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ABSTRACT

HYBRID WAVELET-NEURAL NETWORK MODELS FOR TIME SERIES DATA

Kili¢, Deniz Kenan
Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Omiir Ugur

February 2021, pages

The thesis aims to combine wavelet theory with nonlinear models, particularly neural
networks, to find an appropriate time series model structure. Data like financial time
series are nonstationary, noisy, and chaotic. Therefore using wavelet analysis helps
better modeling in the sense of both frequency and time.

S&P500 ("GSPC) and NASDAQ ("IXIC) data are divided into several components
by using multiresolution analysis (MRA). Subsequently, each part is modeled by us-
ing a suitable neural network structure. In this step, the design of the model is formed
according to the pattern of the subseries. Then predictions of each subseries are com-
bined. The combined prediction result is compared to the original time series’s predic-
tion result using only a nonlinear model. Moreover, wavelets are used as an activation
function for LSTM networks to form a hybrid LSTM-Wavenet model. Furthermore,
the hybrid LSTM-Wavenet model is fused with MRA as a proposed method.

In brief, it is studied whether using MRA and hybrid LSTM-Wavenet model de-
creases the loss or not for both S&P500 and NASDAQ data. Four different model-
ing methods are used: LSTM, LSTM+MRA, hybrid LSTM-Wavenet, hybrid LSTM-
Wavenet+MRA (the proposed method). Results show that using MRA and wavelets
as an activation function together decreases error values the most.

Keywords: nonlinear models, neural networks, LSTM, wavelets, time series analysis,
finance, multiresolution analysis, wavelet neural network, wavenet, hybrid models
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0z

ZAMAN SERISI VERILERI iCIN HIBRIT DALGACIK-SINiR AGI MODELLERI

Kili¢, Deniz Kenan
Doktora, Finansal Matematik Boliimii

Tez Yoneticisi  : Prof. Dr. Omiir Ugur

Subat 2021, [116]sayfa

Tez, zaman serilerine uygun bir model yapis1 bulmak icin dalgacik teorisini dogrusal
olmayan modellerle, 6zellikle sinir aglariyla birlestirmeyi amaclamaktadir. Finansal
zaman serileri gibi veriler duragan olmayan, giiriiltiilii ve kaotik verilerdir. Bu ne-
denle dalgacik analizi kullanmak, hem frekans hem de zaman anlaminda daha iyi
modellemeye yapmaya yardimci olmaktadir.

S&P500 (“"GSPC) ve NASDAQ (“IXIC) verileri ¢oklu ¢oziiniirliik analizi (MRA)
kullanilarak birkac bilesene ayrilmaktadir. Daha sonra, her kisim uygun bir sinir ag1
yapisi kullanilarak modellenmektedir. Bu adimda, modelin dizayni alt serilerin ya-
pisina gore olusturulmaktadir. Sonra her bir alt dizinin tahminleri birlestirilmektedir.
Birlesik tahmin sonucu, sadece dogrusal olmayan bir model kullanilarak tahminlen-
mis orijinal zaman serisinin sonucu ile karsilastirilmaktadir. Dahasi, dalgaciklar bir
hibrit LSTM-Wavenet modeli olusturmak iizere LSTM aglar1 i¢inde aktivasyon fonk-
siyonu olarak kullanilmaktadir. Ayrica, 6nerilen yontem olarak hibrit LSTM-Wavenet
modeli ve MRA birlestirilmektedir.

Kisacasi, MRA ve hibrit LSTM-Wavenet modelinin kullanilmasinin hem S&P500
hem de NASDAQ verileri i¢in yitim fonksiyonunu azaltip azaltmadig1 incelenmekte-
dir. Dort farkli modelleme yontemi kullanilmaktadir: LSTM, LSTM + MRA, hibrit
LSTM-Wavenet, hibrit LSTM-Wavenet + MRA (6nerilen yontem). Sonuclar, dalga-
ciklarin aktivasyon fonksiyonu olarak MRA ile birlikte kullanilmasinin hata degerle-
rini en fazla azalttiginm gostermektedir.
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ag1, hibrit modeller



xi



xii



ACKNOWLEDGMENTS

I would like to express my very great appreciation to my thesis supervisor Prof. Dr.
Omiir Ugur for his patient guidance, enthusiastic encouragement, and valuable advice
during the development and preparation of this thesis. His willingness to give his time
and to share his experiences have brightened my path.

And, I thank all members of the Institute of Applied Mathematics of Middle East
Technical University for their kindness and help.

Furthermore, I would like to especially thank my wife Dilek Aydogan Kili¢ for her
friendship, support, and help.

Finally, I would like to express my pleasure in having such a great family. Thank to
my mother Nermin Kili¢ and to my father Erdogan Kili¢ for their endless love and
existence.

I devote the thesis to my wife Dilek Aydogan Kili¢, to my son Ilgar Ege Kilig, to my
mother Nermin Kili¢ and to my father Erdogan Kilig.

Xiii



X1V



TABLE OF CONTENTS

ABSTRACT. . o o o oottt e e e e e vii
OZ . . ix

ACKNOWLEDGMENTS

LIST OFETABLES|I . . . . . o e, Xvil
LISTOEFIGURES|. . . . . . . . XX1

LIST OF ABBREVIATIONS

CHAPTERS

1 INTRODUCTION 1

1

2

6

2 NEURAL NETWORKS 7
[2.1 Long Short-Term Memory (LSTM)| . . . . ... .. .. ... 8

3 WAVELETSI. . . . . . . . e 11

(3.1 Maximal Overlap Discrete Wavelet Transform (MODWT)(. . 11

XV



[3.2 Multiresolution Analysis MRA)[ . . . . .. ... ... ... 13

4 WAVELET NEURAL NETWORKI 17
17

18

23

27

29

5.3  [STM Model with MRA 50

[5.4 Hybrid LSTM-Wavenet Model without MRA| . . . . . . .. 63

[5.5 Hybrid LSTM-Wavenet Model with MRA| . . . . . ... .. 73

5.6 Discussion| . . . . ... Lo 95

6 CONCLUSION AND OUTIL.OOKI

REFERENCES| . . . . .. .. o oo o 103

APPENDICES

A MODELS OF API STRUCTURES!

CURRICULUM VITAE

Xvi



LIST OF TABLES

Table [5.1 Details of Data Preprocessing and Hyperparameter Optimization

| Parts Given in Figure[5.1{with and without MRA| . . . . . . . ... .. .. 25
Table [5.2 Details of Modeling & Learning and Prediction & Visualization |
| Parts Given in Figure|5.1{with and without MRA| . . . . . . . ... .. .. 26
Table|5.3 Descriptive Statistics of S&P500 Data] . . . . . .. ... ... ... 29
Table[5.4 Descriptive Statistics of NASDAQ Data] . . . . ... .. ... ... 32
Table|5.5 LSTM Model, Configuration 1 (S&P500): Talos Configuration| . . . 33
Table [5.6 LSTM Model, Configuration 1 (S&P500): Mean Scores for the |
| Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 33
Table[5.7 LSTM Model, Configuration 2 (S&P500): Talos Configuration| . . . 34
Table 5.8 LSTM Model, Configuration 2 (S&P500): Mean Scores for the |
[ Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 34
Table|5.9 LSTM Model, Configuration 3 (S&P500): Talos Configuration| . . . 35
Table |5.10 LSTM Model, Configuration 3 (S&P500): Mean Scores for the |
| Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 35
Table|[5.11 LSTM Model, Configuration 4 (S&P500): Talos Configuration| . . . 36
Table [5.12 LSTM Model, Configuration 4 (S&P500): Mean Scores for the |
| Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 36
Table|5.13 LSTM Model, Configuration 5 (S&P500): Talos Configuration| . . . 37
Table |5.14 LSTM Model, Configuration 5 (S&P500): Mean Scores for the |
[ Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 37
Table [5.15 LSTM Model, Configuration 6 (S&P500): Talos Configuration| . . . 38
Table [5.16 LSTM Model, Configuration 6 (S&P500): Mean Scores for the |
| Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 38
Table|5.17 LSTM Model (S&P500): Scores of the all Configurations| . . . . . . 39

Xvil



Table|5.18 LSTM Model, Configuration 1 (NASDAQ): Talos Configuration| . . 42

Table |5.19 LSTM Model, Configuration 1 (NASDAQ): Mean Scores for the [
| Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 42

Table|5.20 LSTM Model, Configuration 2 (NASDAQ): Talos Configuration| . . 43

Table [5.21 LSTM Model, Configuration 2 (NASDAQ): Mean Scores for the |
| 'Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 43

Table[5.22 LSTM Model, Configuration 3 (NASDAQ): Talos Configuration| . . 44

Table |5.23 LSTM Model, Configuration 3 (NASDAQ): Mean Scores for the [
| Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 44

Table|5.24 LSTM Model, Configuration 4 (NASDAQ): Talos Configuration| . . 45

Table [5.25 LSTM Model, Configuration 4 (NASDAQ): Mean Scores for the [
| Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 45

Table|5.26 LSTM Model, Configuration 5 (NASDAQ): Talos Configuration| . . 46

Table |5.27 LSTM Model, Configuration 5 (NASDAQ): Mean Scores for the [
| Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 46

