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ABSTRACT

HYBRID WAVELET-NEURAL NETWORK MODELS FOR TIME SERIES DATA

Kılıç, Deniz Kenan

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ömür Uğur

February 2021, 116 pages

The thesis aims to combine wavelet theory with nonlinear models, particularly neural
networks, to find an appropriate time series model structure. Data like financial time
series are nonstationary, noisy, and chaotic. Therefore using wavelet analysis helps
better modeling in the sense of both frequency and time.

S&P500 (∧GSPC) and NASDAQ (∧IXIC) data are divided into several components
by using multiresolution analysis (MRA). Subsequently, each part is modeled by us-
ing a suitable neural network structure. In this step, the design of the model is formed
according to the pattern of the subseries. Then predictions of each subseries are com-
bined. The combined prediction result is compared to the original time series’s predic-
tion result using only a nonlinear model. Moreover, wavelets are used as an activation
function for LSTM networks to form a hybrid LSTM-Wavenet model. Furthermore,
the hybrid LSTM-Wavenet model is fused with MRA as a proposed method.

In brief, it is studied whether using MRA and hybrid LSTM-Wavenet model de-
creases the loss or not for both S&P500 and NASDAQ data. Four different model-
ing methods are used: LSTM, LSTM+MRA, hybrid LSTM-Wavenet, hybrid LSTM-
Wavenet+MRA (the proposed method). Results show that using MRA and wavelets
as an activation function together decreases error values the most.

Keywords: nonlinear models, neural networks, LSTM, wavelets, time series analysis,
finance, multiresolution analysis, wavelet neural network, wavenet, hybrid models
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ÖZ

ZAMAN SERİSİ VERİLERİ İÇİN HİBRİT DALGACIK-SİNİR AĞI MODELLERİ

Kılıç, Deniz Kenan

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Şubat 2021, 116 sayfa

Tez, zaman serilerine uygun bir model yapısı bulmak için dalgacık teorisini doğrusal
olmayan modellerle, özellikle sinir ağlarıyla birleştirmeyi amaçlamaktadır. Finansal
zaman serileri gibi veriler durağan olmayan, gürültülü ve kaotik verilerdir. Bu ne-
denle dalgacık analizi kullanmak, hem frekans hem de zaman anlamında daha iyi
modellemeye yapmaya yardımcı olmaktadır.

S&P500 (∧GSPC) ve NASDAQ (∧IXIC) verileri çoklu çözünürlük analizi (MRA)
kullanılarak birkaç bileşene ayrılmaktadır. Daha sonra, her kısım uygun bir sinir ağı
yapısı kullanılarak modellenmektedir. Bu adımda, modelin dizaynı alt serilerin ya-
pısına göre oluşturulmaktadır. Sonra her bir alt dizinin tahminleri birleştirilmektedir.
Birleşik tahmin sonucu, sadece doğrusal olmayan bir model kullanılarak tahminlen-
miş orijinal zaman serisinin sonucu ile karşılaştırılmaktadır. Dahası, dalgacıklar bir
hibrit LSTM-Wavenet modeli oluşturmak üzere LSTM ağları içinde aktivasyon fonk-
siyonu olarak kullanılmaktadır. Ayrıca, önerilen yöntem olarak hibrit LSTM-Wavenet
modeli ve MRA birleştirilmektedir.

Kısacası, MRA ve hibrit LSTM-Wavenet modelinin kullanılmasının hem S&P500
hem de NASDAQ verileri için yitim fonksiyonunu azaltıp azaltmadığı incelenmekte-
dir. Dört farklı modelleme yöntemi kullanılmaktadır: LSTM, LSTM + MRA, hibrit
LSTM-Wavenet, hibrit LSTM-Wavenet + MRA (önerilen yöntem). Sonuçlar, dalga-
cıkların aktivasyon fonksiyonu olarak MRA ile birlikte kullanılmasının hata değerle-
rini en fazla azalttığını göstermektedir.
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CHAPTER 1

INTRODUCTION

Most of the time series in many fields like geology, astronomy, economy, politics,
robotics, meteorology, medicine, control engineering, finance, etc., are nonstationary
and chaotic. Hence nonlinear models are more appropriate than linear models for
such complex time series.

Neural networks are one of the mostly used and widespread nonlinear models due to
their wide varieties and flexibilities.

On the other hand, wavelets are used in a vast area, and where they are used are
increasing day by day. In most cases, the frequency domain analysis is essential
for complex time series. Furthermore, for both linear and nonlinear time series,
the multiresolution analysis provides more reliable modeling and forecasting results
(see [31]).

In the literature review below, studies which combine wavelet analyzes and nonlinear
modeling are discussed.

Most studies use wavelets either to decompose data to use subseries as inputs of
regular neural networks or just for activation functions of wavelet neural networks.
In this paper, these two separate studies are merged. First of all, the effect of the
two different wavelet approaches on predicting the financial time series is analyzed
separately. Next, the two approaches are combined based on the prediction results of
the financial time series.

Main scope of the thesis is to analyze whether utilizing wavelets increase accuracy
performance in neural network modeling for financial time series.

1.1 Motivation

One step ahead prediction is significant for stock market investors since a small
change in the prediction of the market index will significantly affect the profit or
the loss. To predict the next step, using observed data is more suitable than using
predictions in the model. On the other hand, if the aim is predicting an extended pe-
riod (multi steps), it would be better to use consecutive predicted values to reach the
recent prediction.
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Our motivation is to improve prediction performances of stock market indexes to lead
investors’ behaviors on buying and selling. Moreover, it is noticed that many recent
works of literature and competitions on online platforms cover subjects about classic
and advanced machine learning. With combining MRA and wavenet with machine
learning techniques, we aim to contribute to both literature and online studies in terms
of both science and software.

1.2 Literature Review

Masset mentions in [38] that if the system relies on more than one frequency com-
ponent, time-domain analysis is inadequate to reveal important information of the
original data. Besides, it is stated in [31] that modeling after multiresolution analysis
(MRA) gives better-fitted models, especially for forecasting the time series. In other
words, dividing data into different scales and fitting various models to each scale
provides better results than using a single model only.

In [57] wavelet multilayer perceptron (MLP) neural network is handled. It is stated
that using wavelets helps discover hidden time frequency information. Moreover,
Teo, Wang, and Lin [57] say that combining wavelet analysis with MLP networks
gives better performance. On the other hand, it is mentioned that regular neural net-
works catch information only on the finest resolution of a signal. However, real hu-
man neural networks can process all scales of a signal. While mother wavelets’ res-
olution increases by using 2j component, decomposition approaches to the original
signal. Therefore, one can reconstruct the actual signal by using decomposed signals.
Further, after removing less essential wavelets, the wavelet MLP neural network gives
better results. On the other hand, it is mentioned that the wavelet MLP neural network
without elimination has no critical improvement over the usual MLP network.

In [8] wavelet transforms, ordinary neural networks and statistical time series ana-
lytical techniques are applied to several exchange rates for the prediction. After de-
composing time series, different neural networks are produced, trained, and used to
predict each scale’s exchange rates. Mean absolute error (MAE), mean absolute per-
centage error (MAPE), mean square error (MSE), and root mean square error (RMSE)
are used to compare the results. The study is following statistical feature extraction,
preprocessing, wavelet analysis, modeling and training of networks, and forecasting.
However, results show that using wavelets fetches no improvement in their structure.
It is stated that exchange rates are nonstationary, noisy, and chaotic time series. More-
over, Bozic and Babic [8] mention that linear models are not suitable for nonlinear
time series. Wavelets are not affected by nonstationary cases [27]. Further, it is stated
that an artificial neural network (ANN) is a multivariate, nonparametric statistical
method that can represent any nonlinear function without a pre-assumption on the
signal.

