed for the identification
of relationships between biomedical entities by automatically mapping phenotypic
abnormality defining HPO terms with biomolecular function defining GO terms,
where each association indicates the occurrence of the abnormality due to the loss
of the biomolecular function expressed by the corresponding GO term. The proposed
HPO2GO mappings were extracted by calculating the frequency of the co-annotations
of the terms on the same genes/proteins, using already existing curated HPO and GO
annotation sets. This was followed by the filtering of the unreliable mappings that could
be observed due to chance, by statistical resampling of the co-occurrence similarity
distributions. Furthermore, the biological relevance of the finalized mappings were
discussed over selected cases, using the literature. The resulting HPO2GO mappings
can be employed in different settings to predict and to analyse novel gene/protein—
ontology term—disease relations. As an application of the proposed approach, HPO
term—protein associations (i.e., HPO2protein) were predicted. In order to test the
predictive performance of themethod on a quantitative basis, and to compare it with the
state-of-the-art, CAFA2 challengeHPOprediction target protein set was employed. The
results of the benchmark indicated the potential of the proposed approach, as HPO2GO
performance was among the best (Fmax = 0.35). The automated cross ontology
mapping approach developed in this work may be extended to other ontologies as
well, to identify unexplored relation patterns at the systemic level. The datasets, results
and the source code of HPO2GO are available for download at: https://github.com/
cansyl/HPO2GO.
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INTRODUCTION AND BACKGROUND
Systematic definition of biomedical entities (e.g., diseases, abnormalities, symptoms, traits,
gene and protein attributes, activities, functions and etc.) is crucial for computational
studies in biomedicine. Ontological systems, composed of standardized controlled
vocabularies, are employed for this purpose. The Human Phenotype Ontology (HPO)
system annotates disease records (i.e., terms and definitions about diseases together
with related information) with a standardized phenotypic vocabulary (Robinson et al.,
2008; Köhler et al., 2016). HPO is composed of five independent sub-ontologies namely,
phenotypic abnormality (i.e., the main sub-ontology defining the basic qualities of
diseases), mode of inheritance (i.e., annotates diseases in terms of mendelian or non-
mendelian principles), mortality/aging (i.e., information related to age of death due to
the corresponding disease), frequency (i.e., frequency of the disease in a patient cohort)
and the clinical modifier (i.e., additional disease characterization such as lethality, severity,
etc.). Within each sub-ontology, all terms are related to each other with a parent–child
relationship, where each child term defines a specific aspect of its parent. HPO has a
directed acyclic graph (DAG) structure. The sources of the disease information in HPO
are Orphanet (Rath et al., 2012), DECIPHER (Firth et al., 2009), and OMIM (Amberger
et al., 2014) databases. Each term in the phenotypic abnormality sub-ontology define a
specific type of abnormality encountered in human diseases (e.g., HP:0001631 - atrial septal
defect). The generation of HPO terms (and their associations with diseases) are carried
out via both manual curation efforts and automated procedures (e.g., text mining). The
curation job is usually done by experts by reviewing the relevant literature publications
along with the disease centric information at various biomedical data resources. For each
association between a disease term and an HPO term, there is an evidence code tag to
specify the source of the information (i.e., curated or automated). The evidence codes
used in HPO are IEA (inferred from electronical annotation), PCS (published clinical
study), ICE (individual clinical experience), ITM (inferred by text mining), TAS (traceable
author statement). As of January 2018, the growing library of HPO contains nearly 12,000
phenotype terms, providing more than 123,000 annotations to 7,000 different rare (mostly
Mendelian) diseases and the newly added 132,000 annotations to 3,145 common diseases
(Groza et al., 2015). A long-term goal of the HPO project is for the system to be adopted for
clinical diagnostics. This will both provide a standardized approach to medical diagnostics
and present structured machine readable biomedical data for the development of novel
computational methods. Apart from phenotype-disease associations, which is the main
aim of the HPO project, HPO also provides phenotype-gene associations by using the
known rare disease—gene relations (i.e., the information which is in the form of: ‘‘certain
mutation(s) inGene X causes the hereditaryDisease Y ’’), directly using the abovementioned
disease centric resources (e.g., Orphanet and OMIM). The disease-gene associations in
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the source databases are produced by expert curation from the publications of clinical
molecular studies. The associations between HPO terms and biomolecules, together with
the downstream analysis of these associations, help in disease gene identification and
prioritization (Köhler et al., 2009). With the mapping of phenotypes to human genes, HPO
currently (January 2018) provides 122,166 annotations between 3,698 human genes and
6,729 HPO terms.

The Gene Ontology (GO) is an ontological system to define gene/protein attributes
with an extensive controlled vocabulary (Gene Ontology Consortium, 2014). Each GO
term defines a unique aspect of biomolecular attributes. Similar to other ontological
systems, GO has a directed acyclic graph (DAG) structure, where terms are related to each
other mostly with ‘‘is_a’’ or ‘‘part_of’’ relationships. GO is composed of three categories
(i.e., aspects) in terms of the type of the defined gene product/protein attribute such as: (i)
molecular function—MF (i.e., the fundamental function of the protein at the molecular
level; e.g., GO:0016887—ATPase activity), (ii) biological process—BP (i.e., the high level
process, in which the protein plays a role; e.g., GO:0005975—carbohydrate metabolic
process), and (iii) cellular component—CC (i.e., subcellular location, where the protein
carries out its intended activity; e.g., GO:0016020—membrane). Similar to the other
ontological systems, the basic way of annotating a gene or protein with a GO term is
the manual curation by reviewing the relevant literature. GO also employs the concept
of ‘‘evidence codes’’, where all annotations are labelled with descriptions indicating the
quality of the source information used for the annotation (e.g., ECO:0000006 - experimental
evidence, ECO:0000501 – IEA: evidence used in automatic assertion). UniProt-GOA (Gene
Ontology Annotation) database (Huntley et al., 2015) houses an extensive collection of GO
annotations for UniProt protein sequence and annotation knowledgebase records. In the
UniProtKB/Swiss-Prot database (i.e., housingmanually reviewedprotein entrieswith highly
reliable annotation) version 2018_02, there are a total of 2,850,015 GO term annotations
for 529,941 protein records; whereas in UniProtKB/TrEMBL database (i.e., housing mostly
electronically translated uncharacterized protein entries) version 2018_02, there are a
total of 189,560,296 GO term annotations for 67,760,658 protein records. Most of the
annotations for the UniProtKB/TrEMBL database entries are produced by automated
predictions (UniProt Consortium, 2017).

Due to the high volume of experimental research that (i) discover new associations
between biomolecules and ontological terms, and (ii) produce completely new and
uncharacterized gene/protein sequences, curation efforts are having difficulty in keeping
up with the annotation process. To aid manual curation efforts, automated computational
methods come into play. These computational methods exploit the approaches and
techniques widely used in the fields of data mining, machine learning and statistics to
produce probabilistic associations between biomedical entities. The Critical Assessment of
Functional Annotation (CAFA) challenge (Radivojac et al., 2013; Jiang et al., 2016) aims to
evaluate the automated methods that produce GO and HPO term association predictions
for protein entries, on standard temporal hold-out benchmarking datasets. Now after its
third instalment, CAFA organization has already brought together a research community,
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dedicated to elevate the capabilities of automated function prediction approaches closer to
the level of expert review.

Protein function prediction using GO terms is a very active area of research where
various types of approaches utilizing: amino acid sequence similarities (Hawkins et al.,
2009), 3D structure analysis (Roy, Yang & Zhang, 2012), semantic similarities between the
ontological terms (Falda et al., 2012), gene expression profiles (Lan et al., 2013), protein–
protein interactions—PPIs (Wass, Barton & Sternberg, 2012), shared functional domains
and their arrangements (Fang & Gough, 2012; Finn et al., 2016; Doğan et al., 2016) and
ensemble approaches that exploit multiple feature types (Wass, Barton & Sternberg, 2012;
Cozzetto et al., 2013; Lan et al., 2013; Rifaioglu et al., 2018) are employed to model the
proteins and to transfer the functional annotations from characterized proteins (i.e., the
ones that have reliable annotation) to the uncharacterized ones with highly similar features.
Known GO associations of genes and proteins are also used in different contexts in the
literature. For example, the method ‘‘MedSim’’ uses the semantic similarities between
GO terms for the prioritization of disease genes (Schlicker, Lengauer & Albrecht, 2010).
The method ‘‘spgk’’ uses a shortest-path graph kernel to compute functional similarities
between gene products using their GO annotations and the term relations on the GO DAG
(Alvarez, Qi & Yan, 2011).