Table|5.28 LSTM Model, Configuration 6 (NASDAQ): Talos Configuration| . . 47

Table [5.29 LSTM Model, Configuration 6 (NASDAQ): Mean Scores for the |
| Train set and the Test set by Running 1000 Experiments| . . . . . . . . .. 47

Table|5.30 LSTM Model (NASDAQ): Scores of the all Configurations| . . . . . 50

Table|5.31 LSTM Model+MRA, Configuration 1 (S&P500): Talos Configuration| 52

Table |5.32 LSTM Model+MRA, Configuration 1 (S&P500): Mean Scores of [
| the Wavelet Levels for the Train set and the Test set by Running 1000 [
| Experiments| . . . . . . . .. ... ... 53

Table [5.33 LSTM Model+MRA, Configuration 1 (S&P500): Mean Scores for [
| the Synthesized Train set and the Synthesized Test set by Running 1000 [
| Experiments| . . . . . . . .. .. ... 53

Table [5.34 LSTM Model+MRA, Configuration 1 (NASDAQ): Talos Configu- [

Table|5.35 LSTM Model+MRA, Configuration 1 (NASDAQ): Mean Scores of [
| the Wavelet Levels for the Train set and the Test set by Running 1000 [
| Experiments| . . . . . . . .. . L 59




Table|5.36 LSTM Model+MRA, Configuration 1 (NASDAQ): Mean Scores for

| the Synthesized Train set and the Synthesized Test set by Running 1000

| Experiments| . . . . . . .. ...

Table [5.37 Hybrid LSTM-Wavenet Model, Configuration 1 (S&P500): Talos

| Configuration| . . . . . . .. .. L

Table |5.38 Hybrid LSTM-Wavenet Model, Configuration 1 (S&P500): Mean

[ Scores for the Train set and the Test set by Running 1000 Experiments| . .

Table [5.39 Hybrid LSTM-Wavenet Model by API Structure, Configuration 2

| (S&P500): Talos Configuration| . . . . . . ... ... ... ........

Table [5.40 Hybrid LSTM-Wavenet Model by API Structure, Configuration 2

| (S&P500): Mean Scores for the Train set and the Test set by Running

| 1000 Experiments| . . . . . . .. ... oo oo

Table [5.41 Hybrid LSTM-Wavenet Model, Configuration 1 (NASDAQ): Talos

[ Configuration| . . . . . . . . . . . .. ... e

Table|5.42 Hybrid LSTM-Wavenet Model, Configuration 1 (NASDAQ): Mean

| Scores for the Train set and the Test set by Running 1000 Experiments| . .

Table [5.43 Hybrid LSTM-Wavenet Model by API Structure, Configuration 2

| (NASDAQ): Talos Configuration| . . . . . .. ... ... ... ......

Table [5.44 Hybrid LSTM-Wavenet Model by API Structure, Configuration 2

[ (NASDAQ): Mean Scores for the Train set and the Test set by Running

[ 1000 Experiments| . . . . . . ... ... ... ... ... ... ...

Table [5.45 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500):

| Talos Configuration| . . . .. .. ... ... .. ... ... ... ...

Table [5.46 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500):

| Mean Scores of the Wavelet Levels for the Train set and the Test set by

| Running 1000 Experiments| . . . . . . ... ... ... ... .......

Table [5.47 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500):

| Mean Scores for the Synthesized Train set and the Synthesized Test set by

| Running 1000 Expertments| . . . . . . ... .. ... ... ... ..

Table[5.48 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configura-

| tion 2 (S&P500): Talos Configuration|. . . . . . .. ... ... ... ...

Table[5.49 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configura-

[ tion 2 (S&P500): Mean Scores of the Wavelet Levels for the Train set and

| the Test set by Running 1000 Experiments| . . . . . ... ... ... ...

Xix



Table [5.50 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configu-

ration 2 (S&P500): Mean Scores for the Synthesized Train set and the

Synthesized Test set by Running 1000 Experiments| . . . . ... ... ..

Table|5.51 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):

Talos Configuration| . . . . . .. ... ... ... .. .. .. .. ...

Table[5.52 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):

Mean Scores of the Wavelet Levels for the Train set and the Test set by

Running 1000 Expertments| . . . . . . ... .. ... ... ...,

Table|5.53 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):

Mean Scores for the Synthesized Train set and the Synthesized Test set by

Running 1000 Expertments| . . . .. . ... ... ... ... .......

Table[5.54 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configura-

tion 2 (NASDAQ): Talos Configuration| . . . . . . .. ... ... .....

Table[5.55 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configura-

tion 2 (NASDAQ): Mean Scores of the Wavelet Levels for the Train set

and the Test set by Running 1000 Experiments| . . . . . . ... ... ...

Table [5.56 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configu-

ration 2 (NASDAQ): Mean Scores for the Synthesized Train set and the

Synthesized Test set by Running 1000 Experiments| . . . . ... ... ..

Table |5.57 Summary Table for Results (S&P500): Mean Scores for the Train

set and the Test set by Running 1000 Experiments| . . . . . . .. ... ..

Table [5.58 Summary Table for Results (NASDAQ): Mean Scores for the Train

set and the Test set by Running 1000 Experiments| . . . . . . ... .. ..

XX



LIST OF FIGURES

Figure[2.1 Structureof MNN.| . . . . . ... .. ... .. 0. 8
Figure[2.2 Structure of a Recurrent Neural Network System.|. . . . . . . . .. 9
Figure[2.3 Structure of a Long Short-Term Memory.| . . . . . ... ... ... 9
Figure[3.1 Flowchart of the pyramid algorithm for decomposing. | . . . . . . . 12
Figure[3.2 Flowchart of the pyramid algorithm for synthesis. | . . . . . . . .. 12
Figure(3.3 Nested Subspaces| . . . . . ... ... ... ... ... .... 14
Figure 4.1 Polynomial Wavelet Functions Generated by the nth Derivative of |
| the Sigmoid Function| . . . . .. ... o Lo 20
Figure[5.1 'The Flowchart of Four Different Methods Applied in the Study| 24
Figure[5.2 Partitioning Graphs and Histograms| . . . . . . . . ... ... ... 28
Figure[5.3 Visuals and Histograms of the Training Set, the Validation Set and |
[ the TestSetof S&PS00I . . . .. ... ... ... . 30
Figure[5.4 Visuals and Histograms of the Training Set, the Validation Set and |
| the Test Set of NASDAQ| . . . . . . . . . . . . . . ... ... ...... 31
Figure[5.5 LSTM Model, Configuration 3 (S&P500): Model Structure] . . . . 40
Figure[5.6 LSTM Model, Configuration 3 (S&P500): Results| . . . . . . . .. 41
Figure[5.7 LSTM Model, Configuration 3 (NASDAQ): Model Structuref. . . . 48
Figure|5.8 LSTM Model, Configuration 3 (NASDAQ): Results| . . . . . . .. 49
Figure[5.9 LSTM Model+MRA, Configuration 1 (S&P500): Model Structure |
[ oftheFirstDetall . . . . .. ... .. o 51
Figure|5.10 LSTM Model+MRA, Configuration 1 (S&P500): Model Structure |
[ ofthe Second Detaill . . . . . . . . . . ... Lo 53

Xxi



Figure|5.11 LSTM Model+MRA, Configuration 1 (S&P500): Model Structure [
| of the Approximation| . . . . . . .. .. ... ... ... ... ...... 54

Figure [5.12 LSTM Model+MRA, Configuration 1 (S&P500): Loss Values of [

Figure [5.13 LSTM Model+MRA, Configuration 1 (S&P500): Train and Test [
| Predictions of the First Detail, the Second Detail and the Approximation [

Figure [5.17 LSTM Model+MRA, Configuration 1 (NASDAQ): Model Struc- |
| ture of the Approximation| . . . . . . . . .. ... .. ... .. ... ... 60

Figure|[5.18 LSTM Model+MRA, Configuration 1 (NASDAQ): Loss Values of |

Figure 5.19 LSTM Model+MRA, Configuration 1 (NASDAQ): Train and Test |
| Predictions of the First Detail, the Second Detail and the Approximation |

Figure[5.22 Hybrid LSTM-Wavenet Model, Configuration 1 (S&P500): Results| 67

Figure |5.23 Hybrid LSTM-Wavenet Model by API Structure, Configuration 2 [
| (S&P500): Results| . . . . . ... ... ... .o 69

Figure|5.24 Hybrid LSTM-Wavenet Model, Configuration 1 (NASDAQ): Model [

Figure|5.25 Hybrid LSTM-Wavenet Model, Configuration 1 (NASDAQ): Results| 72

Figure |5.26 Hybrid LSTM-Wavenet Model by API Structure, Configuration 2 [
| (NASDAQ): Results| . . . . ... ... ... ... ... . . ... ..., 74




Figure|5.27 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500):