In [48] the monthly rainfall at Darjeeling is predicted by using the ANN model. Inputs
of ANN are created by applying MRA to the data. Outcomes show that a wavelet-
based neural network gives better results than ANN gives.

Nonlinear monthly precipitation time series is handled in [51]. The time series is de-
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composed by wavelet analysis. Low-frequency subseries are forecasted using the sea-
sonal autoregressive integrated moving average (SARIMA) model, and high-frequency
subseries are forecasted using ANN. Afterward, predicted subseries are rebuilt to
forecast the precipitation of future single months. It is stated that the wavelet-SARIMA-
ANN model has better results than wavelet-ANN and wavelet-SARIMA models. The
autoregressive integrated moving average (ARIMA) model restricts requiring station-
ary and linear time series. However, most of the financial time series are nonstationary
and nonlinear.

In [44], wavelets and neural networks are combined to predict Turkey’s daily pre-
cipitation. Partal and Cigizoglu [44] firstly decompose the original time series into
several subseries by using discrete wavelet transform (DWT). Then, they select use-
ful discrete wavelets to use as the inputs of ANNs for the estimation of daily precip-
itation. They state that selecting the dominant discrete wavelets (DWs) has a large
positive effect on the ANN model’s performance. Moreover, they use correlation co-
efficients between each DW of the meteorological data and the original precipitation
data to select the ANN model inputs. The hybrid model yields better accuracy results
than the classical ANN model.

In [5], steps of the wavelet-based forecasting are given as follows: firstly, data is
divided into various elements; secondly, each component is modeled and forecast
individually; thirdly, predictions are summed up. Basta [5] also mentions bound-
ary conditions of wavelets, details of maximal overlap discrete wavelet transform
(MODWT) and prediction with boundary conditions. Choosing the type of wavelet
transform and the type of filter is vital for better prediction results.

In [41] hybrid wavelet recurrent neural network is used to predict over time the num-
ber of connection requests for service. It is stated that the model is very successful in
estimating such number of connections.

Shah and Debnath combine DWT and Levenberg-Marquardt (LM) ANN to forecast
yield spread for output growth in [52]. Firstly, they decompose different yield spreads
by using several DWT filters. Secondly, they use subseries as inputs of ANN to
forecast output growth. Outcomes indicate that the predictive powers of yield spread
in the short term and policy-relevant areas of the yield curve are nice. However, the
predictive power of yield spreads in the long term is not suitable for output growth.

In [30] wavelets and nonlinear models are used to predict NIFTY 50 (NSE) index
financial data. It is stated that financial time series are nonlinear and nonstationary.
Moreover, models like ARIMA have some problems with stock prices since such time
series does not have a normal distribution, are not stationary and not linear. On the
other hand, models like support vector regression (SVR) and ANN can deal with such
time series, like stock prices. However, they may have an overfitting problem. One
has to choose model parameters carefully and preprocess the data according to the
type of the signal. Using wavelets is a better decomposing method than only using
trend, seasonal and random components. Classical decomposition is good for linear
time series [58]. There are many types of wavelet filters, such as Haar, Daubechies,
Morlet, and Mexican Hat. One needs to choose the type of filter according to the
problem. It is stated that ANN models need fewer pre-assumptions since they are
broadly data-based and adaptive. Furthermore, ANN systems can model and predict
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the nonlinear data. Practically, Jothimani, Shankar, and Yadav [30] decompose the
original signal. Afterward, they use ANN and SVR models for predictions. For both
hybrid models, the accuracy of prediction is higher than the accuracy of the classical
models.

In [11] wavelet transform and backpropagation (BP) ANN are combined to create a
hybrid method. This hybrid model is used to predict stock market data. The model is
applied to five different data sets. Accuracy estimations for all data sets indicate that
the hybrid model gives better results than classical models.

In [64] several wavelet functions are used with neural networks for target threat as-
sessment. The Morlet mother wavelet function shows the best performance. More-
over, prediction results of the multiple wavelet functions wavelet neural network
(MWFWNN) are better than wavelet neural network (WNN), BP and particle swarm
optimization and support vector machine (PSO_SVM) methods.

Modified hybrid models are used to predict natural gas prices in [29]. Using wavelets
with ANN and ARIMA gives better results than using only ANN or ARIMA models.

In [56] forecasting of exchange rate data is handled by combining wavelet transform,
neural network, and statistical analysis techniques. In empirical results, it is seen that
hybrid methods outperform the classical ones.

Wang et al. use a wavelet-based neural network structure for two deep learning mod-
els in time series classification and forecasting in [65]. Experimental results propose
the hybrid methods.

Effects of wavelet decomposition and neural networks on realized volatility predic-
tion are attempted in [34] for crude oil, gold, and S&P500 assets. Křehlı̀k [34] use
wavelet decomposition for realized volatility estimation. In the paper, the volatility
forecasting follows realized volatility estimation. Wavelet-based realized volatility
estimation and ANN modeling based volatility forecasting are compared to classi-
cal estimators and autoregressive fractionally integrated moving average (ARFIMA)
model-based volatility forecasting. According to the results, wavelet decomposition
provides more knowledge than familiar estimators. On the other hand, the ANN gives
better forecasting results than the ARFIMA method.

In [1] groundwater level forecasting is the research subject by considering wavelet-
neural network (WA-ANN), regular ANN, and ARIMA techniques. The method that
gives the best results is WA-ANN concerning R2, the Nash-Sutcliffe model efficiency
coefficient, and RMSE metrics.

Okkan investigates whether using the WNN positively affects monthly reservoir in-
flow prediction in [42]. DWT is employed to decompose monthly meteorological
data. Having decomposed the data, inefficient subseries are removed, and the re-
maining subseries become inputs for neural networks. Levenberg-Marquardt (LM)
optimization algorithm-based Feed Forward Neural Networks (FFNN), multiple lin-
ear regression (REG), and DWT-based multiple linear regression (WREG) are other
models that are handled for empirical results. Results indicate that WNN outperforms
FFNN, WREG, and REG. Additionally, using DWT increases the accuracy of both
multiple linear regression and neural networks.
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In [2] ARIMA, deep neural network (DNN), gated recurrent unit (GRU), and long
short-term memory (LSTM) methods are used with and without DWT to predict
high-frequency financial data. It is seen that DWT increases the accuracy of each
technique. Moreover, GRU with DWT and LSMT with DWT give better results than
other DWT based methods.

In [63] DWT-convolutional neural network (CNN)-LSTM model is utilized for day-
ahead solar irradiance forecasting. DWT is used to decompose the raw solar irradi-
ance data of specific weather types into detail and approximation parts. Subsequently,
CNN is used to collect local features of decomposed data, and these gathered features
are then used as inputs for LSTM for forecasting. The proposed method is checked
against CNN-LSTM, ANN, manually extracted features-ANN, persistence forecast-
ing, CNN, and LSTM models. It is concluded that the proposed method outperforms
other forecasting models.

In [35] nonstationary wind power time series is decomposed by DWT. After decom-
position, each subseries is modeled by a different LSTM model. Finally, all pre-
dicted values are put together to get the exact result. DWT-LSTM is compared with
DWT-recurrent neural network (RNN), DWT-BP, LSTM, RNN, and BP. The pro-
posed method gives the best accuracy results when compared to other methods.

Sugiartawan et al. [55] take advantage of a hybrid of wavelet transform and LSTM
neural networks to predict tourist arrivals. Data is decomposed into subseries, and
these subseries are used as inputs for the LSTM network. The recommended model
is compared with hybrid wavelet-Elman, hybrid wavelet-Jordan, LSTM RNN, Elman
RNN, and Jordan RNN.