The automated prediction of the associations between human genes/proteins and
phenotype/disease defining ontological terms is also a non-trivial task. The resulting
predictions can then be utilized to identify large-scale novel disease-gene-pathway/system
relations. The identification of direct disease-gene relations is a widely studied topic
(Moreau & Tranchevent, 2012). A considerable amount of the existing literature about
disease-gene associations involve the calculation of semantic similarities between gene
products, based on the already existing ontological term annotations (Washington et al.,
2009; Smedley et al., 2013;Deng et al., 2015; Rodríguez-García et al., 2017). For example, the
method ‘‘PhenomeNET’’ was employed to generate mappings between the highly related
terms across similar ontological systems (Rodríguez-García et al., 2017) such as the HPO,
Mammalian Phenotype Ontology—MP (Smith, Goldsmith & Eppig, 2005), Human Disease
Ontology—DO (Kibbe et al., 2014) and Orphanet Rare Disease Ontology—ORDO (Vasant
et al., 2014) for discovering novel gene-disease associations. However, semantic similarity
based approaches sometimes suffers from the low coverage of the HPO annotations on the
protein space. The authors of two recent studies have investigated this issue (Kulmanov
& Hoehndorf, 2017; Peng, Li & Shang, 2017). In this context, increasing the coverage of
HPO annotations by predicting gene/protein-HPO term associations may help semantic
similarity based association studies.

There are only a few examples of HPO term-protein association prediction methods in
the literature. In the ‘‘dcGO’’ method, the authors mapped ontological terms (including
HPO) to protein domains, which are the functional units, and transferred the ontology
mapping to proteins according to known domain annotations (Fang & Gough, 2012). The
objective in the ‘‘PHENOstruct’’ method is the prediction of gene-HPO term associations
using heterogeneous biological data consisting of protein–protein interactions (PPIs),
GO annotations, literature relations, variants and known HPO annotations, together
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with a structured SVM classifier (Kahanda et al., 2015). In this sense, it is interesting
see another method that utilize already existing GO annotations to predict HPO terms.
Nevertheless, according to the authors, the contribution of the GO features to the overall
predictive performance of PHENOstruct was minimal. A text mining based method
‘‘EVEX’’, was employed for protein-HPO term association prediction. Originally, EVEX
utilizes text mining approaches for large-scale integration of heterogeneous biological data
and event extraction to generate a structured resource of relations, to be used in pathway
curation (Van Landeghem et al., 2013). In the context of HPO term prediction, EVEX
scans the literature to detect proteins and phenotypic terms that co-occur on the same
text corpus, and associates them with each other based on certain criteria. According to
the CAFA2 challenge results (Jiang et al., 2016), the participating method EVEX was the
top performer. A network based HPO prediction method was the ‘‘RANKS’’, in which
the authors developed a flexible algorithmic scheme for heterogeneous biological network
analysis, and used previously generated functional Interaction and functional human gene
networks for gene-HPO term association prediction (Valentini et al., 2016). In a recent
study, the authors proposed two hierarchical ensemble methods: (i) the Hierarchical
Top-Down, and (ii) the True Path Rule, for gene-HPO term associations; in which the
hierarchical graph structure of HPO has been utilized together with the RANKS algorithm
and the SVM classifier (Notaro et al., 2017).

The text mining approach is highly effective for predicting gene-disease relations in
disease gene prioritization studies (Krallinger, Valencia & Hirschman, 2008). However, this
approach suffers from low coverage in some cases, due to knowledge limitation in the
literature. If a certain abnormality and a gene/protein has not been studied together in the
same framework yet, it is often not possible to identify the relation. Network basedmethods
are proposed on top of either text-mining results, protein–protein interactions and/or
pathway data (Bromberg, 2013;Guney & Oliva, 2014;Guala & Sonnhammer, 2017) to detect
indirect relations, which greatly increased the coverage; nevertheless, they still moderately
rely on the previously reported relations. It is also important to note that any predictive
approach is limited by the quality and the coverage of its source information. However,
the predictive output of different approaches often complement each other, contributing
to fill different portions of the missing information in the knowledge space. Due to this
reason, developing novel approaches to complement the conventional methods is crucial
for the automated ontological association prediction. The observed low performance of
even the best methods in the HPO term prediction track of the CAFA2 challenge displayed
the necessity of novel approaches for the biomedical entity relation prediction.

In this study, a new approach ‘‘HPO2GO’’ is proposed to produce phenotypic
abnormality HPO term associations to both GO terms and human genes/proteins, with
the analysis of co-annotation fractions between the HPO and GO term combinations. For
this, HPO and GO terms that are continually co-occurring on different genes/proteins
as annotations are linked to each other (i.e., the system training step), entitled the
‘‘HPO2GO mappings’’. After that, proteins with a linked GO term annotation receives the
corresponding HPO term as the phenotypic term prediction (i.e., the application step),
entitled the ‘‘HPO2protein predictions’’. The idea here is to associate a HPO term Y with a
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GO term X in the sense that: ‘‘if a protein loses its function defined by the GO term X (or
at least a reduction in the defined functionality) as a result of a genetic mutation, the loss
of function may cause the disease, which is defined by the phenotype term Y ’’. This idea
is based on the nature of annotating genes/proteins with HPO terms; for example, only
the functionally perturbed variants of these genes/proteins (e.g., disease causing variants)
are associated with the relevant genetic diseases and their defining phenotypic abnormality
terms. Mutations often lead to diseases by causing either a loss of the existing functionality
or a gain of new functionality in the gene products. As a result, if the HPO term Y and the
GO term X are observed to be frequently co-occurring on different proteins, then the lost
function, which gave way to the corresponding disease may be the one defined by the GO
term X. This logic would make biological sense especially when the corresponding function
is a large-scale biological process. This approach exploits the significantly higher coverage
of GO term annotations for genes/proteins, compared to the HPO term annotations; to
produce novel gene/protein - HPO term associations.

In order to test the biological relevance of this approach, selected HPO2GO mappings
weremanually examined. Additionally, the proposedmethodologywas employed to predict
HPO terms for the human protein target dataset provided in the CAFA2 challenge. Using
the benchmark set, the prediction performance was calculated and compared with the state-
of-the-art HPO prediction methods. Another set of HPO2GO mappings were generated
for this test, using the temporal hold-out training data provided in CAFA2. Finally, the up-
to-date HPO2GO mappings were employed to generate HPO term predictions to human
protein entries in the UniProtKB/Swiss-Prot database (i.e., HPO2protein predictions). The
training and test datasets, along with the source code of the proposed methodology and
the analyses are available for download at https://github.com/cansyl/HPO2GO.

METHODS
Dataset construction
To generate the training sets: first, gene to HPO term association file was
downloaded from the HPO web-site (January 2017 version of the file named:
‘‘ALL_SOURCES_ALL_FREQUENCIES_ genes_to_phenotype.txt’’). This file contained
153,575 annotations between 3,526 human genes and 6,018 HPO terms. This file is shared
in the HPO2GO repository with the filename: ‘‘HPO_gene_to_phenotype_annotation_01
_2017_ALL_SOURCES_ALL_FREQUENCIES.txt’’. These gene-phenotype associations are
generated as a part of the HPO project by merging two source files: first, the gene-disease
associations provided in the incorporated disease centric databases (e.g., OMIM and
Orphanet); and second, the disease-phenotype associations generated by HPO. In HPO,
‘‘genes_to_phenotype’’ file only contains the asserted (i.e., specific) annotations to genes;
whereas ‘‘phenotype_to_genes’’ file contains all annotations propagated through the root
of the HPO DAG, according to the true path rule. As a result, parents of the asserted terms
are included as well. In this study, the asserted annotations are used (in terms of HPO)
at the input level in order to avoid the propagation of potential false positive annotations
that may be presented in the source dataset. This application usually comes with the cost
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of increased number of false negatives; however, avoiding the potential false positives is
considered more important here.

In order to generate the second training dataset, all GO term annotations to the
human proteins in UniProtKB with the manually assigned (curator assigned) evidence
codes (i.e., EXP, IDA, IPI, IMP, IGI, IEP, IBA, IC, IKR, ISS, NAS, ND and TAS) were
downloaded from the UniProt-GOA database 2017_01 version, using the QuickGO
browser (filename: ‘‘GOA_UniProt_human_protein_annotation.tsv’’). The reason behind
not using electronically assigned annotations (i.e., evidence code: IEA) was that these
annotations have a reduced level of annotation reliability compared to the curator assigned
ones; as a result, they may contain erroneous cases (i.e., false positives). After eliminating
the repeating (i.e., redundant) annotations, the finalized file contained 179,651 GO
annotations between 18,577 unique human genes and 14,632 GO terms (filename of the
finalized GO annotation file: ‘‘GO_annot_human_proteins_UniProtGOA_01_2017.txt’’).
An additional column containing the corresponding HGNC symbols (i.e., gene symbols)
of the coding genes was also included in the downloaded GO annotation file. This column
was later used to combine the GO annotations with the HPO annotations, since the HPO
annotation file includes the gene symbols.