Model Structure of the First Detail]l . . . .. ... ... ... ....... 75
Figure|5.28 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500) |
[___Model Structure of the Second Detaill . . . . . . ... ... ........ 77
Figure|5.29 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500): |
| Model Structure of the Approximation| . . . . . ... ... ... ... .. 78
Figure|5.30 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500): |
[ Loss Valuesof Fachlevell . . . . .. ... ... ... .. ......... 79
Figure|5.31 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500): |
| Train and Test Predictions of the First Detail, the Second Detail and the |
| Approximation Parts of S&P500[ . . . .. ... ..o o000 80
Figure|5.32 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500): |
[ ReconstructedResults] . . . ... .. ... .. .. 81
Figure |5.33 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configu- |
[ ration 2 (S&P500): Model Structure of the First Detail{ . . . . . . . . . .. 81
Figure |5.34 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configu- |
[ ration 2 (S&P500): Model Structure of the Second Detail] . . . . . . . .. 83
Figure[5.35 Hybrid LSTM-Wavenet Model+MRA, Configuration 2 (S&P500): |
[ TossValuesof EachTevell. . . . .. ... .. ... .. .......... 84
Figure [5.36 Hybrid LSTM-Wavenet Model+MRA by API Structure, Config- |
| uration 2 (S&P500): Train and Test Predictions of the First Detail, the |
| Second Detail and the Approximation Parts of S&P500, . . . .. ... .. 85
Figure|5.37 Hybrid LSTM-Wavenet Model+MRA, Configuration 2 (S&P500): |
[_ReconstructedResults| . . . . ... ... ... ... ... .. .00, 87
Figure|5.38 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ) |
[ Model Structure of the First Detasll . . . . . . ... ... ... L. 88
Figure|5.39 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ) |
L Model Structure of the Second Detaull . . . . . . .. ............ 89
Figure|5.40 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ): |
[ Model Structure of the Approximation| . . . . .. ... ... ....... 89
Figure|5.41 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ): |
[ Loss Valuesof FachLevell . . . . .. ... ... ... .. ......... 90



Figure|5.42 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):

| Train and ‘Test Predictions of the First Detail, the Second Detail and the

| Approximation Parts of S&P500[ . . . . ... .. ..o 0oL 91
Figure|5.43 Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ): [
[ Reconstructed Resultsl . . . . . ... ... ... .. ... L. 92
Figure |5.44 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configu- |
| ration 2 (NASDAQ): Model Structure of the First Detaall . . . . . . . . .. 92
Figure |5.45 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configu- [
| ration 2 (NASDAQ): Model Structure of the Second Deta1l] . . . . . . .. 94
Figure |5.46 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configu- |
| ration 2 (NASDAQ): Loss Values of Each Levell . . . . ... .. ... .. 95
Figure [5.47 Hybrid LSTM-Wavenet Model+MRA by API Structure, Config- [
| uration 2 (NASDAQ): Train and Test Predictions of the First Detail, the |
| Second Detail and the Approximation Parts|. . . . . ... ... ... ... 96
Figure |5.48 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configu- [
| ration 2 (NASDAQ): Reconstructed Results|. . . . . .. ... .. ... .. 97
Figure |A.1 Hybrid LSTM-Wavenet Model by API Structure, Configuration 2 [
| (S&P500): Model Structure| . . . . . . ... ... ... . ... 110
Figure |A.2 Hybrid LSTM-Wavenet Model by API Structure, Configuration 2 [
| (NASDAQ): Model Structure| . . . . . ... ... ... ... ....... 111
Figure |A.3 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configu- |
| ration 2 (S&P500): Model Structure of the Approximation|. . . . . . . . . 112
Figure |A.4 Hybrid LSTM-Wavenet Model+MRA by API Structure, Configu- [
| ration 2 (NASDAQ): Model Structure of the Approximation| . . . . . . . . 113

XXiv



ANN
ARFIMA
ARIMA
AWNN
BP

CNN
CWT
ddof
DNN
DW
DWT
EMG
EVS
FEBANN

FFNN
FNN
GRU
KDE
LSTM
LM
MAE
MAPE
MdAE
ME
MLP
MNN
MODWT
MRA

LIST OF ABBREVIATIONS

Artificial Neural Network

Autoregressive Fractionally Integrated Moving Average
Autoregressive Integrated Moving Average
Adaptive Wavelet Neural Network
Backpropagation

Convolutional Neural Network
Continuous Wavelet Transform

Delta Degrees of Freedom

Deep Neural Network

Discrete Wavelet

Discrete Wavelet Transform
Electromyography

Explained Variance Score

Feed Forward Error Backpropagation Artificial Neural Net-
work

Feed Forward Neural Network
Fuzzy Neural Network

Gated Recurrent Unit

Kernel Density Estimate

Long Short-Term Memory
Levenberg-Marquardt

Mean Absolute Error

Mean Absolute Percentage Error
Median Absolute Error
Maximum Residual Error
Multilayer Perceptron
Multilayer Neural Network
Maximal Overlap Discrete Wavelet Transform

Multiresolution Analysis

XXV



MSE
MWFWNN
NASDAQ

NIR
NSE

OS

PSO
PPS

R2

RBF
REG
ReLU
RMSE
RNN
RvNN
S&P500
SARIMA
SRMSE
Std
STFT
SVM
SVR
WA-ANN
WNN
WREG

Mean Square Error
Multiple Wavelet Functions Wavelet Neural Network

National Association of Securities Dealers Automated Quota-
tions

Near-Infrared

National Stock Exchange
Operating System

Particle Swarm Optimization
Polynomial Powers of Sigmoid
Coefficient of Determination
Radial Basis Function

Multiple Linear Regression
Rectified Linear Unit

Root Mean Square Error
Recurrent Neural Network
Recursive Neural Network
Standard & Poor’s 500
Seasonal Autoregressive Integrated Moving Average
Scaled Root mean Square Error
Standard Deviation

Short-Time Fourier Transform
Support Vector Machine
Support Vector Regression
Wavelet-Neural Network
Wavelet Neural Network
DWT-Based Multiple Linear Regression

XXVi



CHAPTER 1

INTRODUCTION

Most of the time series in many fields like geology, astronomy, economy, politics,
robotics, meteorology, medicine, control engineering, finance, etc., are nonstationary
and chaotic. Hence nonlinear models are more appropriate than linear models for
such complex time series.

Neural networks are one of the mostly used and widespread nonlinear models due to
their wide varieties and flexibilities.

On the other hand, wavelets are used in a vast area, and where they are used are
increasing day by day. In most cases, the frequency domain analysis is essential
for complex time series. Furthermore, for both linear and nonlinear time series,
the multiresolution analysis provides more reliable modeling and forecasting results
(see [I31]).

In the literature review below, studies which combine wavelet analyzes and nonlinear
modeling are discussed.

Most studies use wavelets either to decompose data to use subseries as inputs of
regular neural networks or just for activation functions of wavelet neural networks.
In this paper, these two separate studies are merged. First of all, the effect of the
two different wavelet approaches on predicting the financial time series is analyzed
separately. Next, the two approaches are combined based on the prediction results of
the financial time series.

Main scope of the thesis is to analyze whether utilizing wavelets increase accuracy
performance in neural network modeling for financial time series.

1.1 Motivation

One step ahead prediction is significant for stock market investors since a small
change in the prediction of the market index will significantly affect the profit or
the loss. To predict the next step, using observed data is more suitable than using
predictions in the model. On the other hand, if the aim is predicting an extended pe-
riod (multi steps), it would be better to use consecutive predicted values to reach the
recent prediction.



Our motivation is to improve prediction performances of stock market indexes to lead
investors’ behaviors on buying and selling. Moreover, it is noticed that many recent
works of literature and competitions on online platforms cover subjects about classic
and advanced machine learning. With combining MRA and wavenet with machine
learning techniques, we aim to contribute to both literature and online studies in terms
of both science and software.

1.2 Literature Review

Masset mentions in [38] that if the system relies on more than one frequency com-
ponent, time-domain analysis is inadequate to reveal important information of the
original data. Besides, it is stated in [31] that modeling after multiresolution analysis
(MRA) gives better-fitted models, especially for forecasting the time series. In other
words, dividing data into different scales and fitting various models to each scale
provides better results than using a single model only.

In [57] wavelet multilayer perceptron (MLP) neural network is handled. It is stated
that using wavelets helps discover hidden time frequency information. Moreover,
Teo, Wang, and Lin [57] say that combining wavelet analysis with MLP networks
gives better performance. On the other hand, it is mentioned that regular neural net-
works catch information only on the finest resolution of a signal. However, real hu-
man neural networks can process all scales of a signal. While mother wavelets’ res-
olution increases by using 2/ component, decomposition approaches to the original
signal. Therefore, one can reconstruct the actual signal by using decomposed signals.
Further, after removing less essential wavelets, the wavelet MLP neural network gives
better results. On the other hand, it is mentioned that the wavelet MLP neural network
without elimination has no critical improvement over the usual MLP network.

In [8] wavelet transforms, ordinary neural networks and statistical time series ana-
lytical techniques are applied to several exchange rates for the prediction. After de-
composing time series, different neural networks are produced, trained, and used to
predict each scale’s exchange rates. Mean absolute error (MAE), mean absolute per-
centage error (MAPE), mean square error (MSE), and root mean square error (RMSE)
are used to compare the results. The study is following statistical feature extraction,
preprocessing, wavelet analysis, modeling and training of networks, and forecasting.
However, results show that using wavelets fetches no improvement in their structure.
It is stated that exchange rates are nonstationary, noisy, and chaotic time series. More-
over, Bozic and Babic [8]] mention that linear models are not suitable for nonlinear
time series. Wavelets are not affected by nonstationary cases [27]. Further, it is stated
that an artificial neural network (ANN) is a multivariate, nonparametric statistical
method that can represent any nonlinear function without a pre-assumption on the
signal.