WNN approach is tackled to learn a class of functions in [53]. The presented method
uses wavelets as activation functions by using the translation and the dilation param-
eters.

ANN and WNN methods are used to model a solar air heater in [16]. Morlet wavelet
is used as an activation function in WNN structure. According to the consequences,
using WNN is more beneficial than utilizing ANN.

Pindoriya et al. select the Mexican hat wavelet as an activation function in FFNN to
forecast short-term price in the electricity markets in [46]. After getting results for
day-ahead prediction of several electricity markets, they verify that adaptive wavelet
neural network (AWNN) gives better results than wavelet-ARIMA, MLP, radial basis
function (RBF) neural networks and fuzzy neural network (FNN).

In [54] feedforward error backpropagation artificial neural network (FEBANN) and
WNN based classifiers are compared to classify electromyography (EMG) signals. It
is reported that the WNN method outperforms FEBANN according to the accuracy
results of classifications.

In [4] MLP and WNN approaches are compared for calibration model building based
on gasoline near-infrared (NIR) spectra. WNN is seen as more viable and robust than
MLP.

It is seen that MRA or WNN issues are discussed in many studies individually. Fusing
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these two issues with machine learning algorithms motivates our work.

1.3 Plan of the Thesis

In Chapter 2 the basics of the neural networks are given. Besides, we clarify the
fundamentals of LSTM and mention numerous literature reviews concerning the im-
plementation of LSTM.

In Chapter 3 we present the essential technical points of wavelets. In particular tech-
nicalities of MODWT and MRA are explained.

We mention the substantial details of polynomial powers of sigmoid (PPS) in Chap-
ter 4. Wavelets, which are used in the empirical study, are derived from PPS. The
purpose of this chapter is to understand how we obtain wavelets to be used as activa-
tion functions.

Theory and implementation of LSTM and wavelets are applied to the financial data
in Chapter 5. First, the flowchart of the source code is described. The computer fea-
tures, system information, and error metrics we use for analyses are given. Afterward,
descriptive statistics of S&P500 and NASDAQ financial time series are handled. Ex-
planations, configurations, and results of models are also discussed in this chapter
for the following methods: LSTM model without MRA, LSTM model with MRA,
hybrid LSTM-Wavenet model without MRA, and hybrid LSTM-Wavenet model with
MRA. Summary tables of both S&P500 and NASDAQ are given for the four different
methods discussed throughout the paper.

Finally, we conclude the thesis in Chapter 6. Further studies and possible improve-
ments are considered.
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CHAPTER 2

NEURAL NETWORKS

The neural networks are founded on artificial learning, which is stimulated by the
cerebrum of creatures. Some nodes have comparable undertakings with neurons in
a cerebrum. Most frameworks are shaped by input, hidden, and output nodes inter-
linked with past and next ones. A network structure includes the number of layers and
the number of neurons in each layer, each layer’s activation function, and the weights
between adjacent nodes. The basic structure of multilayer neural network (MNN) is
given in Figure 2.1.

As stated in [25], outputs of the multilayer feed forward neural network is given as

yLn =
[
bLn +

∑
m f

L−1
m

[
· · ·
[
f 2
k

(∑
j w

2
jk

[
f 1
j

(∑
iw

1
ijxi + b1j

)]
+ b2k

)]
· · ·
]
m
wLmn

]
n
, (2.1)

where L is the total number of hidden layers plus one output layer (L = 0 for the
input layer and Lth layer is the output layer), n is the index number of neurons in the
output layer, i is the index number of neurons in the input layer, j is the index number
of neurons in the first hidden layer, k is index number of neurons in the second hidden
layer, m is the index number of the last hidden layer, y’s are output values, fL−1 is the
(L − 1)th activation function, wLmn’s are weights between the Lth and the (L − 1)th
layers. Moreoever, b1j , . . . , b

L−1
m are biases for hidden layers and bLn shows biases for

the output layer. If we have only one hidden layer then the equation can simply be
written as

yk = bk +
∑
j

fj

(
bj +

∑
i

wijxi

)
wjk, (2.2)

where y’s are outputs, f ’s are activation functions, i shows the index number of neu-
rons in the input layer, j shows the index number of neurons in the hidden layers, k
shows the index number of neurons in the output layer, bk represents biases for the
output layer, bj indicates biases for the hidden layer.

Here weights are need to be tuned in to minimize difference between predicted and
observed outputs. Backpropagation can be used for training to reduce error terms.
Then we get

E =
1

2

∑
i=1

(yd(i)− yp(i))2, (2.3)

where i is the index for input data, yd is original data and yp is prediction. One needs
to update weights in network in order to reach a small amount of total error.
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Figure 2.1: Structure of MNN.

There are several types of neural networks such as an artificial neural network (ANN),
multilayer perceptron (MLP), convolutional neural network (CNN), recursive neural
network (RvNN), recurrent neural network (RNN), gated recurrent unit (GRU) and
long short-term memory (LSTM) which is a specific type of RNN, etc. [15]. Mainly,
LSTM will be handled in the thesis for financial time series analysis since it is widely
used for many time series types. Because financial data is complex along with several
time intervals, the network structure needs to have memory of different time gaps.
We refer to [26] for some advantages of LSTM.

2.1 Long Short-Term Memory (LSTM)

The difference between FFNN and RNN is adding extra weights for hidden layers as
loops. Basic algorithm for RNN is written as

ht = fH (WIHxt +WHHht−1) , (2.4)
yt = fO (WHOht) , (2.5)

where xt and yt are input and output vectors, WIH ,WHH and WHO are weight matri-
ces, fH and fO are activation functions for hidden and output parts. There would be
vanishing or exploding gradient problems in basic RNN. On the other hand, LSTM
can solve these problems by adding extra parts like the input gate, the forget gate, and
the output gate. Hence LSTM would be a better choice for time series modeling and
prediction. Differences between ANN, RNN, and LSTM can be found in [61]. De-
tails of LSTM structure and step by step explanation are given in [43]. In Figure 2.2
and in Figure 2.3 basic structure of a one-unit RNN and a one-unit LSTM are given
respectively.
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Figure 2.2: Structure of a Recurrent Neural Network Sys-
tem. (https://commons.wikimedia.org/wiki/File:
Recurrent_neural_network_unfold.svg)

Figure 2.3: Structure of a Long Short-Term Memory. (https:
//commons.wikimedia.org/wiki/File:Long_Short-
Term_Memory.svg)

In Figure 2.2, x is the input state, h is the hidden state and o is the output state.
Moreover, U , V and W are weights for the input, the recurrent, and the output parts.

Equations for calculating the value of the memory cell h at time t are given as

Ft = σ(WFxt + UFht−1 + bF ), (2.6)
It = σ(WIxt + UIht−1 + bI), (2.7)

C̃t = tanh(WCxt + UCht−1 + bC), (2.8)

Ct = Ft ∗ Ct−1 + It ∗ C̃t, (2.9)
Ot = σ(WOxt + UFht−1 + bO), (2.10)

ht = Ot ∗ tanh(Ct), (2.11)

where xt is input vector to the LSTM at time t, W ’s and U ’s are weight matrices, b’s
are bias vectors, ht is output vector of LSTM cell, Ct and C̃t are state and candidate
state vectors respectively, Ft is forget gate values, It is input gate values and Ot is
output gate values. In (2.6) ht−1 and xt are used to generate numbers between 0 and
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1 for cell state Ct−1. If the number is 0 then information is completely forgotten.
On the contrary, information is wholly preserved if the number is 1. Values between
0 and 1 point amount of information to be protected. In (2.8) new candidate state
vector is created and later on combined by input layer gate values that are generated
in (2.7). As a result we get updated cell state Ct in (2.9). Finally output of LSTM cell
is calculated in (2.11) by using output gate values and updated state vector.