Applied methodology
The proposed methodology is divided into two steps: (i) training of the system (i.e., the
generation of the HPO2GO mappings), and (ii) the application step (i.e., the prediction of
HPO term-protein associations – HPO2protein, using the previously generated HPO2GO
mappings).

Figure 1 represents the complete HPO2GO mapping (i.e., training) procedure. For the
training of the system, first, the HPO and GO annotation datasets were prepared (Figs. 1A
and 1B) and the initial HPO-GO mappings were generated (Fig. 1C) by identifying the
genes/proteins shared between individual HPO and GO terms (i.e., the cases where HPO
and GO terms were co-annotated to the same genes/proteins). This mapping has generated
1,433,208 unique pairs between 6,005 HPO terms and 9,685 GO terms. At this point, it was
observed that some of GO and HPO terms were annotated to high number of proteins, and
it was highly probable for them to co-occur on the same protein once or twice just by chance.
In order to eliminate these cases, a filtering procedure was required. For each HPO-GO
term pair, a co-occurrence similarity measure, inspired from an information-theoretic
definition of similarity (Lin, 1998), has been calculated. The co-occurrence similarity
formulation is given in Eq. (1).

SHPOi, GOj =
2∗NG HPOi&GOj

NG HPOi+NG GOj
. (1)

Here, SH POi,GOj is the co-occurrence similarity between the HPO term ‘‘HPOi’’ and
the GO term ‘‘GOj’’, NG HPOi&GOi is the number of genes/proteins where these terms are
annotated together, NG HPOi is the total number of genes with the annotation ‘‘HPOi’’, and
NG GOi is the total number of genes with the annotation ‘‘GOi’’.
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Figure 1 Schematic representation of the whole HPO2GOmapping (i.e., training) procedure. (A) The
source GO annotation dataset; (B) the source HPO annotation dataset; (C) initial mapping of the HPO
and GO terms together with the parameter calculation and plotting the co-occurrence similarity distribu-
tions; (D) generation of the randomised annotation files and their mapping, and co-occurrence similarity
distribution plotting for the random mappings; (E) statistical resampling (via KS-test) of the mappings
using the co-occurrence similarity distributions, selection of the thresholds, generation of the finalised
HPO2GO mappings with the elimination of unreliable mappings considering the selected threshold
values.

Full-size DOI: 10.7717/peerj.5298/fig-1
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Figure 2 Representation of the initial HPO-GOmapping process. Representation of the initial HPO-
GO mapping process together with the calculation of co-occurrence similarities (S) and the number of
genes with co-occurring annotations (n), on a toy example.

Full-size DOI: 10.7717/peerj.5298/fig-2

The mapping process and the co-occurrence similarity calculation are shown in
Fig. 2 with a toy example. Following the calculation of the co-occurrence similarities
between all HPO-GO pairs, a thresholding operation was applied in order to distinguish
between relevant mappings and the random ones. Two parameters were used for the
thresholding operation: (i) the co-occurrence similarities: S, and (ii) the number of genes
with co-occurring annotations: n. The aim behind employing a second parameter (i.e., n)
was to eliminate the potential random pairing cases, where the co-occurrence similarity is
still high. These cases are rare; however, it is still possible to observe a few of them especially
when n is very small, due to extremely high number of term combinations. In Fig. 2, this
situation is represented on the toy example, here SHPOD,GO4 is equal to SHPOB,GO3; however
theHPOD-GO4 mapping is probably less reliable compared toHPOB-GO3 since nHPOD,GO4
is equal to 1.

Statistical resampling was used to determine the optimal parameter values (to be used
as thresholds), that separate meaningful mappings from random ones. A permutation (i.e.,
randomization) test was constructed for this purpose. At this point, a randomizedHPO-GO
term mapping table was required, which was generated (Fig. 1D) by first, shuffling the
indices of the original ‘‘HPO vs. gene’’ and ‘‘GO vs. gene’’ annotation tables; and second,
calculating both the randomized co-occurrence similarities (i.e., SR) and the number of
genes with co-occurring annotations (i.e., nR) for each random HPO-GO mapping. For
each arbitrarily selected S (i.e., S >0, S ≥ 0.1, S ≥ 0.2, . . . , S ≥ 0.6) and n (i.e., n ≥ 1, n ≥
2, . . . , n ≥ 5) threshold value combination, the original GO-HPO mappings with lower
than the threshold S and n values were deleted and a co-occurrence similarity distribution
histogram was plotted using the remaining mappings (i.e., histograms plots in Fig. 1 and in
Fig. 3). The same procedure was applied for the randomized mapping set as well. Finally,
the Kolmogorov–Smirnov test (KS test) (Lilliefors, 1967;Hollander, Wolfe & Chicken, 2013)
is employed to calculate a test statistic for estimating whether the samples from the random
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Figure 3 HPO-GO initial mappings co-occurrence similarity distributions. Each plot is drawn for a
different value of the number of co-annotated genes (i.e., n): (A) n≥ 1; (B) n≥ 5; (C) n≥ 25; (D) n≥ 75.

Full-size DOI: 10.7717/peerj.5298/fig-3

and the original sets (at each S and n selection) are from the same distribution or not. KS is a
nonparametric test of 1-dimensional probability distributions that can be used to compare
two samples, considering the quantized distance between the samples. The null hypothesis
states that the two samples are drawn from the same distribution. Here, the distribution
(i.e., histogram) of the S values for the original and the randomized mapping sets represent
the two samples. The reason behind using histograms instead of the actual S values was that,
both high and low S values were presented in both distributions; as a result, the significance
test by checking sample distances approach would not work. However, the frequencies of
these high and low S values are different from each other in the original and the random
distributions. If the null hypothesis is accepted at a selected threshold value pair (S and
n), which means that the distributions are not statistically different from each other, then
it is concluded that the selected thresholds failed to eliminate the random pairings in the
original mapping (i.e., a higher threshold is required). The lowest threshold values, where
the samples from the two distributions became significantly different from each other, were
selected as the official thresholds. Excessive threshold values were not considered in order
not to eliminate too many GO-HPO mappings. After the determination of the parameter
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values (i.e., S and n thresholds), the HPO2GO mappings were finalized, which ended the
training process.

An alternative to the statistical resampling methodology used here would be employing a
direct approach such as an exact test (e.g., Fisher’s exact test), and to calculate a significance
value for each HPO-GO mapping individually. The advantage of this approach would
be accepting or rejecting the null hypotheses specific to each mapping (as opposed to
finding a global significance using the whole data at once, as applied in this study).
The main disadvantage of this approach would be the diminished statistical power to
calculate significance values for the mappings where the number of instances are too low.
Unfortunately, this is the case for most of the HPO-GO mappings as the mean number of
occurrences (for all HPO-GO mappings) in the original or in the random sets were 1.77
and 1.48, respectively. As a result, the direct approach was not considered in this study.

HPO2protein prediction step was a simple procedure, where query proteins were
annotated with the HPO terms, by taking their already existing GO annotations into
account. HPO2GO mappings were employed for this purpose. There were a total of three
application runs in this study using: (i) CAFA2 targets as the query set (for the performance
tests and for the comparison with the state-of-the-art), (ii) CAFA3 targets as the query set
(to officially participate in the CAFA3 challenge), and (iii) all human protein entries in the
UniProtKB/Swiss-Prot database (to generate the HPO2protein predictions).

Performance evaluation
In this study, it was not possible to use a standard fold based cross-validation to measure
the performance and to determine the parameter values in the training procedure, since
in most cases, the number of genes/proteins that have a co-occurring HPO-GO term
annotations were extremely low. As a result, it was not impossible to separate the samples
into training and validation sets. Instead, the optimal parameter values were determined
by using statistical resampling. However, a performance test was still required in order to
assess the success of the proposed approach. For this, CAFA2 challenge benchmark set was
employed. Due to the fact that CAFA2 challenge was long before the analysis done in this
study, HPO2GOmappings were re-generated using both the GO andHPO annotation data
from January 2014. This was followed by the production of the HPO-protein association
predictions on the CAFA2 target gene set. This analysis both served as a performance
test with the temporal hold-out data (one of the hardest and most informative tests for
predictivemodels) and a performance comparisonwith the state-of-the-art (i.e., otherHPO
prediction methods participated in CAFA2). The most basic definitions of the evaluation
metrics used in this test; recall, precision, Fmax and minimum semantic distance (Smin)
are shown in Eqs. (2)–(5).