In [48] the monthly rainfall at Darjeeling is predicted by using the ANN model. Inputs
of ANN are created by applying MRA to the data. Outcomes show that a wavelet-
based neural network gives better results than ANN gives.

Nonlinear monthly precipitation time series is handled in [S1]. The time series is de-
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composed by wavelet analysis. Low-frequency subseries are forecasted using the sea-
sonal autoregressive integrated moving average (SARIMA) model, and high-frequency
subseries are forecasted using ANN. Afterward, predicted subseries are rebuilt to
forecast the precipitation of future single months. It is stated that the wavelet-SARIMA-
ANN model has better results than wavelet-ANN and wavelet-SARIMA models. The
autoregressive integrated moving average (ARIMA) model restricts requiring station-
ary and linear time series. However, most of the financial time series are nonstationary
and nonlinear.

In [44], wavelets and neural networks are combined to predict Turkey’s daily pre-
cipitation. Partal and Cigizoglu [44] firstly decompose the original time series into
several subseries by using discrete wavelet transform (DWT). Then, they select use-
ful discrete wavelets to use as the inputs of ANNSs for the estimation of daily precip-
itation. They state that selecting the dominant discrete wavelets (DWs) has a large
positive effect on the ANN model’s performance. Moreover, they use correlation co-
efficients between each DW of the meteorological data and the original precipitation
data to select the ANN model inputs. The hybrid model yields better accuracy results
than the classical ANN model.

In [5], steps of the wavelet-based forecasting are given as follows: firstly, data is
divided into various elements; secondly, each component is modeled and forecast
individually; thirdly, predictions are summed up. Basta [S] also mentions bound-
ary conditions of wavelets, details of maximal overlap discrete wavelet transform
(MODWT) and prediction with boundary conditions. Choosing the type of wavelet
transform and the type of filter is vital for better prediction results.

In [41] hybrid wavelet recurrent neural network is used to predict over time the num-
ber of connection requests for service. It is stated that the model is very successful in
estimating such number of connections.

Shah and Debnath combine DWT and Levenberg-Marquardt (LM) ANN to forecast
yield spread for output growth in [S2]. Firstly, they decompose different yield spreads
by using several DWT filters. Secondly, they use subseries as inputs of ANN to
forecast output growth. Outcomes indicate that the predictive powers of yield spread
in the short term and policy-relevant areas of the yield curve are nice. However, the
predictive power of yield spreads in the long term is not suitable for output growth.

In [30] wavelets and nonlinear models are used to predict NIFTY 50 (NSE) index
financial data. It is stated that financial time series are nonlinear and nonstationary.
Moreover, models like ARIMA have some problems with stock prices since such time
series does not have a normal distribution, are not stationary and not linear. On the
other hand, models like support vector regression (SVR) and ANN can deal with such
time series, like stock prices. However, they may have an overfitting problem. One
has to choose model parameters carefully and preprocess the data according to the
type of the signal. Using wavelets is a better decomposing method than only using
trend, seasonal and random components. Classical decomposition is good for linear
time series [S8]]. There are many types of wavelet filters, such as Haar, Daubechies,
Morlet, and Mexican Hat. One needs to choose the type of filter according to the
problem. It is stated that ANN models need fewer pre-assumptions since they are
broadly data-based and adaptive. Furthermore, ANN systems can model and predict



the nonlinear data. Practically, Jothimani, Shankar, and Yadav [30] decompose the
original signal. Afterward, they use ANN and SVR models for predictions. For both
hybrid models, the accuracy of prediction is higher than the accuracy of the classical
models.

In [11] wavelet transform and backpropagation (BP) ANN are combined to create a
hybrid method. This hybrid model is used to predict stock market data. The model is
applied to five different data sets. Accuracy estimations for all data sets indicate that
the hybrid model gives better results than classical models.

In [64] several wavelet functions are used with neural networks for target threat as-
sessment. The Morlet mother wavelet function shows the best performance. More-
over, prediction results of the multiple wavelet functions wavelet neural network
(MWFWNN) are better than wavelet neural network (WNN), BP and particle swarm
optimization and support vector machine (PSO_SVM) methods.

Modified hybrid models are used to predict natural gas prices in [29]]. Using wavelets
with ANN and ARIMA gives better results than using only ANN or ARIMA models.

In [56] forecasting of exchange rate data is handled by combining wavelet transform,
neural network, and statistical analysis techniques. In empirical results, it is seen that
hybrid methods outperform the classical ones.

Wang et al. use a wavelet-based neural network structure for two deep learning mod-
els in time series classification and forecasting in [65]. Experimental results propose
the hybrid methods.

Effects of wavelet decomposition and neural networks on realized volatility predic-
tion are attempted in [34] for crude oil, gold, and S&P500 assets. Kiehlik [34] use
wavelet decomposition for realized volatility estimation. In the paper, the volatility
forecasting follows realized volatility estimation. Wavelet-based realized volatility
estimation and ANN modeling based volatility forecasting are compared to classi-
cal estimators and autoregressive fractionally integrated moving average (ARFIMA)
model-based volatility forecasting. According to the results, wavelet decomposition
provides more knowledge than familiar estimators. On the other hand, the ANN gives
better forecasting results than the ARFIMA method.

In [1]] groundwater level forecasting is the research subject by considering wavelet-
neural network (WA-ANN), regular ANN, and ARIMA techniques. The method that
gives the best results is WA-ANN concerning R?, the Nash-Sutcliffe model efficiency
coefficient, and RMSE metrics.

Okkan investigates whether using the WNN positively affects monthly reservoir in-
flow prediction in [42]. DWT is employed to decompose monthly meteorological
data. Having decomposed the data, inefficient subseries are removed, and the re-
maining subseries become inputs for neural networks. Levenberg-Marquardt (LM)
optimization algorithm-based Feed Forward Neural Networks (FFNN), multiple lin-
ear regression (REG), and DWT-based multiple linear regression (WREG) are other
models that are handled for empirical results. Results indicate that WNN outperforms
FFNN, WREG, and REG. Additionally, using DWT increases the accuracy of both
multiple linear regression and neural networks.



In [2] ARIMA, deep neural network (DNN), gated recurrent unit (GRU), and long
short-term memory (LSTM) methods are used with and without DWT to predict
high-frequency financial data. It is seen that DWT increases the accuracy of each
technique. Moreover, GRU with DWT and LSMT with DWT give better results than
other DWT based methods.

In [63] DWT-convolutional neural network (CNN)-LSTM model is utilized for day-
ahead solar irradiance forecasting. DWT is used to decompose the raw solar irradi-
ance data of specific weather types into detail and approximation parts. Subsequently,
CNN is used to collect local features of decomposed data, and these gathered features
are then used as inputs for LSTM for forecasting. The proposed method is checked
against CNN-LSTM, ANN, manually extracted features-ANN, persistence forecast-
ing, CNN, and LSTM models. It is concluded that the proposed method outperforms
other forecasting models.

In [35] nonstationary wind power time series is decomposed by DWT. After decom-
position, each subseries is modeled by a different LSTM model. Finally, all pre-
dicted values are put together to get the exact result. DWT-LSTM is compared with
DWT-recurrent neural network (RNN), DWT-BP, LSTM, RNN, and BP. The pro-
posed method gives the best accuracy results when compared to other methods.

Sugiartawan et al. [55]] take advantage of a hybrid of wavelet transform and LSTM
neural networks to predict tourist arrivals. Data is decomposed into subseries, and
these subseries are used as inputs for the LSTM network. The recommended model
is compared with hybrid wavelet-Elman, hybrid wavelet-Jordan, LSTM RNN, Elman
RNN, and Jordan RNN.

WNN approach is tackled to learn a class of functions in [S3]]. The presented method
uses wavelets as activation functions by using the translation and the dilation param-
eters.

ANN and WNN methods are used to model a solar air heater in [16]]. Morlet wavelet
is used as an activation function in WNN structure. According to the consequences,
using WNN is more beneficial than utilizing ANN.

Pindoriya et al. select the Mexican hat wavelet as an activation function in FFNN to
forecast short-term price in the electricity markets in [46]. After getting results for
day-ahead prediction of several electricity markets, they verify that adaptive wavelet
neural network (AWNN) gives better results than wavelet-ARIMA, MLP, radial basis
function (RBF) neural networks and fuzzy neural network (FNN).

In [54] feedforward error backpropagation artificial neural network (FEBANN) and
WNN based classifiers are compared to classify electromyography (EMG) signals. It
is reported that the WNN method outperforms FEBANN according to the accuracy
results of classifications.

In [4] MLP and WNN approaches are compared for calibration model building based
on gasoline near-infrared (NIR) spectra. WNN is seen as more viable and robust than
MLP.

It is seen that MRA or WNN issues are discussed in many studies individually. Fusing



these two issues with machine learning algorithms motivates our work.

1.3 Plan of the Thesis

In Chapter [2] the basics of the neural networks are given. Besides, we clarify the
fundamentals of LSTM and mention numerous literature reviews concerning the im-
plementation of LSTM.