Many use the LSTM method for the time series analysis. In [10], Brownlee shows
how to implement LSTM models for univariate, multivariate, and multi-step time
series forecasting in Python. In [32], Kompella forecasts the sinusoidal time series
using the LSTM structure with fixed window size. In [50], Schlosser mentions using
the Keras library to implement LSTM to time series data sets in Python. Predictive
techniques where LSTM is also included are handled in [24, 3]. Deep learning tech-
niques are used to forecast sunspots data in [14] with the R programming. In [22]
stock price movements are predicted by using LSTM in Python.
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CHAPTER 3

WAVELETS

The Fourier transform has been used for a long time, and still, it is extensively used
in many scientific and engineering areas. Unfortunately, it has several drawbacks,
which are particularly found in the analysis of complex structured functions. Some
of the disadvantages of Fourier transform are:

• The Fourier transform demands stationary data, i.e., there should not be any
systematical changes in mean and variance of a time series. However, almost
all financial time series and most time series in different disciplines are nonsta-
tionary.

• After taking the Fourier transform of a function, there will be no time informa-
tion left.

• Modified version of the Fourier transform, which is called as short-time Fourier
transform (STFT) or windowed Fourier transform, gives time information. But
it still does not contain resolution information.

The wavelet transform was then intended to break into high-frequency and low-
frequency parts of the signal in related time gaps. Wavelet transform is exceptionally
appropriate for financial time series since financial time series have high-frequency
segments for short time lengths and low-frequency parts for long time lengths.

3.1 Maximal Overlap Discrete Wavelet Transform (MODWT)

Practically it is almost unattainable to use all wavelet coefficients to analyze the sig-
nal. One cannot compute almost an infinite number of coefficients by hand or by
computer. In theory, it is more applicable to use continuous wavelet transform (CWT)
for continuous functions but not for time series or discrete signals as Masset pointed
out in [38]. As a result, it is better to work with sampled wavelets. To describe MRA,
we use MODWT.

For DWT, the significant point is that one needs a time series with dyadic length to
apply DWT. The reason for requiring a dyadic size is that coefficients of transform
are computed by downsampling the original data as given in Mallat’s Pyramid Algo-
rithm [36] which can be seen in Figure 3.1 and Figure 3.2. One can analyze function
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Figure 3.2: Flowchart of the pyramid algorithm for synthesis.

by using high-pass and low-pass filters to find smooth and detailed parts. The op-
posite process is called reconstruction or synthesis. Synthesis is used to reach the
original signal by using smooth and detailed components by using upsampling.

The construction of MODWT is very similar to DWT. However, DWT has some
drawbacks compared to MODWT. For instance, MODWT does not require dyadic
length time series where DWT does. In other words, DWT limits the data for having a
length ofN = 2J due to the upsampling and the downsampling. Since MODWT does
not require dyadic length, the sizes of wavelet and scaling coefficients are equal to
the original time series’s length at every step of the transform. Moreover, MODWT is
time-shift invariant while DWT is affected by time-shifting as stated in [23]. Further,
the variance analysis of MODWT is more effective than the variance analysis of DWT
as mentioned in [45].

Let w contains wavelet and scaling coefficients of the MODWT,

w = [w1, w2, . . . , wJ , vJ ]T , (3.1)
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where length of wj is N/2j and the length of vJ is N/2J according to scale lengths
as λj = 2j−1 and λJ = 2J−1 respectively where j = 1, 2, . . . , J .

One can get the vector w by using high-pass and low-pass filters as given in [23].
The vector that contains coefficients is given as

w̃ = W̃x, (3.2)

where W̃ = [W̃1, W̃2, . . . , W̃J , ṼJ ]T is (J + 1)N ×N matrix which implies that each
W̃j and ṼJ are N ×N matrices.

High-pass and low-pass filters are convolved with the time series to reach wavelet and
scaling coefficients of the first level as following

w1(t) =
L−1∑
l=0

hlx(ṫ) and v1(t) =
L−1∑
l=0

glx(ṫ), (3.3)

where t = 0, 1, . . . , N − 1 and ṫ = t − l (mod N). Wavelet and scaling coefficients
of the second level is reached by convolving v1(t) with the high-pass filter hl and
low-pass filter gl. After J = log2N iterations, wavelet and scaling coefficients are
given as

wJ(t) =
L−1∑
l=0

hlvJ−1(ṫ) and vJ(t) =
L−1∑
l=0

glvJ−1(ṫ), (3.4)

where t = 0, 1, . . . , N − 1 and ṫ = t − 2J−1l (mod N). The vector which includes
all coefficients is written as w = [w1w2 . . . wJ vJ ]T .

If the equations given in (3.3) and (3.4) are convolved with high-pass filter and low-
pass filter respectively, the scaling coefficient of previous level is reached by summa-
tion of two convolving parts [23],

vJ−1(t) =
L−1∑
l=0

hlwJ(ṫ) +
L−1∑
l=0

glvJ(ṫ), (3.5)

where t = 0, 1, . . . , N − 1 and ṫ = t+ l (mod N). One can iterate this procedure up
to the first level of wavelet and scaling coefficients to acquire the original time series
as

x(t) =
L−1∑
l=0

hlw1(ṫ) +
L−1∑
l=0

glv1(ṫ), (3.6)

where t = 0, 1, . . . , N − 1 and ṫ = t+ l (mod N).

3.2 Multiresolution Analysis (MRA)

Definition 3.1 (Multiresolution Analysis). After data is composed into vectors of
coefficients which are related to the certain time scales. MRA is a sequence of closed
nested subspaces {Vj : j ∈ Z} in L2(R) with the conditions given below, [21, 62, 60]
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Figure 3.3: Nested Subspaces

1. {φ(x− k); k ∈ Z} is an orthonormal basis for V0 where φ is scaling function
of the MRA

2. {0} ⊂ · · · ⊂ Vj ⊂ Vj+1 ⊂ · · · ⊂ L2(R)

3. Closure of (∪j∈ZVj) = L2(R) such that any union is dense in L(R)

4. ∩j∈ZVj = {0} so zero element is the only common object

5. f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1 so that the spaces V ’s are self-similar

6. Vj+1 = Vj⊕Wj where the spaceWj is the jth resolution level of the MRA [62]
and Vj ∩Wj = {0}

Practically, construction of MRA is started from subspace V0 and larger subspaces are
added to V0 in order to enlarge space. In Figure 3.3Wj’s are differences between Vj+1

and Vj subspaces. Scaling and wavelet functions form bases for Vj and Wj subspaces
by using scaling and translation parameters respectively as follows,

Vj = span {ϕj,k(x)} , (3.7)

Wj = span {ψj,k(x)} . (3.8)

Relation between subspaces is given by Refinement Equations using scaling and wavelet
functions:

ϕ(x) =
∑
n

hϕ(n)21/2ϕ(2x− n), (3.9)

ψ(x) =
∑
n

hψ(n)21/2ϕ(2x− n). (3.10)

For instance, assume that ϕ(x) stands for V1, then ϕ(2x− n) stands for V2. Similarly
if ψ(x) stands for W1 then ψ(2x− n) stands for W2.

Dilation and translation parameters are employed to cover the L2(R) space. The main
idea of the MRA is to obtain L2(R) space or any function by combining smooth and
detailed parts.