Rcτ i=
TPτ i

TPτ i+FNτ i
(2)

Prτ i=
TPτ i

TPτ i+FPτ i
(3)
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Fmax = max
i=1...N

{
2∗Prτ i ∗Rcτ i
Prτ i+Rcτ i

}
(4)

Smin= min
i=1...N

{√
Ru2τ i+Mi2τ i

}
. (5)

In Eqs. (2)–(4); TPτ i, FN τ i, FPτ i, Rcτ i and Prτ i represent the number of true positives,
the number of false negatives, the number of false positives, recall and precision values,
respectively; at the i th probabilistic score threshold (τi). Fmax correspond to themaximum
of the F-score values (i.e., harmonic mean of precision and recall, shown inside the curly
brackets in Eq. (4)) calculated for each arbitrarily selected probabilistic score threshold.
i= 1...N represents there areN different arbitrarily selected probabilistic score thresholds.
Higher Fmax values indicate higher performance. Ruτ i and Miτ i in Eq. (5) corresponds
to remaining uncertainty and normalized misinformation at the ith probabilistic score
threshold (τi), respectively. Smin is the minimum semantic distance. Lower Smin indicate
higher performance. Also, a weighted version of the Fmax measure has been calculated.
Weighting procedure was applied using the information content of each ontology term;
so that, more informative terms obtained higher weights. Information regarding the
calculation of remaining uncertainty, misinformation and term based information contents
can be found in (Clark & Radivojac, 2013) and in (Jiang et al., 2016).

In the proposed method, probabilistic scores for each HPO-protein association
prediction is calculated using the term co-occurrence similarity scores in Eq. (1). If
the mapping between the terms HPOi and GOj received the co-occurrence similarity score
SHPOi,GOj , then all proteins that receive the HPOi prediction due to the presence of GOj
annotation obtain the probabilistic prediction score: SHPOi,GOj . The calculation of the
score in Eq. (1) is set to range between 0 and 1; as a result, it can directly be used as a
probabilistic score. Apart from that, probabilistic score thresholds represent values, under
which the predictions are discarded. This way, a different set of predictions are given for
each arbitrarily selected probabilistic score threshold, leading to different precision and
recall values. It is important to note that, probabilistic score thresholds are different from
the thresholds we used to filter out unreliable HPO2GO mappings during the training
process. The probabilistic score thresholds are used here (i.e., after the production of
HPO2protein predictions) to produce binary predictions from continuous prediction
scores, to be able to calculate performances. More details regarding the CAFA2 evaluation
metrics are given in (Jiang et al., 2016).

RESULTS
Statistical analysis of the mappings
The initial HPO to GO mappings were generated according to the procedure explained
in the ‘Methods’ section (Fig. 2). The initial mapping of the original set resulted in
1,433,208 mappings between 6,005 HPO terms and 9,685 GO terms. The same procedure
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Table 1 Statistics of the initial (i.e., raw) original and randomized HPO-GOmappings (n≥ 1).

S # of mappings # of mapped HPO terms # of mapped GO terms

Original
mapping

Random
mapping

Original
mapping

Random
mapping

Original
mapping

Random
mapping

= 1 2,433 1,898 844 877 1,108 1,265
≥0.9 2,440 1,898 848 877 1,109 1,265
≥0.8 2,658 1,899 962 878 1,179 1,266
≥0.7 2,805 1,899 1,028 878 1,212 1,266
≥0.6 7,355 5,249 1,941 1,653 2,577 2,844
≥0.5 8,075 5,252 2,188 1,655 2,712 2,847
≥0.4 15,462 9,724 3 014 2,243 4,053 4,207
≥0.3 32,393 21,615 4,082 3,017 6,011 6,081
≥0.2 63,439 43,593 5,032 3,662 7,569 7,490
≥0.1 181,048 134,038 5,920 5,199 8,884 9,005
>0.0 1,433,208 1,543,917 6,005 5,995 9,685 9,685

for the randomized set produced 1,543,917 mappings between 5,995 HPO terms and
9,685 GO terms. The initial HPO-GO mappings for both the original and the randomized
sets are available for download in the repository of the study (respective filenames:
‘‘HPO_GO_Raw_Original_Mapping.txt’’ and ‘‘HPO_GO_Random_Mapping.txt’’). It was
expected that themappings generated from the random set would have lower co-occurrence
similarity values on average compared to the original set mappings; in other words, they
would contain less number of mappings for a particular co-occurrence similarity value.
Table 1 displays the comparison of the number of mappings for different co-occurrence
similarity values, between the original and the randomized sets. As observed from Table 1,
when S >0 there is no significant difference between the mappings; however as S is
increased, the difference between the mappings becomes clear. Also, when S is increased,
the number of mapped HPO and GO terms were decreased since many terms did not have
any mappings that satisfied the stringent S values. The parameter n was not taken into
account while calculating the statistics in Table 1 (i.e., n ≥ 1 for all values in the table).

The histograms in Fig. 3 display the co-occurrence similarity distributions (i.e., S) for
arbitrarily selected n values. As observed from the histograms, when the mappings with low
n values are eliminated, the distributions shift to the right (i.e., the mean of S increases),
which can be interpreted as the mappings became more reliable. However, excessive values
of n thresholds leave only a few mappings to work with, especially at n= 25 and n= 75
(please refer to the number of mappings at the vertical axis of Figs. 3C and 3D). Histograms
in Fig. 3 also show that thresholding the mappings using only n (not using S at all) would
not be sufficient because there are mappings with very low S values even at very high
n thresholds (i.e., 25 and 75). This observation verified the decision to use both of the
parameters for the filtering operation. At this point, the statistical resampling (i.e., KS test)
was applied since it was not possible to determine the optimal n threshold by just manually
checking the histograms.
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Table 2 KS test significance values for the comparison of original vs. randomized distributions at dif-
ferent co-occurrence similarity (S) and the number of co-annotated genes (n) thresholds.

KS test statistic Co-occurrence similarity threshold

S> 0 S≥ 0.1 S≥ 0.2 S≥ 0.3 S≥ 0.4 S≥ 0.5 S≥ 0.6

n≥ 1 0.6882 0.6884 0.4536 0.2366 0.3921 0.3484 0.3113
n≥ 2 0.0423 0.0057 0.0005 0.0001 0.0002 0.0038 NaN
n≥ 3 0.2636 0.0045 0.0000 NaN NaN NaN NaN
n≥ 4 0.2830 0.0039 0.0000 NaN NaN NaN NaN

# of co-annotated
genes threshold

n≥ 5 0.3349 0.0105 0.0000 NaN NaN NaN NaN

In order to find the minimum S and n values that significantly separate the original
mapping from the randomized mapping, 35 different distributions, all combinations of
the selected n (i.e., n ≥ 1, 2, . . . , 5) and S (i.e., S > 0, S ≥ 0.1, . . . , 0.6) values, were prepared
and tested individually against the co-occurrence distribution of the random mapping,
generated with the same S and n thresholds. This test resulted in 35 different p-value
calculations and the minimum parameter values that satisfied the statistical significance
(i.e., rejection of the null hypothesis, which states that the two samples are from the same
distribution) were selected. Table 2 displays the significance results of all KS tests. The
cells with ‘‘NaN’’ indicate the cases, where the test could not be completed due insufficient
number of samples to calculate the statistic. The incomplete tests did not constitute problem
since the aim here was observing the minimum threshold values, where the distributions
significantly diverge from each other (NaNs are located far away from this point). In
Table 2, the cell with the p-value written in bold font (i.e., ∼0.0057) signifies the point,
where the corresponding thresholds n ≥ 2 and S ≥ 0.1 yielded the required significance
(p-value < 0.01); and thus, these values were selected as the finalized thresholds. This
means that, all of the mappings with n < 2 and S< 0.1 were considered unreliable and
eliminated from the initial HPO-GO mappings.

Figure 4 displays the total number of uniquemappings (vertical axis) with co-occurrence
similarity values greater than the corresponding threshold value (horizontal axis), for the
original and the randomized distributions on the blue and red coloured curves, respectively.
Figure 4A shows the plot for the combinationwith greater than or equal to one co-annotated
gene (i.e., n ≥ 1), Fig. 4B displays the same value for n ≥ 2, Fig. 4C and D for n ≥ 3 and 4;
respectively. The differences between Figs. 3 and 4 is that: (i) in Fig. 4 cumulative number
of mappings are given (i.e., all mappings left after thresholding with S≥ 0.1,0.2,...),
whereas in Fig. 3, the number of mappings that fall into each S bin is given; and (ii) in
Fig. 4, plots are given for n ≥ 1, 2, 3 and 4 since the aim was to display the curves around
the selected threshold n value; whereas in Fig. 3, there are plots for n ≥ 1, 5, 25 and 75 to
visually indicate the distribution shifts especially at high n values (i.e., n= 25 and n= 75).
Figure 4 was drawn as a visual representation of the likeness between the original and
the randomized distributions at different parameter selections. As observed from Fig. 4,
the distributions diverged from each other at n ≥ 2, which also is consistent with the KS
test results. Considering the co-occurrence similarity parameter, S ≥ 0.1 produced a clear
separation between the original and the randomized distributions as long as n is greater
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Figure 4 Cumulative plots displaying the number of HPO-GOmappings for the original (blue
curve) and the randomized (red curve) distributions.Horizontal axis displays the arbitrarily selected
co-occurrence similarity thresholds (i.e., τS), and the vertical axis represents the logarithm of the total
number of mappings left after the application of the corresponding threshold. Each plot is drawn for a
different value of the number of co-annotated genes (i.e., n). As the threshold (i.e., the minimum required
co-occurrence similarity value to keep a mapping in the system) increases more mappings are eliminated;
thus, a monotonic decrease was observed for all plots.