In Chapter [3] we present the essential technical points of wavelets. In particular tech-
nicalities of MODWT and MRA are explained.

We mention the substantial details of polynomial powers of sigmoid (PPS) in Chap-
ter @ Wavelets, which are used in the empirical study, are derived from PPS. The
purpose of this chapter is to understand how we obtain wavelets to be used as activa-
tion functions.

Theory and implementation of LSTM and wavelets are applied to the financial data
in Chapter [5] First, the flowchart of the source code is described. The computer fea-
tures, system information, and error metrics we use for analyses are given. Afterward,
descriptive statistics of S&P500 and NASDAQ financial time series are handled. Ex-
planations, configurations, and results of models are also discussed in this chapter
for the following methods: LSTM model without MRA, LSTM model with MRA,
hybrid LSTM-Wavenet model without MRA, and hybrid LSTM-Wavenet model with
MRA. Summary tables of both S&P500 and NASDAQ are given for the four different
methods discussed throughout the paper.

Finally, we conclude the thesis in Chapter [0} Further studies and possible improve-
ments are considered.



CHAPTER 2

NEURAL NETWORKS

The neural networks are founded on artificial learning, which is stimulated by the
cerebrum of creatures. Some nodes have comparable undertakings with neurons in
a cerebrum. Most frameworks are shaped by input, hidden, and output nodes inter-
linked with past and next ones. A network structure includes the number of layers and
the number of neurons in each layer, each layer’s activation function, and the weights
between adjacent nodes. The basic structure of multilayer neural network (MNN) is

given in Figure[2.1]

As stated in [235]], outputs of the multilayer feed forward neural network is given as
vk = o+ i | [ (Sl [ (Sowba+ )] +87)] -] wh) @D

where L is the total number of hidden layers plus one output layer (L = 0 for the
input layer and Lth layer is the output layer), n is the index number of neurons in the
output layer, ¢ is the index number of neurons in the input layer, j is the index number
of neurons in the first hidden layer, £ is index number of neurons in the second hidden
layer, m is the index number of the last hidden layer, y’s are output values, fZ~ is the
(L — 1)th activation function, w’ s are weights between the Lth and the (L — 1)th
layers. Moreoever, b}, ..., b5~" are biases for hidden layers and b, shows biases for
the output layer. If we have only one hidden layer then the equation can simply be

written as
Yr = by + Z fi <bj + Z wiﬂi) Wi, (2.2)
j i

where y’s are outputs, f’s are activation functions, ¢ shows the index number of neu-
rons in the input layer, 5 shows the index number of neurons in the hidden layers, k
shows the index number of neurons in the output layer, b, represents biases for the
output layer, b; indicates biases for the hidden layer.

Here weights are need to be tuned in to minimize difference between predicted and
observed outputs. Backpropagation can be used for training to reduce error terms.

Then we get
1 , .
B = 5 (wali) = (D), @3

i=1

where 1 is the index for input data, y, is original data and y,, is prediction. One needs
to update weights in network in order to reach a small amount of total error.
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Figure 2.1: Structure of MNN.

There are several types of neural networks such as an artificial neural network (ANN),
multilayer perceptron (MLP), convolutional neural network (CNN), recursive neural
network (RVNN), recurrent neural network (RNN), gated recurrent unit (GRU) and
long short-term memory (LSTM) which is a specific type of RNN, etc. [15]. Mainly,
LSTM will be handled in the thesis for financial time series analysis since it is widely
used for many time series types. Because financial data is complex along with several
time intervals, the network structure needs to have memory of different time gaps.
We refer to [26] for some advantages of LSTM.

2.1 Long Short-Term Memory (LSTM)

The difference between FFNN and RNN is adding extra weights for hidden layers as
loops. Basic algorithm for RNN is written as

he = fu Wrnxe + Wanhi—1) , (2.4)
v = fo (WHoht) ) (2.5)

where z; and y; are input and output vectors, Wiy, Wy and Wy are weight matri-
ces, fg and fo are activation functions for hidden and output parts. There would be
vanishing or exploding gradient problems in basic RNN. On the other hand, LSTM
can solve these problems by adding extra parts like the input gate, the forget gate, and
the output gate. Hence LSTM would be a better choice for time series modeling and
prediction. Differences between ANN, RNN, and LSTM can be found in [61]. De-
tails of LSTM structure and step by step explanation are given in [43]. In Figure [2.2]
and in Figure [2.3] basic structure of a one-unit RNN and a one-unit LSTM are given
respectively.
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Figure 2.2: Structure of a  Recurrent Neural Network  Sys-
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Figure 2.3: Structure of a Long Short-Term Memory. (https:
//commons.wikimedia.org/wiki/File:Long_Short-—
Term_Memory.svg)

In Figure 2.2} x is the input state, i is the hidden state and o is the output state.
Moreover, U, V and W are weights for the input, the recurrent, and the output parts.

Equations for calculating the value of the memory cell / at time ¢ are given as

F, = o(Wpxy 4+ Uphy_y + bp), (2.6)

I, = o(Wyay + Urhy—y + by), (2.7)

C, = tanh(Wea, + Uchy_1 + be), (2.8)
Cy=F*Cpy+ 1% Cy, (2.9)

Oy = oc(Woxy + Uphy—1 + bo), (2.10)

hy = Oy % tanh(C}), (2.11)

where x; is input vector to the LSTM at time ¢, W’s and U’s are weight matrices, b’s

are bias vectors, h; is output vector of LSTM cell, C; and (z are state and candidate
state vectors respectively, F; is forget gate values, I; is input gate values and O is
output gate values. In (2.6) h;_; and z; are used to generate numbers between 0 and
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1 for cell state C;_;. If the number is O then information is completely forgotten.
On the contrary, information is wholly preserved if the number is 1. Values between
0 and 1 point amount of information to be protected. In (2.8)) new candidate state
vector is created and later on combined by input layer gate values that are generated
in (2.7). As a result we get updated cell state C in (2.9). Finally output of LSTM cell
is calculated in by using output gate values and updated state vector.

Many use the LSTM method for the time series analysis. In [[10], Brownlee shows
how to implement LSTM models for univariate, multivariate, and multi-step time
series forecasting in Python. In [32], Kompella forecasts the sinusoidal time series
using the LSTM structure with fixed window size. In [50], Schlosser mentions using
the Keras library to implement LSTM to time series data sets in Python. Predictive
techniques where LSTM is also included are handled in [24, 3]. Deep learning tech-
niques are used to forecast sunspots data in [14] with the R programming. In [22]
stock price movements are predicted by using LSTM in Python.
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CHAPTER 3

WAVELETS

The Fourier transform has been used for a long time, and still, it is extensively used
in many scientific and engineering areas. Unfortunately, it has several drawbacks,
which are particularly found in the analysis of complex structured functions. Some
of the disadvantages of Fourier transform are:

e The Fourier transform demands stationary data, i.e., there should not be any
systematical changes in mean and variance of a time series. However, almost
all financial time series and most time series in different disciplines are nonsta-
tionary.

o After taking the Fourier transform of a function, there will be no time informa-
tion left.

e Modified version of the Fourier transform, which is called as short-time Fourier
transform (STFT) or windowed Fourier transform, gives time information. But
it still does not contain resolution information.

The wavelet transform was then intended to break into high-frequency and low-
frequency parts of the signal in related time gaps. Wavelet transform is exceptionally
appropriate for financial time series since financial time series have high-frequency
segments for short time lengths and low-frequency parts for long time lengths.

3.1 Maximal Overlap Discrete Wavelet Transform (MODWT)

Practically it is almost unattainable to use all wavelet coefficients to analyze the sig-
nal. One cannot compute almost an infinite number of coefficients by hand or by
computer. In theory, it is more applicable to use continuous wavelet transform (CWT)
for continuous functions but not for time series or discrete signals as Masset pointed
out in [38]. As a result, it is better to work with sampled wavelets. To describe MRA,
we use MODWT.

For DWT, the significant point is that one needs a time series with dyadic length to
apply DWT. The reason for requiring a dyadic size is that coefficients of transform
are computed by downsampling the original data as given in Mallat’s Pyramid Algo-
rithm [36] which can be seen in Figure and Figure One can analyze function
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Figure 3.2: Flowchart of the pyramid algorithm for synthesis.

by using high-pass and low-pass filters to find smooth and detailed parts. The op-
posite process is called reconstruction or synthesis. Synthesis is used to reach the
original signal by using smooth and detailed components by using upsampling.

The construction of MODWT is very similar to DWT. However, DWT has some
drawbacks compared to MODWT. For instance, MODWT does not require dyadic
length time series where DWT does. In other words, DWT limits the data for having a
length of N = 27 due to the upsampling and the downsampling. Since MODWT does
not require dyadic length, the sizes of wavelet and scaling coefficients are equal to
the original time series’s length at every step of the transform. Moreover, MODWT is
time-shift invariant while DWT is affected by time-shifting as stated in [23]. Further,
the variance analysis of MODWT is more effective than the variance analysis of DWT
as mentioned in [45]].

Let w contains wavelet and scaling coefficients of the MODWT,
W = [w17w2>"'7wJ7UJ]T7 (31)
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where length of w; is N/27 and the length of v, is N/27 according to scale lengths
as \; = 2771 and \; = 277! respectively where j = 1,2,...,J.