Vj+1 can be written from last property in Definition 3.1 as

Vj+1 = V0 ⊕ (W0 ⊕W1 ⊕ · · · ⊕Wj) . (3.11)
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After construction of MRA by using subspaces in Figure 3.3, L2(R) space or any
function in it can be written as a direct sum of V0 and Wj subspaces as

L2(R) = V0
⊕

W0

⊕
W1

⊕
W2

⊕
· · ·
⊕

Wj for j = 0, 1, 2, . . . . (3.12)

In general form, any function can be written in the form of wavelet series expansion
as

f(x) =
∑
k

aj0(k)ϕj0,k(x) +
∞∑
j=j0

∑
k

dj(k)ψj,k(x) for j > j0. (3.13)

In (3.13) the first sum with scaling function shows a smooth part and the second sum
shows detailed parts of the function. In other words, the first sum covers VJ subspace
and the second part covers Wj subspaces. Coefficients in (3.13) can be found by the
following integrals,

aj0(k) =

∫
f(x)ϕj0,kdx and dj(k) =

∫
f(x)ψj,kdx. (3.14)

In practice, scale level J is chosen finite and then time series is written in terms of
approximation and detail parts as

x(t) =
∑
k

aJ,kϕJ,k(t) +
J∑

j=j0

∑
k

dj,kψj,k(t) for j = 1, 2, . . . , J. (3.15)

After using Mallat’s pyramid algorithm, MODWT separates time series into smooth
and detailed parts as

x(t) = AJ,k +
J∑

j=j0

Dj,k, (3.16)

where the component AJ,k holds the average information (or trend) of the original
data at the largest scale and is associated with the scaling coefficients. Components
Dj,k’s, from the first scale to the last scale, are concerned with wavelet coefficients.
They are implemented for collecting higher frequency information, i.e., they cover
detail coefficients [38].

Smooth and detailed parts can be found by multiplying coefficients by the scaling
function (father wavelet) and wavelet function (mother wavelet) or directly from
WT

j Wj where W contains approximation and detail coefficients and WT contains
scaling and wavelet functions which are assembled of low-pass and high-pass fil-
ters.
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CHAPTER 4

WAVELET NEURAL NETWORK

Concepts of wavelets and neural networks are associated with taking advantage of
both at the same time. Wavelet neural network is appropriate for complex data like
financial time series especially. Nonlinear modeling methods like neural networks
are more suitable than linear methods for that kind of data. Furthermore, wavelet
transforms allow us to model the problem more accurately in both time and frequency
spaces.

Actually, the structure of wavelet neural networks is quite similar to the design of neu-
ral networks. Common activation functions like logistic, hyperbolic tangent, rectified
linear unit (ReLU), softmax, etc., or some custom linear/nonlinear activation func-
tions are used in neural networks. The difference between them is that wavelets are
used in the hidden layer neurons as activation functions for wavelet neural networks.
Then the hidden layer neurons are called as wavelons [28, 7, 67]. Wavelons consist of
two parameters, which are called the translation and the dilation. The single wavelon
can be written as

ψu,v(x) = ψ

(
x− u
v

)
, (4.1)

where u is the translation (or the location) and v is the dilation (or the scale) parame-
ters. The function ψ is derived from wavelets as we mentioned in Chapter 3.

4.1 Wavenets

In the learning process, if the translation and the dilation parameters given in (4.1) are
unalterable, then the structure is called as wavenet [59]. On the other hand, if these
parameters are adjustable during the learning process, the form is referred to as the
wavelet network. Wavenets are used in the thesis for empirical studies.

Parameters mentioned in (4.1) may differ for each node in the hidden layer, but each
is fixed for the corresponding node. Before setting these parameters, one needs to
initialize them according to the data. Details of initializing these parameters are given
in Chapter 5.

In [37], Marar and Bordin mention that there are many restrictions in the conventional
backpropagation algorithm. Low dimensionality, the tensor product of wavelets, pa-
rameter initialization, and having one-dimensional output are samples of limitations.
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A family of polynomial wavelets generated from powers of sigmoid functions is em-
ployed to discharge some of these constraints. In other words, the wavelet functions
ψ’s are derived by using polynomial powers of sigmoid.

4.2 Polynomial Powers of Sigmoid (PPS)

In [17] it is stated that a family of polynomial wavelets produced from powers of
sigmoid helps create robust neural network structures, particularly wavelet neural
networks. One can form polynomial types of wavelet functions by using consecutive
powers of sigmoid functions [18] where (4.2) and (4.3) need to satisfy. If (4.2) holds,
then it means that every function f(x) is square-integrable, i.e. in L2(R). On the other
hand, if (4.3) holds, it means that the mother wavelet ψ(x) satisfies the admissibility
condition: ∫

R
|f(x)|2 dx <∞, (4.2)∫ ∞

0

|C(ω)|2

ω
dω <∞, (4.3)

where ω is frequency and C is the Fourier transform of ψ(x).

Consider the following sigmoid function given in below

f(x) =
1

1 + exp(−αx)
, (4.4)

where α is the smoothness constant and f : R → [0, 1]. Even though the function
given in (4.4) does not satisfy conditions in (4.2) and (4.3), functions derived from
combination of it’s powers satisfy the conditions. In order to create wavelet functions
family from the sigmoid function, first of all we define nth power of the sigmoid
function and set of all powers of the sigmoid function as given in (4.5) and (4.6)
respectively.

fn(x) =

(
1

1 + exp(−αx)

)n
, (4.5)

where fn : R→ [0, 1], and

Γ =
{
f 0(x), f 1(x), f 2(x), . . . , fn(x)

}
. (4.6)

For α = 1 the first derivative of the sigmoid function is given as

df(x)

dx
=
d
(

1
1+exp(−x)

)
dx

=
f(−x)

(1 + exp(−x))2
= f(x)

exp(−x)

1 + exp(−x)
. (4.7)

After adding and subtracting 1 from the numerator exp(−x) one can rewrite the first
derivative of the sigmoid as

df(x)

dx
= f(x)

exp(−x)− 1 + 1

1 + exp(−x)
= f(x)

(
1 + exp(−x)

1 + exp(−x)
− 1

1 + exp(−x)

)
= f(x) (1− f(x)) .

(4.8)
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Now let’s consider the following wavelet equation, which consists of three sigmoid
functions:

ψ(x) = f(x+ h)− 2f(x) + f(x− h), (4.9)

where h ∈ Z and h ≥ 2. After dividing both sides of the equation (4.9) by h2,
approximated second derivative of the sigmoid function is given in (4.10). In both
p ≥ 1 and p < 1 cases, while the limit goes to zero obtained functions satisfy wavelet
conditions. Details can be found in [19, 20].