Full-size DOI: 10.7717/peerj.5298/fig-4

than 1. Following the HPO-GO mapping elimination according to the selected thresholds,
finalized HPO2GO mappings contained 45,805 associations between 3,693 HPO terms
and 2,801 GO terms. HPO2GO mappings are available for download in the repository of
the study (filename: ‘‘HPO2GO_Finalized_Mapping.txt’’).

It was only possible to use a small portion of the input GO annotations for the generation
of the HPO2GO mappings because the number of HPO annotated genes were only 3,526;
whereas, the number of GO annotated human genes were 18,577. Since mappings can
be done over the genes/proteins with co-occurring GO and HPO annotations, only 3,526
genes/proteins were used in the process. The remaining 15,051 human genes with GO
annotations were only used in the application step (i.e., HPO2protein), to predict HPO
term associations.

Comparison of HPO2GO with the manual HPO-GO associations
As a part of the main HPO project, a sub-set of the HPO terms has been mapped to
the relevant terms from different ontologies (e.g., anatomy, Gene Ontology process
or cell type) to yield semantic interoperability with these systems. Finalized HPO2GO
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mappings were compared with these manual GO associations in order to observe the
correspondence. The manual mappings are available in the ‘‘hp.owl’’ ontology file in
the HPO repository. From the most up to date version (03_2018) of the owl file, the
corresponding associations have been extracted and stored in the HPO2GO repository
with the filename: ‘‘HPO_manual_GO_associations_03_2018.txt’’. There were 489 manual
associations between 488 HPO terms and 239 GO terms, which was significantly lower
compared to the HPO2GOmappings (i.e., 45,805 mappings between 3,693 HPO terms and
2,801 GO terms). Considering the most frequent GO terms in these manual associations,
71 HPO terms were associated with the GO term ‘‘ossification’’ (GO:0001503), 51 HPO
terms were associated with the GO term ‘‘inflammatory response’’ (GO:0006954) and
37 HPO terms were associated with the GO term ‘‘pigmentation’’ (GO:0043473). The
comparison of manual associations with HPO2GO mappings have revealed that nearly
40% of the HPO terms in the manual associations were also mapped to at least one
GO term in HPO2GO. When the same calculation was done to reveal how many of the
HPO terms in HPO2GO were also in the manual associations, the result was only 5%.
The same correspondence results for GO terms were 35% and 3%, respectively. Finally,
the correspondence between the actual HPO-GO mappings has been calculated. Only
23 out of 489 manual associations were retrieved by HPO2GO. An inspection was done
to reveal the possible reasons behind the low correspondence, and it was found that,
the low number of gene annotations of either the corresponding HPO term or the GO
term was the main reason. However, in many cases, an ancestor of the corresponding
HPO or GO term was able to be mapped. For example, there was a manual association
between ‘‘epididymitis: the presence of inflammation of the epididymis’’ (HP:0000031) and
‘‘inflammatory response’’ (GO:0006954). HPO2GO managed to retrieve an association
between ‘‘epididymitis’’ (HP:0000031) and ‘‘defense response’’ (GO:0006952), which
is the direct parent term (with ‘‘is_a’’ relationship) of ‘‘inflammatory response’’
(GO:0006954). The ‘‘inflammatory response’’ GO term could not be mapped to any
HPO term by HPO2GO since this term was not directly annotated to any gene/protein in
UniProt-GOA.

Performance comparison with the state-of-the-art
The test for the comparison with the state-of-the-art had two objectives: (i) measuring the
performance of the method on a temporal hold-out dataset to observe the relevance of the
proposed approach, and (ii) investigating how the proposed method competes with the
best performing methods in the literature. For this, we have re-generated the HPO2GO
mappings using the CAFA2 training set, which contained 133,175 annotations between
5,586 HPO terms and 4,418 proteins, from January 2014. Whereas, CAFA2 evaluation set
(i.e., the benchmarking set) contained 19,743 annotations between 1,845 HPO terms and
238 proteins (considering only the no-knowledge benchmark samples). The reason behind
the presence of lownumber of annotations (and proteins) in the evaluation setwas that, only
the HPO annotations produced between the time of the challenge participation deadline
and the end of the annotation collection period (a total duration of nearly 8 months) were
used to generate the temporal hold-out evaluation set. One important observation about
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the benchmark set is that, a few HPO terms dominates the benchmark set (i.e., the most
frequently annotated 185 terms own 55%of all annotations). Also,most of theseHPO terms
were generic (e.g., HP:0000707 - Abnormality of the nervous system). The small size of the
benchmark dataset, together with the uneven distribution of the term frequencies limits the
evaluative capacity of this set. All of the datasets, the source code and the supplementary
files used in the CAFA2 challenge, and thus in this benchmarking experiment, is available
through the CAFA project repositories (URLs: https://github.com/yuxjiang/CAFA2 and
https://ndownloader.figshare.com/files/3658395). The CAFA performance evaluation
scripts published in these addresses were directly used to calculate the predictive
performance of HPO2GO.

HPO2GOmappings generated using the CAFA2 training set contained 27,424 mappings
between 2,640 HPO terms and 2,488 GO terms. Considering the whole CAFA2 human
target protein set, this mapping produced 1,922,333 HPO predictions for 16,256 proteins
and 2,640 HPO terms. The calculated performance of this prediction set was low (Fmax
= 0.30), mainly due to high number of false positive (FP) hits. However, it is probable
that many of these false positives were actually non-documented HPO associations of the
corresponding protein, as the benchmark annotation set is incomplete. Increasing the
thresholds with the aim of reducing the number of false positives resulted in a matching
increase in the number of false negatives (FN), with a similar Fmax value. With the aim
of enriching the mappings (to be able to reduce FPs without a significant increase in
FNs), HPO annotations of genes from January 2014 (i.e., the CAFA2 training set) were
propagated to the root of HPO DAG according to the true path rule. The propagated
training set contained 379,513 annotations between 4,418 human proteins and 6,576 HPO
terms; as opposed to 133,175 annotations between 4,418 human proteins and 5,586 HPO
terms in the asserted CAFA2 set. As observed from the dataset statistics, propagating the
annotations have only added about one thousand new terms to the set; however, the
number of annotations were significantly increased. Repeating the CAFA2 benchmark
analysis using propagated HPO annotations and the same GO annotations set resulted in
the same performance (Fmax = 0.30). Next, automated GO annotations (i.e., evidence
code: IEA) have been included in the source GO annotation set, which increased the
number of unique GO annotations from 128,947 to 214,235 (a 66% increase). Using
the propagated HPO annotations together with the enlarged GO annotation set, the
new HPO-GO mappings, namely ‘‘HPOprop2GOall’’, were generated. The finalized
HPOprop2GOall contained 198,928 mappings between 4,780 HPO terms and 5,196 GO
terms; as opposed to 27,424mappings between 2,640HPO terms and 2,488 GO terms in the
original CAFA2 mappings. The drastic difference between the numbers have indicated the
enrichment provided by annotation propagation and GO set enlargement. Subsequently,
HPOprop2GOall mappings were used to predict HPO associations for all CAFA2 targets,
producing 13,022,574 predictions (as opposed to 1,922,333 predictions with the asserted
set). Considering only the CAFA2 benchmark proteins, the predictions generated by using
the optimized parameters (i.e., n= 170 and S= 0.11) resulted in 34,486 HPO predictions
for 221 benchmark proteins and 235 HPO terms, with a performance of Fmax = 0.35
(no-knowledge benchmark sequences in the full evaluation mode), which is among the
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top performances considering all of the models from 38 participating groups in the CAFA2
HPO prediction track. The Fmax performance of the top model in the challenge was 0.36
(Jiang et al., 2016), and the performance of the naïve baseline classifier was also the same.
In Fig. 5, each bar displays the overall performance (Fmax) of the CAFA2 participators,
baseline classifiers and HPO2GO. Additionally, weighted precision–recall curves were
plotted, to assess the performance of the method at different threshold selections (Fig. 6).
The weighting procedure was done according to the information content of each HPO
term; as a result, informative terms received higher weights. The termweights were officially
calculated and published by CAFA2 challenge evaluators and these weights were directly
used in this study. As shown by the black curve in Fig. 6, HPO2GO performed the same as
the best methods on the optimal point (wFmax = 0.29), indicated by the circular marking
on the curve. Furthermore, the minimum semantic distance (Smin) was calculated for
HPO2GO and compared again with the CAFA2 participators (Fig. 7). Here, lower Smin
values indicate higher performance. As shown in Fig. 7, HPO2GO performed slightly worse
(Smin = 57.2) compared to the top performing methods and the naïve classifier. Finally,
term-centric predictive performance of HPO2GO was measured. In the term-centric
evaluation, the performance of a predictor is measured independently for each ontology
term. Figure 8 displays the average HPO term-centric area under the ROC curve (AUROC)
measures for HPO2GO and the CAFA2 participating methods. In this evaluation mode,
HPO2GO came second (AUROC= 0.59), with a significantly better result compared to the
baseline classifiers. HPO2GOCAFA2 benchmark predictions are available in the repository
of the study (filename: ‘‘HPO_CAFA2_benchmark_predictions.txt’’).