One can get the vector w by using high-pass and low-pass filters as given in [23].
The vector that contains coefficients is given as

W =Wz, (3.2)
where W = [Wl, Wg, o ,WJ, VJ]T is (J + 1)N x N matrix which implies that each
W, and V; are N x N matrices.

High-pass and low-pass filters are convolved with the time series to reach wavelet and
scaling coefficients of the first level as following

L-1 L-1
wi(t) =Y mx(f) and wvi(t) =) ga(i), (3.3)
=0 =0

wheret = 0,1,...,N —land{ =t — [ (mod N). Wavelet and scaling coefficients
of the second level is reached by convolving v;(t) with the high-pass filter h; and
low-pass filter g;. After J = log, N iterations, wavelet and scaling coefficients are
given as

L-1 L-1
wy(t) = huya(f) and v(t) = gws(D), (3.4)
=0 =0

where t = 0,1,..., N — 1l and { = t — 2771] (mod N). The vector which includes

all coefficients is written as w = [w; ws ... wyvs|T.

If the equations given in (3.3)) and (3.4) are convolved with high-pass filter and low-
pass filter respectively, the scaling coefficient of previous level is reached by summa-
tion of two convolving parts [23]],

L-1 L—-1
via(t) =Y hews () + Y gs(é), (3.5)
=0 =0

wheret =0,1,...,N —landf =t + [ (mod ). One can iterate this procedure up
to the first level of wavelet and scaling coefficients to acquire the original time series
as

L—-1 L—1
2(t) = hwi(f) + > gn(f), (3.6)
=0 =0

wheret = 0,1,...,N —landf =t + [ (mod N).

3.2 Multiresolution Analysis (MRA)

Definition 3.1 (Multiresolution Analysis). After data is composed into vectors of
coefficients which are related to the certain time scales. MRA is a sequence of closed
nested subspaces {V; : j € Z} in Lo(IR) with the conditions given below, [21162,/60]
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1. {¢(x — k); k € Z} is an orthonormal basis for 1, where ¢ is scaling function
of the MRA
{0} C---CV;C V1 C--- C Ly(R)
Closure of (U;ezV;) = L2(R) such that any union is dense in L(R)
N;ezV; = {0} so zero element is the only common object

f(t) € V; < f(2t) € Vj41 so that the spaces Vs are self-similar

AN

Viq1 = V; @ W; where the space W is the jth resolution level of the MRA [62]
and V; N W,; = {0}

Practically, construction of MRA is started from subspace 1 and larger subspaces are
added to Vj in order to enlarge space. In Figure[3.3|1V;’s are differences between V.,
and V; subspaces. Scaling and wavelet functions form bases for V; and W; subspaces
by using scaling and translation parameters respectively as follows,

Vj = span{pj.(x)}, 3.7)
W; = span{v;;(z)} . (3.8)
Relation between subspaces is given by Refinement Equations using scaling and wavelet
functions:
Zh )2120(22 — n), (3.9)
Zh 21222 — n). (3.10)

For instance, assume that ¢(x) stands for V7, then p(2x — n) stands for V5. Similarly
if ¢(x) stands for 1/, then ¢/(2x — n) stands for 5.

Dilation and translation parameters are employed to cover the L,(R) space. The main
idea of the MRA is to obtain L,(IR) space or any function by combining smooth and
detailed parts.

Vj41 can be written from last property in Definition [3.1] as

Vin=VWeWeW e ---aW,). (3.11)
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After construction of MRA by using subspaces in Figure L?*(R) space or any
function in it can be written as a direct sum of Vj, and W; subspaces as

=P PpwiPn.P---@Pw;forj=012.... (312

In general form, any function can be written in the form of wavelet series expansion

as
T) = Zajo(k)gojok + ZZd Yk (z) for j > jo. (3.13)
k

Jj=jo k

In the first sum with scaling function shows a smooth part and the second sum
shows detailed parts of the function. In other words, the first sum covers V; subspace
and the second part covers IV subspaces. Coefficients in can be found by the
following integrals,

0 (k) = / F@)psnde and dy(k) = / F(@)ib; . (3.14)

In practice, scale level J is chosen finite and then time series is written in terms of
approximation and detail parts as

z(t) = ZGJ,kSDJk + sz] pie(t) forj=1,2,...,J. (3.15)

k Jj=jo k

After using Mallat’s pyramid algorithm, MODWT separates time series into smooth
and detailed parts as

J
2(t) = A+ Y Djk: (3.16)
J=Jjo

where the component A holds the average information (or trend) of the original
data at the largest scale and is associated with the scaling coefficients. Components
D i’s, from the first scale to the last scale, are concerned with wavelet coefficients.
They are implemented for collecting higher frequency information, i.e., they cover
detail coefficients [38]].

Smooth and detailed parts can be found by multiplying coefficients by the scaling
function (father wavelet) and wavelet function (mother wavelet) or directly from
W]T W, where W contains approximation and detail coefficients and W” contains
scaling and wavelet functions which are assembled of low-pass and high-pass fil-
ters.
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CHAPTER 4

WAVELET NEURAL NETWORK

Concepts of wavelets and neural networks are associated with taking advantage of
both at the same time. Wavelet neural network is appropriate for complex data like
financial time series especially. Nonlinear modeling methods like neural networks
are more suitable than linear methods for that kind of data. Furthermore, wavelet
transforms allow us to model the problem more accurately in both time and frequency
spaces.

Actually, the structure of wavelet neural networks is quite similar to the design of neu-
ral networks. Common activation functions like logistic, hyperbolic tangent, rectified
linear unit (ReLU), softmax, etc., or some custom linear/nonlinear activation func-
tions are used in neural networks. The difference between them is that wavelets are
used in the hidden layer neurons as activation functions for wavelet neural networks.
Then the hidden layer neurons are called as wavelons [28, 7, 167]. Wavelons consist of
two parameters, which are called the translation and the dilation. The single wavelon
can be written as

Yuo(T) = 1) (w;“) (4.1)

where u is the translation (or the location) and v is the dilation (or the scale) parame-
ters. The function ¢ is derived from wavelets as we mentioned in Chapter 3]

4.1 Wavenets

In the learning process, if the translation and the dilation parameters given in (#.1) are
unalterable, then the structure is called as wavenet [59]]. On the other hand, if these
parameters are adjustable during the learning process, the form is referred to as the
wavelet network. Wavenets are used in the thesis for empirical studies.

Parameters mentioned in (4.1)) may differ for each node in the hidden layer, but each
is fixed for the corresponding node. Before setting these parameters, one needs to
initialize them according to the data. Details of initializing these parameters are given
in Chapter [3

In [37], Marar and Bordin mention that there are many restrictions in the conventional
backpropagation algorithm. Low dimensionality, the tensor product of wavelets, pa-
rameter initialization, and having one-dimensional output are samples of limitations.
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A family of polynomial wavelets generated from powers of sigmoid functions is em-
ployed to discharge some of these constraints. In other words, the wavelet functions
1’s are derived by using polynomial powers of sigmoid.

4.2 Polynomial Powers of Sigmoid (PPS)

In [[17] it is stated that a family of polynomial wavelets produced from powers of
sigmoid helps create robust neural network structures, particularly wavelet neural
networks. One can form polynomial types of wavelet functions by using consecutive
powers of sigmoid functions [18] where and need to satisfy. If holds,
then it means that every function f(z) is square-integrable, i.e. in L?(R). On the other
hand, if (4.3)) holds, it means that the mother wavelet ¢)(x) satisfies the admissibility
condition:

/ |f (@) dz < oo, 4.2)
R
[o’e) 2
/ |¢<:j)| dw < o0, 4.3)
0

where w is frequency and € is the Fourier transform of ¢ (x).

Consider the following sigmoid function given in below
1
/()

1 +exp(—azx)’
where « is the smoothness constant and f : R — [0, 1]. Even though the function
given in does not satisfy conditions in and (4.3), functions derived from
combination of it’s powers satisfy the conditions. In order to create wavelet functions
family from the sigmoid function, first of all we define nth power of the sigmoid
function and set of all powers of the sigmoid function as given in (4.5) and (4.6)

4.4)

respectively.
1 n
") = ———F 4.
(@) (1 + exp(—ax)) ’ (4.5)
where f" : R — [0, 1], and
L= {f), f'(x), f2(2),.... ["(2)} . (4.6)
For o = 1 the first derivative of the sigmoid function is given as
1
df (z) _ d <1+exp(—x)> _ f(=x) _ f(a) exp(—x) @)
dx dz (1 + exp(—x))? 1+ exp(—z) .