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
. (4.10)

One can find the second derivative of the function by taking the limit of the function
ψ(x) which is divided by h2 while h goes to zero as:

d2f(x)

dx2
= lim

h→0

f(x+ h)− 2f(x) + f(x− h)

h2
. (4.11)

Moreover, by using (4.8) the second derivative of the sigmoid function can be written
as follows:

d2f(x)

dx2
= f(x) (1− f(x))2 +

(
−f(x)2 (1− f(x))

)
. (4.12)

As a result by using (4.8) and (4.12) the PPS-wavelet functions produced by the first
and the second derivative of the sigmoid function are given in (4.13) and (4.14) re-
spectively,

ψ1(x) = −f 2(x) + f(x) (4.13)

and
ψ2(x) = 2f 3(x)− 3f 2(x) + f(x). (4.14)

Describing the set Θ = {ψ1(x), ψ2(x), . . . , ψn(x)} keeps the same procedure as de-
riving the derivatives of the Gaussian function in structure of polynomials which are
the Hermite polynomials [49]. In (4.15), (4.16) and (4.17) 3rd, 4th and 5th polyno-
mial types of wavelet functions by using consecutive powers of sigmoid functions are
given respectively as follows [17]:

ψ3(x) = −6f 4(x) + 12f 3(x)− 7f 2(x) + f(x), (4.15)

ψ4(x) = 24f 5(x)− 60f 4(x) + 50f 3(x)− 15f 2(x) + f(x), (4.16)

ψ5(x) = −120f 6(x)− 360f 5(x)− 390f 4(x) + 180f 3(x)− 31f 2(x) + f(x). (4.17)

In general, the polynomial wavelet function generated by the nth derivative of the
sigmoid function is given as (see [40])

ψn(x) =
n∑
k

k∑
j=0

(−1)j(j + 1)n
(
k

j

)
fk+1(x), (4.18)

19



Figure 4.1: Polynomial Wavelet Functions Generated by the nth Derivative of the
Sigmoid Function

20



where n is the derivative degree of the sigmoid function and fk+1(x) is the (k + 1)th
derivative of the sigmoid function. In Figure 4.1 each ψn(x) can be seen for n =
0, . . . , 15 as in [39].

In [18] it is stated that observed family of polynomial wavelets satisfy that ψi ∈
L2(R). Consequently, the admissibility condition holds not only for this family but
also for shifted and dilated versions of this family.
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CHAPTER 5

EMPIRICAL RESULTS

In this chapter, we aim to show whether using MRA and hybrid LSTM-Wavenet
model together or separately decreases the loss or not. First of all, in Section 5.2
we model financial time series data by using only LSTM neural network structure to
predict the test set. Then in Section 5.3 the same data is modeled using the LSTM
model with MRA. In Section 5.4, the wavenet structure is added to the LSTM (we
call this structure a hybrid LSTM-Wavenet model), but MRA is not used. Finally, in
Section 5.5 hybrid LSTM-Wavenet model with MRA is handled.

The flowchart of all the work done is given in Figure 5.1.

After taking the input (S&P500 and NASDAQ), there is a decision point that indicates
whether MRA will be used or not. It is worth noting that in order to avoid confusion,
that decision point is not an automated structure, but a manual action by the user.
It is illustrated only to indicate whether the algorithm is running with or without an
MRA. The general flow for both cases consists of data preprocessing, hyperparameter
optimization, modeling & learning, prediction & visualization. Explanations of the
flowchart are given in Table 5.1 and Table 5.2.

Initially, we download S&P500 (∧GSPC) and NASDAQ (∧IXIC) stock data between
1980-08-04 and 2019-08-02 from https://finance.yahoo.com/. Data has 9834 values
for each “Open, High, Low, Close, Adj Close, Volume” column. Only closing prices
are used. All analyses are performed using Python language in Anaconda. To perform
ANN analysis, Keras library, which uses TensorFlow backend, is used [12].

For the sake of simplicity, we select the size of the data as 9830. This number cor-
responds to the dates between 1980-08-04 and 2019-07-29. Time series analysis is
handled with/without using wavelet analysis. Talos library is used for hyperparameter
optimizations [33]. After selecting the optimized hyperparameters, we also manually
adjust the parameters by the hand-tuning 1 method. Batch normalization is used in all
analyses between LSTM and dense layers to have smaller pieces of data with a mean
of zero and a standard deviation of one. In [9, 13] it is stated that batch normalization
has some advantages as listed below:

(i) Reducing overfitting problems,

(ii) Speeding up the training process,
1 At this stage, kernel initializer, kernel regularizer, recurrent regularizer, and bias regularizer are optimized.

23



Start

Input

No YesMRA

Data Selection
Data Integration
Data Normalization
Data Transformation

Data Selection
Data Integration

Train

Train

Train

Validation

Validation

Validation

Test

Test

Talos
Optimization

Hand-Tuning

YesNo WNN

Create Model
with Wavelet

Activation
Functions

Create Model
without Wavelet

Activation
Functions

Model

Learning

Prediction

Calculate
Error Metrics

Visualization

End

Monte Carlo
Structure

MRA (Level=2, Filter='db2')

Trains Seperately

Trains

Train

Validation

Test

Train

Validation

Test

Train

Validations Seperately

Validations

Validation

Tests

Test

Data Normalization
Data Transformation

Talos
Optimization

Hand-Tuning

YesNo WNN

Create Models
without Wavelet

Activation
Functions

Create Models where
Approximation Part uses

Wavelet Activation
Functions

Model 1 Model 3Model 2

Learning Learning Learning

PredictionPredictionPrediction

Inverse MODWT

Calculate
Error MetricsVisualization

End

Monte Carlo
Structure

1st Detail 2nd Detail Smooth

W1 W2 A1

Hybrid+MRA

Hybrid

LSTM+MRA

LSTM

D
at

a 
Pr

e-
Pr

oc
es

si
ng

D
at

a 
Pr

e-
Pr

oc
es

si
ng

H
yp

er
pa

ra
m

et
er

O
pt

im
iz

at
io

n

H
yp

er
pa

ra
m

et
er

O
pt

im
iz

at
io

n

M
od

el
in

g 
& 

Le
ar

ni
ng

M
od

el
in

g 
& 

Le
ar

ni
ng

Pr
ed

ic
tio

n 
& 

Vi
su

al
iz

at
io

n

Pr
ed

ic
tio

n 
& 

Vi
su

al
iz

at
io

n

Figure 5.1: The Flowchart of Four Different Methods Applied in the Study
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Table 5.1: Details of Data Preprocessing and Hyperparameter Optimization Parts Given in
Figure 5.1 with and without MRA

MRA
without with

Data
Preprocessing

In this step, the part of the data
to be used is chosen. Then selected
financial data is combined, and
this combined data is normalized
between 0 and 1. Subsequently,
data is converted to the structure
of a supervised learning type by
using several time-stepsa. Finally,
the modified input is divided
into the train set, the validation set,
and the test set.

Difference from the data
preprocessing part, that MRA
is not used, is decomposing
the data after selection and
integration part. Data selection
and data integration steps are
made in the same way as given
in without the MRA part. Each
level of the decomposed data is
normalized and transformed to
produce pertinent data for a
supervised learning problem.
Later each level is divided into
the train set, the validation set,
and the test set.

Hyperparameter
Optimization

The train set and the validation set
are used in the Talos optimization
process to get hyperparameters
required to build a better model.
Thereafter, automatically selected
hyperparameters are again handled
to be optimized manually.

Selection and optimization of
hyperparameters are made for
each created subseries by Talos
optimization and hand-tuning
methods, respectively.

a Different time step values are tested for the LSTM architecture applied to S&P500 data
in [6]. The value 10 for the time step gives the best result. Therefore 10 is utilized as a
time step in the thesis.
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Table 5.2: Details of Modeling & Learning and Prediction & Visualization Parts
Given in Figure 5.1 with and without MRA

MRA
without with

Modeling &
Learning

In this step, there is another decision
point for identifying whether WNN
structure, specifically wavenets,
will be used or not. If wavenets
are not used, then the created
model is called the LSTM model.
On the other hand, if wavelet
activation functions are used,
the developed model is called a
hybrid LSTM-Wavenet model.
The formed model is applied to
the train set and the validation
set for the learning process.

In this step, the WNN decision
point appears again. If wavelets
are used as an activation function,
then the model is referred to as
a hybrid LSTM-Wavenet model
with MRA. Otherwise, the model
is denominated as an LSTM model
with MRA. After the decision
point, a model is created for each
subseries. Each model is used for
the learning process by using the
train set and the validation set.