The coverage of HPO2GO on the CAFA2 benchmark protein set was nearly 97%. The
high coverage indicates that HPO2GO managed to annotate a wide range of proteins.
According to the analysis of 6 genes, which codes for the proteins in the CAFA2 benchmark
set that HPO2GO could not annotate (gene symbols: ATOH7, DMP4, GNT2C, CE126,
PGAP3, SERAC1), only two of these proteins have GO annotations (gene symbols: ATOH7,
PGAP3), and the others had no GO annotations at all with experimental evidence codes;
as a result, it was impossible for HPO2GO to assign HPO terms for those proteins.
Considering ATOH7 and PGAP3, their annotated GO terms (GO:0003407)—neural retina
development and GO:0021554—optic nerve development for ATOH7, GO:0016788—
hydrolase activity, acting on ester bonds, GO:0006505—GPI anchor metabolic process
and GO:0031227—intrinsic component of endoplasmic reticulum membrane for PGAP3)
have been associated with HPO terms in the raw HPO-GO term mappings; however, all of
these mappings were eliminated at the resampling step due to low n and S values.

At this point in the study, CAFA2 benchmark performance test was also repeated
using the raw HPO-GO mappings (without statistical resampling) in order to observe
the impact of eliminating unreliable term mappings using n and S thresholds. The raw
mappings were composed of 879,873 HPO-GO term associations, which led to 66,522,438
predictions between 18,155 proteins and 5,559 HPO terms. The statistics indicate that
nearly 65% all possible combinations between the target proteins and HPO terms were
produced as predictions. The performance analysis of this prediction set resulted in a
very low Fmax value (i.e., 0.001), as expected, indicating the effectiveness of the statistical
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Figure 5 Fmax performance results of the CAFA2 HPO prediction challenge. Performance results
(Fmax) of the top performing groups (grey bars), baseline classifiers (red and blue bars) and HPO2GO
(dark grey bar). The lengths of the bars are directly proportional to the performance.

Full-size DOI: 10.7717/peerj.5298/fig-5

resampling procedure applied in this study. At all stages of the performance analysis,
different HPO2GOmapping sets were generated using various resampling parameters (i.e.,
different n and S threshold selections), and tested on the CAFA2 benchmark; however,
these mappings produced performances slightly inferior to the ones reported above. The
most probable reason behind observing reduced performance with a lowered threshold
was the inclusion of high number of mappings in the finalized set, most of which were false
positives. This in turn provided a reduced precision and a reduced Fmax measure. On the
other hand, when excessively high thresholds were selected, many of the reliable mappings
were probably discarded, leading to high number of false negatives, thus a reduced recall
and a reduced Fmax, as well.

Generation of the finalized HPO2protein predictions
Up-to-date HPO2GO mappings were employed to predict HPO terms for the human
protein entries in the UniProtKB/Swiss-Prot database (i.e., 20,258 protein records),
and the resulting prediction set was marked as the finalized HPO2protein predictions.
This set contained 3,468,582 HPO predictions for 18,101 proteins and 3,693 HPO
terms. HPO2protein predictions are available in the repository of the study (filename:
‘‘HPO2protein_Predictions.txt’’).

Finally, up-to-date HPO2GO model was run on the CAFA3 human protein targets,
which produced 3,453,130 predictions on 16,609 human proteins with 3,719 HPO
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Figure 6 Weighted precision–recall curves of the CAFA2 HPO prediction challenge. Weighted
precision–recall curves of the top performing groups (coloured curves), baseline classifiers (red and blue
dashed curves) and HPO2GO (black curve). The circle on each curve represent the performance at the
optimal threshold. Dashed grey iso-performance curves project the weighted Fmax. F (inside the box, to
the right side) display the weighted Fmax values.

Full-size DOI: 10.7717/peerj.5298/fig-6

terms. A more stringent subset of this prediction set (i.e., predictions produced
from mappings with S ≥ 0.2) has been officially submitted to the CAFA3 challenge.
HPO2GO CAFA3 target predictions are available in the repository of the study (filename:
‘‘HPO_CAFA3_target_predictions.txt’’). There was a small difference between the number
of query proteins in HPO2protein and the CAFA3 target sets (20,258 as opposed to 20,197,
respectively). At the time of writing this manuscript, the CAFA3 challenge results have not
been announced yet.

The biological relevance of the selected HPO2GO mappings—a case
study
In order to discuss the biological relevance of HPO2GOmappings, selected HPO-GO term
mappings were examined. For this purpose, three confidence bins (high-level, mid-level
and low-level reliabilities) were determined, considering their respective S and n values
(high S and n values together indicate elevated reliability). Six example mappings (two
from each confidence bin) were randomly selected for the case study. The first case was
a highly reliable mapping between the phenotypic abnormality HPO term ‘‘absence of
bactericidal oxidative respiratory burst in phagocytes’’ (HP:0002723) and the GO term
‘‘respiratory burst’’ (GO:0045730), which is in the BP category. The exact definition of this
GO term in the UniProt-GOA database is: ‘‘A phase of elevated metabolic activity, during
which oxygen consumption increases; this leads to the production, by an NADH dependent
system, of hydrogen peroxide (H2O2), superoxide anions and hydroxyl radicals.’’ (URL:
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Figure 7 Smin performance results of the CAFA2 HPO prediction challenge.Minimum semantic dis-
tance performance results (Smin) of the top performing groups (grey bars), baseline classifiers (red and
blue bars) and HPO2GO (dark grey bar). The lengths of the bars are inversely proportional to the perfor-
mance.

Full-size DOI: 10.7717/peerj.5298/fig-7

https://www.ebi.ac.uk/QuickGO/term/GO:0045730) These two terms were mapped to
each other in HPO2GO with high confidence (i.e., S= 0.89 and n= 4). The symbols
of the co-annotated genes were CYBA, CYBB, NCF2 and NCF1. As observed from the
names of both terms and from the description of the GO term, the HPO term defines an
abnormal condition that corresponds to the absence of the biological process portrayed
by the mapped GO term. This is in accordance with the logic behind mapping HPO
terms with GO terms, which stated the occurrence of an abnormality (i.e., the HPO
term) due to the loss of the biological function defined by the mapped GO term. In
addition, there is a GO term named ‘‘respiratory burst after phagocytosis’’ (GO:0045728),
which is related (i.e., is_a relationship) to GO:0045730 as its child (descendant) term.
These two terms are two-step away from each other on the GO DAG. This term
(GO:0045728) defines a more specific function that is the exact opposite of the mapped
HPO term (HP:0002723), semantically. Also, there is an evidence for the relation between
HP:0002723 and GO:0045728 in both the OBO and OWL formatted ontology files of HPO
(URL: http://purl.obolibrary.org/obo/hp.obo and http://purl.obolibrary.org/obo/hp.owl).
However, in HPO2GO, GO:0045728 could not be mapped to HP:0002723 due to low
coverage in the source GO annotation set. GO:0045728 was only annotated to one gene
(symbol:HCK ), whichwas not annotated toHP:0002723, as a result, themapping could not
be generated. Nevertheless, the mapped GO term (GO:0045730) still defined a sufficiently
related function.
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Figure 8 Term-centric AUROC performance results of the CAFA2 HPO prediction challenge. Average
HPO term-centric performance results (AUROC) of the top performing groups (grey bars), baseline clas-
sifiers (red and blue bars) and HPO2GO (dark grey bar). The lengths of the bars are directly proportional
to the performance.