After adding and subtracting 1 from the numerator exp(—z) one can rewrite the first
derivative of the sigmoid as

df (z) _ . exp(—z) —1+1 _ 1 +exp(—z) 1
dr /(@) 1 + exp(—x) /(@) (1 +exp(—x) 1+ exp(—x)) (4.8)
= flx) (1= f(x)).
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Now let’s consider the following wavelet equation, which consists of three sigmoid

functions:
Y(z) = f(z+h)=2f(x)+ f(z - h), (4.9)

where h € Z and h > 2. After dividing both sides of the equation (#.9) by h?,
approximated second derivative of the sigmoid function is given in (4.10). In both
p > 1 and p < 1 cases, while the limit goes to zero obtained functions satisfy wavelet
conditions. Details can be found in [19,[20].

f”(:ﬁ) ~ f(x_'_h)_Q];L(f)—i_f(x_h)‘

(4.10)

One can find the second derivative of the function by taking the limit of the function
¥(x) which is divided by h?* while h goes to zero as:

Pi@) et h) = 2@+ fa—h)

dx? h—0 h2

4.11)

Moreover, by using (4.8)) the second derivative of the sigmoid function can be written
as follows:

& f ()

dx?

= f(@) (1= f@@)* + (=f(2)* (1 = f(2))). (4.12)

As a result by using (4.8) and (4.12)) the PPS-wavelet functions produced by the first
and the second derivative of the sigmoid function are given in (4.13)) and {.14)) re-
spectively,

Yi(x) = —f2(x) + f(x) (4.13)
and

o) = 2f3(x) = 3f%(x) + f(x). (4.14)

Describing the set © = {¢1(z), ¥2(z), ..., ¥, (z)} keeps the same procedure as de-
riving the derivatives of the Gaussian function in structure of polynomials which are
the Hermite polynomials [49]. In (4.13)), (4.16) and (@.17) 3rd, 4th and 5th polyno-
mial types of wavelet functions by using consecutive powers of sigmoid functions are
given respectively as follows [17]:

Uy(x) = —6f"(x) + 12f%(x) — Tf*(z) + f(x), (4.15)

Yy(x) = 24f°(x) — 60f*(x) + 503 (x) — 15f%(x) + f(x), (4.16)

Ys(x) = —120f%(x) — 360f°(x) — 390f*(z) + 1803 (x) — 31 f*(x) + f(x). (4.17)

In general, the polynomial wavelet function generated by the nth derivative of the
sigmoid function is given as (see [40]])

n

Pulr) = 3OS (1P + 1>”(’;.’) ), 4.18)

j=0
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Figure 4.1: Polynomial Wavelet Functions Generated by the nth Derivative of the
Sigmoid Function
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where 7 is the derivative degree of the sigmoid function and f**!(x) is the (k + 1)th
derivative of the sigmoid function. In Figure each 1, (z) can be seen for n =
0,...,15asin [39].

In [18] it is stated that observed family of polynomial wavelets satisfy that i; &€
L?*(R). Consequently, the admissibility condition holds not only for this family but
also for shifted and dilated versions of this family.
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CHAPTER 5

EMPIRICAL RESULTS

In this chapter, we aim to show whether using MRA and hybrid LSTM-Wavenet
model together or separately decreases the loss or not. First of all, in Section
we model financial time series data by using only LSTM neural network structure to
predict the test set. Then in Section [5.3] the same data is modeled using the LSTM
model with MRA. In Section [5.4] the wavenet structure is added to the LSTM (we
call this structure a hybrid LSTM-Wavenet model), but MRA is not used. Finally, in
Section[5.5/hybrid LSTM-Wavenet model with MRA is handled.

The flowchart of all the work done is given in Figure [5.1]

After taking the input (S&P500 and NASDAQ), there is a decision point that indicates
whether MRA will be used or not. It is worth noting that in order to avoid confusion,
that decision point is not an automated structure, but a manual action by the user.
It is illustrated only to indicate whether the algorithm is running with or without an
MRA. The general flow for both cases consists of data preprocessing, hyperparameter
optimization, modeling & learning, prediction & visualization. Explanations of the
flowchart are given in Table [5.]and Table [5.2]

Initially, we download S&P500 (*GSPC) and NASDAQ ("“IXIC) stock data between
1980-08-04 and 2019-08-02 from https://finance.yahoo.com/. Data has 9834 values
for each “Open, High, Low, Close, Adj Close, Volume” column. Only closing prices
are used. All analyses are performed using Python language in Anaconda. To perform
ANN analysis, Keras library, which uses TensorFlow backend, is used [12].

For the sake of simplicity, we select the size of the data as 9830. This number cor-
responds to the dates between 1980-08-04 and 2019-07-29. Time series analysis is
handled with/without using wavelet analysis. Talos library is used for hyperparameter
optimizations [33]. After selecting the optimized hyperparameters, we also manually
adjust the parameters by the hand-tuning E] method. Batch normalization is used in all
analyses between LSTM and dense layers to have smaller pieces of data with a mean
of zero and a standard deviation of one. In [9,[13] it is stated that batch normalization
has some advantages as listed below:

(1) Reducing overfitting problems,

(i) Speeding up the training process,

! At this stage, kernel initializer, kernel regularizer, recurrent regularizer, and bias regularizer are optimized.

23



Data Selection
Data Integration
Data Normalization

E’ Data Transformation
2
3
3
<3
&
il
: ()
S
5
ol Validatio
3.
S
ST
5N
<
© 8 :
0
T
Ye!
: Hybrjd l
2 Create Model Create Model
T E without Wavelet with Wavelet
° 3 Activation Activation
: ; Functions Functions
=)
. £
‘o
el
- O
=
Validation
Monte Carlo Train
Structure

Calculate
Error Metrics

Visualization

Prediction & Visualization

Figure 5.1: The Flowchart of Four Different Methods Applied in the Study

» Data Selection

¢ Data Integration

MRA (Level=2, Filter='db2')

(o))
g (1st Detail () (an Detail () ( Smooth ()
o
o
% « Data Normalization
g » Data Transformation
W1 W2 A1
—( Train (X Train (X Train ()
( Validatior(x Validatior(x Validatior‘( T
( Test (X Test (X Test ()—
%)’ S ains Seperatel Talos Validation;' Sepefafely
£ . Optimization r_ (e
[ : :
SE '
&8
I
LSTM+MRA Hybrid+MRA
=) Nor Yes—l
£
S
& [ Create Models
= | without Wavelet Create Models where
o Activation Approximation Part uses
£ Functions Wavelet Activation
§ Functions
= T T
v 3 v ;
Model 1 | [Model 2 | | Model 3 :
Trains
Monte Carlo Learning| |Learning| |Learnin Vali ic
Structure 9 ) 9 9 anaaton;

24

-5 Prledve-' ﬁlPrediction"Prediction '4— Tests
‘8 :

-] v

: é Inverse MODWT

%

: é Calculate

—5\Visualization Error Metrics

- O

P



Table 5.1: Details of Data Preprocessing and Hyperparameter Optimization Parts Given in
Figure[5.1) with and without MRA

MRA

without

with

In this step, the part of the data

to be used is chosen. Then selected
financial data is combined, and
this combined data is normalized
between 0 and 1. Subsequently,

Difference from the data
preprocessing part, that MRA
is not used, is decomposing
the data after selection and
integration part. Data selection
and data integration steps are
made in the same way as given

Data . ..
] data is converted to the structure in without the MRA part. Each
Preprocessing . . .
of a supervised learning type by level of the decomposed data is
using several time-steps? Finally, normalized and transformed to
the modified input is divided produce pertinent data for a
into the train set, the validation set, | supervised learning problem.
and the test set. Later each level is divided into
the train set, the validation set,
and the test set.
The train set and the validation set
are used in the Talos optimization | Selection and optimization of
rocess to get hyperparameters hyperparameters are made for
Hyperparameter P ) 8 ) YPeIp YPeIp )
e e required to build a better model. each created subseries by Talos
Optimization

Thereafter, automatically selected
hyperparameters are again handled
to be optimized manually.

optimization and hand-tuning
methods, respectively.

 Different time step values are tested for the LSTM architecture applied to S&P500 data
in [6]]. The value 10 for the time step gives the best result. Therefore 10 is utilized as a
time step in the thesis.
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Table 5.2: Details of Modeling & Learning and Prediction & Visualization Parts
Given in Figure [5.1{ with and without MRA

MRA

without

with

Modeling &
Learning

In this step, there is another decision

point for identifying whether WNN
structure, specifically wavenets,
will be used or not. If wavenets
are not used, then the created
model is called the LSTM model.
On the other hand, if wavelet
activation functions are used,

the developed model is called a
hybrid LSTM-Wavenet model.
The formed model is applied to
the train set and the validation

set for the learning process.

In this step, the WNN decision
point appears again. If wavelets
are used as an activation function,
then the model is referred to as

a hybrid LSTM-Wavenet model
with MRA. Otherwise, the model
is denominated as an LSTM model
with MRA. After the decision
point, a model is created for each
subseries. Each model is used for
the learning process by using the
train set and the validation set.

Prediction &
Visualization

A certain number of learning
process calculations are done,
and each learned model is

used for the prediction process
by using the test set. Moreover,
the prediction process is also
applied to the training set.
Monte Carlo structure is used to
get the mean error metric scores
for the train set and the test set.
Besides calculating different
error metric results, visuals of
analysis are obtained.

As in the other flow, the Monte
Carlo structure is used here for
the prediction process. After
predicting train and test parts
for each level, inverse MODWT
is utilized to reconstruct the
original time series. Finally,
performance results for various
error metrics and visuals of
analysis are achieved.
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(iii) Increasing accuracy results/decreasing loss values.
Below is the list of the computing environment we work on.