Prediction &
Visualization

A certain number of learning
process calculations are done,
and each learned model is
used for the prediction process
by using the test set. Moreover,
the prediction process is also
applied to the training set.
Monte Carlo structure is used to
get the mean error metric scores
for the train set and the test set.
Besides calculating different
error metric results, visuals of
analysis are obtained.

As in the other flow, the Monte
Carlo structure is used here for
the prediction process. After
predicting train and test parts
for each level, inverse MODWT
is utilized to reconstruct the
original time series. Finally,
performance results for various
error metrics and visuals of
analysis are achieved.
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(iii) Increasing accuracy results/decreasing loss values.

Below is the list of the computing environment we work on.

(i) OS Platform and Distribution: Windows 10

(ii) Processor: Intel(R) Core(TM) i5-4210H CPU 2.90GHz

(iii) Memory (RAM): 8,00 GB

(iv) Conda version: 4.7.11

(v) Conda-build version: 3.17.6

(vi) Python version: 3.6.9

(vii) Spyder version: 3.3.3

(viii) TensorFlow version: 1.13.1

(ix) Keras version: 2.2.4

(x) Talos version: 0.5.0

In order to measure the error terms, following metrics are used:

(i) Root Mean Square Error (RMSE):
√∑n

i=1
(yi−ŷi)2

n

(ii) Scaled Root Mean Square Error (SRMSE): RMSE/(ymax − ymin)

(iii) R2: 1−
∑n

i=1(yi−ŷi)2∑n
i=1(yi−y)2

(iv) Mean Absolute Error (MAE): 1
n

∑n
i=1 |yi − ŷi|

(v) Explained Variance Score (EVS): 1− Var(y−ŷ)
Var(y)

(vi) Maximum Error (ME): max (|yi − ŷi|)

(vii) Median Absolute Error (MdAE): median (|y1 − ŷ1| , . . . , |yn − ŷn|)

where yi is the ith observed value, ŷi is the ith predicted value, ymax is the maximum
observation, ymin is the minimum observation and y is the mean of all observations.

5.1 Descriptive Statistics

S&P500 is a USA based stock market index that includes 500 large companies listed
on stock exchanges. S&P500 covers different sectors like finance, health care, indus-
try, energy, information technology, and many others. On the other hand, NASDAQ
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(a) Partitioning of S&P500 (b) Partitioning of NASDAQ

(c) Histogram of S&P500 (d) Histogram of NASDAQ

Figure 5.2: Partitioning Graphs and Histograms

Composite is also a USA based stock market index that covers the information tech-
nology sector. According to covering almost all sectors, S&P500 less volatile than
NASDAQ does.

S&P500 includes also some stocks listed on the NASDAQ. Therefore the correlation
between the two stock market indexes is expected to be high. As noted, Pearson’s
correlation coefficient is 0.9788, and Spearman’s correlation coefficient is 0.9928.

For investors, NASDAQ is considered risky, while S&P500 is deemed to be risk-
free. Many investors attach importance to portfolio diversification by investing in
both riskless and risky markets.

This section observes descriptive statistics of the training set, the validation set, and
the test set for both S&P500 and NASDAQ. Moreover, visuals of the observations
and their histograms are given. Scores of the variance and the standard deviation
are calculated for two different delta degrees of freedom (ddof) values. Firstly ddof
is given as zero, and secondly, it is given as one. Histograms are plotted with a
kernel density estimate (KDE) method, which provides visualizing the distribution of
observations. Figure 5.2, part (a) and part (b), shows all S&P500 and NASDAQ data
and their segmentation, respectively. Part (c) and part (d) present the histogram of
S&P500 and NASDAQ with KDE one by one.

Descriptive statistics of S&P500 and it’s subsets are given in Table 5.3. According
to skewness scores, the training data and the test data have more weight in the left
tail of the distribution, while the validation data have more weight in the right tail
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Table 5.3: Descriptive Statistics of S&P500 Data
All Data Training Data Validation Data Test Data

Start Date 1980-08-04 1980-08-04 2007-10-10 2013-09-04
End Date 2019-07-29 2007-10-09 2013-09-03 2019-07-29
# of Observations 9830 6860 1485 1485
Minimum 102.42 102.42 676.53 1653.08
Maximum 3025.86 1565.15 1709.67 3025.86
Range 2923.44 1462.73 1033.14 1372.78
Mean 990.26 654.61 1247.78 2283.34
Median 993.52 459.59 1278.18 2143.16
Variance (ddof = 0) 511585.07 205914.77 46644.40 129766.45
Std (ddof = 0) 715.25 453.78 215.97 360.23
Variance (ddof = 1) 511637.11 205944.79 46675.83 129853.90
Std (ddof = 1) 715.29 453.81 216.05 360.35
Skewness 0.74 0.44 -0.24 0.37
Kurtosis -0.10 -1.34 -0.38 -1.16

of the distribution. If we consider the kurtosis values, all the segmented sets have
a distribution with lighter tails than the normal distribution has. In other words, all
kurtosis types are platykurtic. In Figure 5.3 graphs and histograms with KDE of
the training set, the validation set and the test set of S&P500 are given row by row,
respectively.

In Table 5.3 descriptive statistics of NASDAQ data are given. Similar to S&P500, the
training and the test sets are skewed left while the validation data is skewed right. The
kurtosis type of the training set is leptokurtic, i.e., the curve has a higher peak than
the normal curve. On the other hand, the kurtosis curves of the validation set and the
test set have a flatter peak than the normal curve. In Figure 5.4 plots and histograms
with KDE of the training set, the validation set, and the test set of NASDAQ are
demonstrated.

If we consider Figure 5.2a and Figure 5.2b, it is seen that there are large value changes
between the training set, the validation set and the test set. In addition, there are fluc-
tuations and several jumps in each separated sets. According to Table 5.3 and Ta-
ble 5.4, minimum, maximum, mean, and standard deviation values are quite different
for the training set, the validation set, and the test set. Each subset shows different
characteristics for both S&P500 and NASDAQ in Figure 5.3 and in Figure 5.4 respec-
tively. Due to these differences, it is expected that there are differences between the
error metric results of the train set and the test set for both S&P500 and NASDAQ.

5.2 LSTM Model without MRA

Closing prices of S&P500 and NASDAQ stocks are concatenated to get time series
data to be used. After modeling the data, we predict closing prices of S&P500 and
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(a) The Training Set (b) Histogram of the Training Set

(c) The Validation Set (d) Histogram of the Validation Set

(e) The Test Set (f) Histogram of the Test Set

Figure 5.3: Visuals and Histograms of the Training Set, the Validation Set and the
Test Set of S&P500
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(a) The Training Set (b) Histogram of the Training Set

(c) The Validation Set (d) Histogram of the Validation Set

(e) The Test Set (f) Histogram of the Test Set

Figure 5.4: Visuals and Histograms of the Training Set, the Validation Set and the
Test Set of NASDAQ
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Table 5.4: Descriptive Statistics of NASDAQ Data
All Data Training Data Validation Data Test Data

Start Date 1980-08-04 1980-08-04 2007-10-10 2013-09-04
End Date 2019-07-29 2007-10-09 2013-09-03 2019-07-29
# of Observations 9830 6860 1485 1485
Minimum 159.14 159.14 1268.64 3649.04
Maximum 8330.21 5048.62 3692.95 8330.21
Range 8171.07 4889.48 2424.31 4681.17
Mean 2042.74 1147.35 2519.96 5701.76
Median 1697.72 743.45 2516.69 5190.10
Variance (ddof = 0) 3547004.08 909358.80 268338.30 1690667.54
Std (ddof = 0) 1883.35 953.60 518.01 1300.26
Variance (ddof = 1) 3547364.95 909491.37 268519.12 1691806.81
Std (ddof = 1) 1883.45 953.67 518.19 1300.69
Skewness 1.33 1.09 -0.14 0.44
Kurtosis 1.29 0.78 -0.34 -1.18