Full-size DOI: 10.7717/peerj.5298/fig-8

The second selected case with high-level reliability was the mapping between the HPO
term ‘‘cerebellar hemisphere hypoplasia’’ (HP:0100307) and the MF category GO term
‘‘tRNA-intron endonuclease activity’’ (GO:0000213) . The exact definition of this specific
GO term in the UniProt-GOA database is: ‘‘Catalysis of the endonucleolytic cleavage of pre-
tRNA, producing 5′-hydroxyl and 2′,3′-cyclic phosphate termini, and specifically removing
the intron’’ (URL: https://www.ebi.ac.uk/QuickGO/term/GO:0000213) These two terms
were mapped to each other in HPO2GO with high confidence (i.e., S= 0.86 and n= 3).
The symbols of the co-annotated genes were TSEN2, TSEN34 and TSEN54. The HPO
term HP:0100307 is associated with the disease entry ‘‘Pontocerebellar Hypoplasia,
Type 2C (PCH2C)’’ (OMIM:612390) in the OMIM database. According to the disease
definition, pontocerebellar hypoplasia is a heterogeneous group of neurodegenerative
disorders associated with abnormally small cerebellum and brainstem, and the type 2C is
characterized by a progressivemicrocephaly from child birth (Barth, 1993). The occurrence
of the disease is associated with missense mutations in either TSEN2, TSEN34 or TSEN54
genes, which are parts of the tRNA splicing endonuclease complex (Budde et al., 2008). It
was reported that, due to the abovementioned mutations, there was a partial loss in the
function of cleaving the pre-tRNAs by the endonuclease complex (Budde et al., 2008). This
is another clear example for a HPO term defining an abnormal condition, that is caused
by the perturbation in the function defined by the mapped GO term.
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An example with mid-level reliability (with parameter values: 0.7> S> 0.5 and
10> n> 2), where HPO2GO produced a mapping with reduced biologically relevance
is the case where the ‘‘protein binding’’ (GO:0005515) MF GO term was associated with
the ‘‘cognitive impairment’’ (HP:0100543) phenotype term. The parameter values for this
mapping were S= 0.38 and n= 571. It might be possible to find an indirect connection
between some of the diseases that cause cognitive impairment and the loss of protein
binding function; however, it is impossible to conclude that all protein binding function
losses would result in cognitive impairment. Both of these terms are quite generic; as a
result, the mapping is not informative. The interesting observation here is the extremely
high n value, which is resulted from the fact that protein binding GO term is a generic and
frequent term that is annotated to many different protein entries. This result also indicated
that using the n value alone to judge the reliability of a mapping would not be sufficient,
instead both S and n should be taken into account.

Another example with mid-level reliability, that was randomly selected from the
mappings, was the association between the HPO term ‘‘anemic pallor’’ (HP:0001017) and
the CC category GO term ‘‘Fanconi anaemia nuclear complex’’ (GO:0043240). The exact
definition of this GO term in the UniProt-GOA database is: ‘‘A protein complex composed
of the Fanconi anaemia (FA) proteins including A, C, E, G and F (FANCA-F). Functions in
the activation of the downstream protein FANCD2 by monoubiquitylation, and is essential
for protection against chromosome breakage’’ (URL: https://www.ebi.ac.uk/QuickGO/term/
GO:0043240). The textual definition of the corresponding HPO term (HP:0001017) is ‘‘A
type of pallor that is secondary to the presence of anemia’’. These two terms were mapped to
each other in HPO2GOwithmid-level confidence (i.e., S= 0.64 and n= 8). The symbols of
the co-annotated genes were FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL
and FANCM. These genes are parts of the Fanconi anaemia (FA) protein complex, which
protects the cell against chromosomal breakage (Pace et al., 2002). The corresponding CC
GO term (GO:0043240) directly describes the FA complex; whereas, the mapped HPO
term (HP:0001017) is associated with the Fanconi anemia disease sub-types in the HPO
database (e.g., OMIM:600901, OMIM:227650, OMIM:227645, OMIM:227646). According
to the disease definition in OMIM, Fanconi anemia is a heterogeneous disorder associated
with genomic instability, mainly characterized by developmental abnormalities in major
organ systems (Deakyne & Mazin, 2011). Each of the different sub-types listed in OMIM
is associated with a mutation in a different FA complex gene. This is a clear example for a
HPO term defining an abnormal condition, that is caused by the disease rooted from the
disfunction in the biomolecular complex defined by the mapped GO term.

An example with low-level reliability (parameter values: 0.2> S> 0.1 and n= 2) is the
case where ‘‘abnormality of reproductive system physiology’’ (HP:0000080) HPO term was
associated with ‘‘collagen catabolic process’’ (GO:0030574) BP GO term. The parameter
values for this mapping were S= 0.11 and n= 2. The symbols of the co-annotated genes
were COL7A1 and MMP1. The definition of this GO term in the UniProt-GOA database
is: ‘‘The proteolytic chemical reactions and pathways resulting in the breakdown of collagen
in the extracellular matrix, usually carried out by proteases secreted by nearby cells.’’ (URL:
https://www.ebi.ac.uk/QuickGO/term/GO:0030574). On the other hand, HP:0000080 is a

Doğan (2018), PeerJ, DOI 10.7717/peerj.5298 23/33

https://peerj.com
https://www.ebi.ac.uk/QuickGO/term/GO:0005515
https://www.ebi.ac.uk/QuickGO/term/GO:0043240)
https://www.ebi.ac.uk/QuickGO/term/GO:0043240
https://www.ebi.ac.uk/QuickGO/term/GO:0043240
https://www.ebi.ac.uk/QuickGO/term/GO:0043240
https://www.ebi.ac.uk/QuickGO/term/GO:0030574
https://www.ebi.ac.uk/QuickGO/term/GO:0030574
http://dx.doi.org/10.7717/peerj.5298


generic phenotype term that has 45 descendent terms, and it is possible to reach the root of
the sub-ontology from this term in just three term-to-term jumps. Naturally, HP:0000080
has been associated with high number of diseases (i.e., 465) in the HPO database, one of
which is the Myotonic dystrophy (OMIM:160900). Myotonic dystrophy is an autosomal
disorder characterized by muscular dystrophy, myotonia, hypogonadism (i.e., functional
activity related issues in the testes/ovaries), and etc. (Musova et al., 2009). In this sense,
the relationship between muscular dystrophy and the collagen breakdown is evident; as a
result, it can be stated that HPO2GO identified a relevant mapping. However, HP:0000080
is quite generic and associated with many other processes besides muscular dystrophy;
consequently, the target mapping is not very specific.

The last randomly selected case study example is another one from the low-level
reliability bin. The HPO term ‘‘polycythemia’’ (HP:0001901) and the BP category GO term
‘‘bicarbonate transport’’ (GO:0015701) were mapped to each other with S= 0.15 and n = 2.
The symbols of the co-annotated genes wereHBA1 andHBB (i.e., haemoglobin sub-units).
The definition of GO:0015701 in the UniProt-GOA database is ‘‘The directed movement
of bicarbonate into, out of or within a cell, or between cells, by means of some agent such as a
transporter or pore’’ (URL: https://www.ebi.ac.uk/QuickGO/term/GO:0015701). One of
the ways the carbon dioxide is removed from tissues is first the generation of carbonic acid,
and then the decomposition of carbonic acid into bicarbonate to be transported to the
lungs, via the red blood cells (i.e., erythrocytes). This process also drives the transport of
oxygen molecules from blood to the tissues via an allosteric mechanism. Thus, bicarbonate
transport process have high importance for oxygenation. The definition of HP:0001901 in
the HPO database is ‘‘Polycythemia is diagnosed if the red blood cell count, the haemoglobin
level, and the red blood cell volume all exceed the upper limits of normal’’. HP:0001901 is also
associated with 23 diseases most of which are blood related. A few of these diseases are
polycythemia vera—PV (OMIM:263300) and various sub-types of familial erythrocytosis
(OMIM:13310, OMIM:263400, OMIM:609820, OMIM:611783). Erythrocytosis is an
autosomal disorder characterized by increased haemoglobin concentration, increased mass
of serum red blood cells, and etc. (Kralovics, Sokol & Prchal, 1998). It is probable that
certain mutations in the proteins that take part in the bicarbonate transport process would
cause a disruption in this function, which would in turn lead to decreased efficiency in
both the oxygenation of tissues, and the removal of carbon dioxide from them, causing the
polycythemia phenotype related diseases such as polycythemia vera or erythrocytosis. In
this example, HPO2GO managed to return an indirect but relevant association.