(i) OS Platform and Distribution: Windows 10
(i1) Processor: Intel(R) Core(TM) i5-4210H CPU 2.90GHz
(i11)) Memory (RAM): 8,00 GB
(iv) Conda version: 4.7.11
(v) Conda-build version: 3.17.6
(vi) Python version: 3.6.9
(vil) Spyder version: 3.3.3
(viii) TensorFlow version: 1.13.1
(ix) Keras version: 2.2.4

(x) Talos version: 0.5.0

In order to measure the error terms, following metrics are used:
(i) Root Mean Square Error (RMSE): /> | w
(ii) Scaled Root Mean Square Error (SRMSE): RMSE/ (¥max — Ymin)

D S
(i) R%: 1 — e

(iv) Mean Absolute Error (MAE): % Yoy — uil

(v) Explained Variance Score (EVS): 1 — Va\i;y(;)y :

(vi) Maximum Error (ME): max (|y; — 9:|)
(vii) Median Absolute Error (MdAE): median (|y3 — 91|, -+, |Yn — Un|)

where y; is the ith observed value, g; is the ith predicted value, Y.« is the maximum
observation, ¥, is the minimum observation and ¥ is the mean of all observations.

5.1 Descriptive Statistics

S&P500 is a USA based stock market index that includes 500 large companies listed
on stock exchanges. S&P500 covers different sectors like finance, health care, indus-
try, energy, information technology, and many others. On the other hand, NASDAQ
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Figure 5.2: Partitioning Graphs and Histograms

Composite is also a USA based stock market index that covers the information tech-
nology sector. According to covering almost all sectors, S&P500 less volatile than
NASDAQ does.

S&P500 includes also some stocks listed on the NASDAQ. Therefore the correlation
between the two stock market indexes is expected to be high. As noted, Pearson’s
correlation coefficient is 0.9788, and Spearman’s correlation coefficient is 0.9928.

For investors, NASDAQ is considered risky, while S&P500 is deemed to be risk-
free. Many investors attach importance to portfolio diversification by investing in
both riskless and risky markets.

This section observes descriptive statistics of the training set, the validation set, and
the test set for both S&P500 and NASDAQ. Moreover, visuals of the observations
and their histograms are given. Scores of the variance and the standard deviation
are calculated for two different delta degrees of freedom (ddof) values. Firstly ddof
is given as zero, and secondly, it is given as one. Histograms are plotted with a
kernel density estimate (KDE) method, which provides visualizing the distribution of
observations. Figure part (a) and part (b), shows all S&P500 and NASDAQ data
and their segmentation, respectively. Part (c) and part (d) present the histogram of
S&P500 and NASDAQ with KDE one by one.

Descriptive statistics of S&P500 and it’s subsets are given in Table According
to skewness scores, the training data and the test data have more weight in the left
tail of the distribution, while the validation data have more weight in the right tail
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Table 5.3: Descriptive Statistics of S&P500 Data

All Data Training Data | Validation Data | Test Data
Start Date 1980-08-04 | 1980-08-04 2007-10-10 2013-09-04
End Date 2019-07-29 | 2007-10-09 2013-09-03 2019-07-29
# of Observations 9830 6860 1485 1485
Minimum 102.42 102.42 676.53 1653.08
Maximum 3025.86 1565.15 1709.67 3025.86
Range 2923.44 1462.73 1033.14 1372.78
Mean 990.26 654.61 1247.78 2283.34
Median 993.52 459.59 1278.18 2143.16
Variance (ddof =0) | 511585.07 | 205914.77 46644.40 129766.45
Std (ddof = 0) 715.25 453.78 215.97 360.23
Variance (ddof =1) | 511637.11 | 205944.79 46675.83 129853.90
Std (ddof = 1) 715.29 453.81 216.05 360.35
Skewness 0.74 0.44 -0.24 0.37
Kurtosis -0.10 -1.34 -0.38 -1.16

of the distribution. If we consider the kurtosis values, all the segmented sets have
a distribution with lighter tails than the normal distribution has. In other words, all
kurtosis types are platykurtic. In Figure [5.3] graphs and histograms with KDE of
the training set, the validation set and the test set of S&P500 are given row by row,
respectively.

In Table[5.3|descriptive statistics of NASDAQ data are given. Similar to S&P500, the
training and the test sets are skewed left while the validation data is skewed right. The
kurtosis type of the training set is leptokurtic, i.e., the curve has a higher peak than
the normal curve. On the other hand, the kurtosis curves of the validation set and the
test set have a flatter peak than the normal curve. In Figure[5.4] plots and histograms
with KDE of the training set, the validation set, and the test set of NASDAQ are
demonstrated.

If we consider Figure and Figure[5.2b] it is seen that there are large value changes
between the training set, the validation set and the test set. In addition, there are fluc-
tuations and several jumps in each separated sets. According to Table and Ta-
ble[5.4] minimum, maximum, mean, and standard deviation values are quite different
for the training set, the validation set, and the test set. Each subset shows different
characteristics for both S&P500 and NASDAQ in Figure[5.3]and in Figure[5.4]respec-
tively. Due to these differences, it is expected that there are differences between the
error metric results of the train set and the test set for both S&P500 and NASDAQ.

5.2 LSTM Model without MRA

Closing prices of S&P500 and NASDAQ stocks are concatenated to get time series
data to be used. After modeling the data, we predict closing prices of S&P500 and
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The Training Set of NASDAQ Data
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Table 5.4: Descriptive Statistics of NASDAQ Data

All Data Training Data | Validation Data | Test Data
Start Date 1980-08-04 | 1980-08-04 2007-10-10 2013-09-04
End Date 2019-07-29 | 2007-10-09 2013-09-03 2019-07-29
# of Observations 9830 6860 1485 1485
Minimum 159.14 159.14 1268.64 3649.04
Maximum 8330.21 5048.62 3692.95 8330.21
Range 8171.07 4889.48 2424.31 4681.17
Mean 2042.74 1147.35 2519.96 5701.76
Median 1697.72 743.45 2516.69 5190.10
Variance (ddof = 0) | 3547004.08 | 909358.80 268338.30 1690667.54
Std (ddof = 0) 1883.35 953.60 518.01 1300.26
Variance (ddof = 1) | 3547364.95 | 909491.37 268519.12 1691806.81
Std (ddof = 1) 1883.45 953.67 518.19 1300.69
Skewness 1.33 1.09 -0.14 0.44
Kurtosis 1.29 0.78 -0.34 -1.18

NASDAQ. Data (length of 9830) is split into the train, the validation, and the test sets.
Almost %70 of all data is used in the train set (Iength of 6860), about %15 of all data
is used in the validation set (length of 1485), and nearly %15 of all data is used in the
test set (length of 1485). We prepare the dataset as two variables with ten time-steps.
Each sample is related to index O (closing prices of S&P500) and index 1 (closing
prices of NASDAQ) values, respectively. In other words, by using ten days window
set with two variables, the next days’ closing price is focused on being predicted. Two
hidden layers are used, where the first one is formed of LSTM nodes and the second
one consists of a regular densely-connected neural network. In the LSTM part, kernel,
recurrent, and bias regularizers are put into practice. Batch normalization and ReLU
activation function are added between dense and LSTM parts, respectively. In the
dense part, kernel and bias regularizers are employed. After modeling the problem
according to the selected configuration using Talos optimization and hand-tuning, we
fit the model to data and predict train/test parts many times in a loop. Afterward, we
calculate train/test predictions and the mean of error metrics.

We use six different configurations without MRA and wavenets in order to model the
S&P500 and the NASDAQ datasets. In Table [5.5] Table Table [5.9] Table
Table[5.13]and Table[5.15]six varying Talos configuration parameters which are used
for the S&P500 time series analysis without wavelets can be seen. Only difference
between these tables are the epoch sizes. Training and test results which are obtained
using these structures are presented in Table [5.6] Table [5.8] Table [5.10] Table [5.12]
Table and Table respectively. In Table [5.17] six distinct model results are
given for S&P500. It is seen that results are affected by tuning L1 regularization
and L2 regularization values in kernel, recurrent and bias regularizers for fixed epoch
value.

Actually, from our point of view, the test scores are more important than the train
scores. R? and EVS error metrics show how well the model fits. RMSE, SRMSE,
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Table 5.5: LSTM Model, Configuration 1 (S&P500): Talos Configuration

Configuration 1

loss mse

optimizer Adam

time-steps 10

batch size 1024

epochs 100

Layer Parameters LSTM Layer | Between Layers | Dense Layer
# of nodes 16 - 128

kernel initializer normal - -

batch normalization | - yes -

kernel regularizer 11, 2=1e-4 - 11, 12=1e-4
recurrent regularizer | 11, 12=1e-4 - -

bias regularizer 11, 12=1e-4 - 11, 12=1e-4
activation - ReLLU ReLLU

Table 5.6: LSTM Model, Configuration 1 (S&P500): Mean Scores for the Train set
and the Test set by Running 1000 Experiments

Configuration 1

experiment size 1000

time taken by process | 261m38s

Monte Carlo Scores | Reconstructed Train Scores | Reconstructed Test Scores
RMSE 16.49 29.27

Scaled RMSE 0.01 0.01

R? 1.00 0.99

MAE 13.35 23.53

EVS 1.0