DISCUSSION
HPO project’s manual HPO-GO term associations have been generated only for a sub-set
of HPO and GO terms, by comparing the term definitions. As a result, the coverage of these
associations is limited (i.e., a total of 489 mappings). In HPO2GO approach, all GO-HPO
term combinations that satisfy the co-occurrence similarity test conditions were linked.
This way, the non-documented relations were also identified. The results of the mapping
comparison analysis has indicated that the direct correspondence between the manual
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associations and HPO2GO was low, mainly due to the limitations in the source annotation
sets. Nearly all of themanualHPO-GO associations had highly similar definitions.Whereas,
HPO2GO retrieved associations with mostly dissimilar term definitions, which often
made biological sense considering the underlying molecular mechanisms. The manual
identification of this type of associations may require a comprehensive curation process.
In this context, it is expected that the HPO2GO mappings will be valuable for the research
community.

In this study, individual terms from both ontologies were mapped to each other
considering the co-annotated genes/proteins. However, the initial design of the experiment
considered the mapping of an HPO term to a trio of GO terms, one from each GO category
(i.e., biological process—BP, molecular function—MF and cellular component—CC).
This way, the corresponding phenotypic abnormality would be associated with a problem
in a specific molecular event (defined by the MF term), as a part of a defined large-scale
process (the BP term), occurring at a particular sub-cellular location (the CC term). This
approach would have been biologically more relevant compared to the current design;
however, the initial design failed due to the scarcity of both HPO annotations and MF,
BP and CC GO term containing triple annotations. At this point in the study, a second
option was considered, where HPO terms were tried to be mapped to MF and BP term
pairs; nevertheless, the same problem was encountered again. Reliable annotation sets with
higher coverage, which may become available in the future with more curation efforts,
may solve this problem and make the abovementioned mapping approach practical.
However today, even for the currently applied one to one term mapping approach, the
main challenge is the low coverage of the predicted associations due to the small size of
the source annotation sets. There can be a few alternative solutions to this problem. First
of all, the training sets with enriched GO annotation may be obtained by including the
annotations with evidence codes of reduced reliability (e.g., IEA—electronically generated),
as this approach has been shown to work well with the CAFA2 benchmark set. Another
option for enlarging the GO annotations would be utilizing the gene/protein similarity
information (i.e., protein function prediction). Scaling up the coverage of both the HPO
and the GO sets can be provided by propagating the annotations to the parent terms
according to the true path rule. ‘‘HPO2GO asserted vs. propagated mappings’’ analysis
have indicated that this approach significantly increases the coverage. Another option here
would be assuming a more elaborate approach in the mapping procedure by taking the
graph-based hierarchical term relationships into account while generating the HPO2GO
mappings (i.e., the parent and child terms of the target HPO-GO term pair, that are
co-annotated to different genes/proteins, will also contribute to the calculation of the
co-occurrence similarity of the target HPO-GO pair). This approach have been widely
accepted in the area of sematic similarity based functional analysis of biomolecules.

The official CAFA2 challenge results have indicated that, the methods based on sequence
similarities (e.g., the baseline classifier BLAST and a few models from the participating
groups) can achieve a good predictive performance considering the GO terms in the
molecular function (MF) category. This was expected since it is possible to detect most of
the signatures related to the molecular functions by analysing the amino acid sequence.
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However, most of the sequence-similarity based methods failed in predicting the cellular
component (CC) GO term and HPO term associations. This can be explained for CC
terms as either by the cleavage of the signals from the sequence post-translationally or the
difficulties in detecting weak signals used for directing proteins to different compartments.
Considering the HPO prediction, the case may completely be different. As opposed to
GO terms, which define the attributes the proteins contain, HPO terms define phenotypic
abnormalities caused by the protein when it loses one (or more) of its functions, usually
due to certain mutations in the gene that codes the protein. Due to this reason, transferring
a HPO annotation from one protein to another based on sequence similarity does not have
a biological relevance, which explains the poor performance of the BLAST classifier.

It was interesting to see that the HPO2GO CAFA2 benchmark set predictions produced
using the training set of asserted annotations resulted in the same overall performance
as the predictions produced using the training set of propagated annotations (without
the inclusion of electronically made GO annotations). In theory, employing the true
path rule propagation would enrich the training set (i.e., less false negatives) without
any sacrifice in terms of the type I error (i.e., the same number of false positives), which
should have produced an elevated Fmax value. Instead, the performance remained the
same. There could be two possible reasons for this. First, there were already false positive
instances in the training set beforehand, and the propagation process just made the
situation worse by increasing the number of false positive instances in a magnitude
equal to the number of ancestor terms of the false positive instances (i.e., equal to the
number of propagation operations). This in turn compensated for the increase in the
coverage obtained by propagating the annotations. The second reason could be that, there
were no significant errors regarding the propagated HPO2GO predictions; however, the
benchmark annotations were incomplete. As a result, a portion of the real true positive
predictions were counted as false positives. Nevertheless, employing the propagated HPO
annotations together with the enlarged GO annotation set (including the electronically
made annotations) have increased the predictive performance by nearly 17%. However,
it is not possible to be sure about the accuracy of these results due to the small size of the
CAFA2 test dataset. A larger benchmark annotation set that is guaranteed to be complete
would be required in order to discuss the performance further.

An important observation regarding the CAFA tests done in this study is that, there was
a large difference between the number of HPO predictions for CAFA2 and CAFA3 targets,
using HPO2GO with default parameters (i.e., 1,922,333 in CAFA2 as opposed to 3,453,130
in CAFA3). There was also an increase in the number of predicted HPO terms (i.e., 2,640
in CAFA2 as opposed to 3,719 in CAFA3), and there were no significant increase in the
number of targets. The increase in the number of predictions and the predicted HPO
terms can be attributed to the training set getting larger and more informative in time.
The training set used for CAFA2 contained 133,175 annotations; whereas, it was 153,575
for CAFA3. The comparison of the predictive performances of HPO2GO trained by the
CAFA2 and the CAFA3 training sets may reveal more about the situation.

Considering the HPO2GO biological relevance case studies, it was possible to find a
biological connection between the mapped HPO and GO terms in most cases; however,
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the connection became indirect and more abstract, when the S and n values were low
(i.e., reduced reliability). Frequently, highly generic/shallow HPO and GO terms were
mapped to multiple terms from the other ontology, with generally low parameter values.
These mappings were still observed to be relevant but less informative. On the other
hand, most of the mappings with high-level reliability were between specific HPO and GO
terms, and the selected cases from these mappings were observed to be highly informative.
Similar to the other automated methods that produce predictions on the biological data,
HPO2GO has limitations. This was reflected in the results of the predictive performance
test on the CAFA2 benchmark set (Fmax = 0.35), which can be considered low for real-life
applications. For HPO2GO to be employed in biological data analysis pipelines in the
future, HPO-GO term mappings should also be manually curated.

CONCLUSION
In this study, a simple and effective strategy, HPO2GO, was proposed to semantically
map phenotypic abnormality defining HPO terms with biomolecular function defining
GO terms, considering the cross-ontology annotation co-occurrences on different
genes/proteins. This approach can easily be translated into novel HPO term predictions
for genes/proteins. A literature based case study was carried to discuss the biological
relevance of the selected HPO2GO mappings. This work also presents an application
of the cross-ontology term mapping approach by generating HPO-protein associations.
HPO2GO was benchmarked on CAFA2 challenge protein targets and it was revealed
that the method was among the best performers of the HPO term prediction track
participators (i.e., the state-of-the-art methods). Also, the up-to-date trained system was
employed to predict HPO associations for all human proteins in the UniProtKB/Swiss-
Prot database (i.e., HPO2protein predictions). The methodology proposed here may also
support the already established approaches (e.g., text mining), as it is possible for different
techniques with different data sources and perspectives to produce results that complement
distinct missing pieces of the knowledge space. This property is often utilized in ensemble
based classification approaches. In this sense, it would also be interesting to analyse the
complementarity between the predictions of the proposed method and the predictions
of the state-of-the-art approaches participated in CAFA2 challenge; however, this was
not possible since the actual prediction results of the participant groups are not publicly
available.

As for the future work, it is first planned to map the HPO terms to GO term trios (i.e.,
MF, BP and CC terms at the same time) using enriched annotation datasets, as explained in
the discussion section. Another future task is the integration of HPO2GOmappings to our
freely available GO based automated protein function prediction tool/server UniGOPred
(Rifaioglu et al., 2018) so that query proteins that receive a GO term prediction will be
automatically associated with the HPO term(s) that are mapped to the corresponding
GO term. It is expected that this approach would produce large-scale HPO predictions
for uncharacterized proteins without any curated annotation, where the only available
information is the amino acid sequence. The knowledge extraction methodology proposed
here can easily be combined with various types of protein features employed in other
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predictive methods (e.g., variant information, PPIs, gene expression profiles, etc.) to
generate an ensemble HPO term prediction tool that identifies novel HPO-gene/protein-
disease associations.
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