NASDAQ. Data (length of 9830) is split into the train, the validation, and the test sets.
Almost %70 of all data is used in the train set (length of 6860), about %15 of all data
is used in the validation set (length of 1485), and nearly %15 of all data is used in the
test set (length of 1485). We prepare the dataset as two variables with ten time-steps.
Each sample is related to index 0 (closing prices of S&P500) and index 1 (closing
prices of NASDAQ) values, respectively. In other words, by using ten days window
set with two variables, the next days’ closing price is focused on being predicted. Two
hidden layers are used, where the first one is formed of LSTM nodes and the second
one consists of a regular densely-connected neural network. In the LSTM part, kernel,
recurrent, and bias regularizers are put into practice. Batch normalization and ReLU
activation function are added between dense and LSTM parts, respectively. In the
dense part, kernel and bias regularizers are employed. After modeling the problem
according to the selected configuration using Talos optimization and hand-tuning, we
fit the model to data and predict train/test parts many times in a loop. Afterward, we
calculate train/test predictions and the mean of error metrics.

We use six different configurations without MRA and wavenets in order to model the
S&P500 and the NASDAQ datasets. In Table 5.5, Table 5.7, Table 5.9, Table 5.11,
Table 5.13 and Table 5.15 six varying Talos configuration parameters which are used
for the S&P500 time series analysis without wavelets can be seen. Only difference
between these tables are the epoch sizes. Training and test results which are obtained
using these structures are presented in Table 5.6, Table 5.8, Table 5.10, Table 5.12,
Table 5.14 and Table 5.16 respectively. In Table 5.17 six distinct model results are
given for S&P500. It is seen that results are affected by tuning L1 regularization
and L2 regularization values in kernel, recurrent and bias regularizers for fixed epoch
value.

Actually, from our point of view, the test scores are more important than the train
scores. R2 and EVS error metrics show how well the model fits. RMSE, SRMSE,
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Table 5.5: LSTM Model, Configuration 1 (S&P500): Talos Configuration
Configuration 1
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-4 - l1, l2=1e-4
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-4 - l1, l2=1e-4
activation - ReLU ReLU

Table 5.6: LSTM Model, Configuration 1 (S&P500): Mean Scores for the Train set
and the Test set by Running 1000 Experiments

Configuration 1
experiment size 1000
time taken by process 261m38s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 16.49 29.27
Scaled RMSE 0.01 0.01
R2 1.00 0.99
MAE 13.35 23.53
EVS 1.00 1.00
ME 109.61 137.52
MdAE 11.78 20.20
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Table 5.7: LSTM Model, Configuration 2 (S&P500): Talos Configuration
Configuration 2
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 60
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-4 - l1, l2=1e-4
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-4 - l1, l2=1e-4
activation - ReLU ReLU

Table 5.8: LSTM Model, Configuration 2 (S&P500): Mean Scores for the Train set
and the Test set by Running 1000 Experiments

Configuration 2
experiment size 1000
time taken by process 142m57s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 15.82 29.31
Scaled RMSE 0.01 0.01
R2 1.00 0.99
MAE 12.75 23.61
EVS 1.00 1.00
ME 108.27 134.99
MdAE 11.10 20.27
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Table 5.9: LSTM Model, Configuration 3 (S&P500): Talos Configuration
Configuration 3
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-6 - l1, l2=1e-6
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation - ReLU ReLU

Table 5.10: LSTM Model, Configuration 3 (S&P500): Mean Scores for the Train set
and the Test set by Running 1000 Experiments

Configuration 3
experiment size 1000
time taken by process 228m29s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 11.93 29.06
Scaled RMSE 0.00 0.01
R2 1.00 0.99
MAE 8.06 23.30
EVS 1.00 1.00
ME 107.80 139.80
MdAE 4.86 19.93
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Table 5.11: LSTM Model, Configuration 4 (S&P500): Talos Configuration
Configuration 4
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 60
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-6 - l1, l2=1e-6
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation - ReLU ReLU

Table 5.12: LSTM Model, Configuration 4 (S&P500): Mean Scores for the Train set
and the Test set by Running 1000 Experiments

Configuration 4
experiment size 1000
time taken by process 142m21s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 12.80 29.73
Scaled RMSE 0.00 0.01
R2 1.00 0.99
MAE 8.76 24.00
EVS 1.00 1.00
ME 109.17 145.55
MdAE 5.20 20.77
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Table 5.13: LSTM Model, Configuration 5 (S&P500): Talos Configuration
Configuration 5
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-5 - l1, l2=1e-5
recurrent regularizer l1, l2=1e-5 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation - ReLU ReLU

Table 5.14: LSTM Model, Configuration 5 (S&P500): Mean Scores for the Train set
and the Test set by Running 1000 Experiments

Configuration 5
experiment size 1000
time taken by process 229m41s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 11.73 32.89
Scaled RMSE 0.00 0.01
R2 1.00 0.99
MAE 8.66 26.82
EVS 1.00 1.00
ME 106.28 123.63
MdAE 6.79 22.79
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Table 5.15: LSTM Model, Configuration 6 (S&P500): Talos Configuration
Configuration 6
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 60
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-5 - l1, l2=1e-5
recurrent regularizer l1, l2=1e-5 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation - ReLU ReLU

Table 5.16: LSTM Model, Configuration 6 (S&P500): Mean Scores for the Train set
and the Test set by Running 1000 Experiments

Configuration 6
experiment size 1000
time taken by process 140m22s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 11.66 34.63
Scaled RMSE 0.00 0.01
R2 1.00 0.99
MAE 8.52 28.39
EVS 1.00 1.00
ME 106.81 124.86
MdAE 6.52 24.13
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Table 5.17: LSTM Model (S&P500): Scores of the all Configurations
time RMSE SRMSE R2 MAE EVS ME MdAE

Configuration 1 261m38s
train scores 16.49 0.01 1.00 13.35 1.00 109.61 11.78
test scores 29.27 0.01 0.99 23.53 1.00 137.52 20.20
Configuration 2 142m57s
train scores 15.82 0.01 1.00 12.75 1.00 108.27 11.10
test scores 29.31 0.01 0.99 23.61 1.00 134.99 20.27
Configuration 3 228m29s
train scores 11.93 0.00 1.00 8.06 1.00 107.80 4.86
test scores 29.06 0.01 0.99 23.30 1.00 139.80 19.93
Configuration 4 142m21s
train scores 12.80 0.00 1.00 8.76 1.00 109.17 5.20
test scores 29.73 0.01 0.99 24.00 1.00 145.55 20.77
Configuration 5 229m41s
train scores 11.73 0.00 1.00 8.66 1.00 106.28 6.79
test scores 32.89 0.01 0.99 26.82 1.00 123.63 22.79
Configuration 6 140m22s
train scores 11.66 0.00 1.00 8.52 1.00 106.81 6.52
test scores 34.63 0.01 0.99 28.39 1.00 124.86 24.13

and MAE metrics generate average errors by using residuals. Moreover, RMSE and
SRMSE penalize large error values rather than other error metrics due to taking the
square of residuals. RMSE and SRMSE are mostly used for model comparison.
MdAE is quite robust against outliers. However, it is not an advantage in our case.
Contrarily it causes a drawback since large errors occur at big jumps in financial time
series, and the effect of these large errors, i.e., outliers, are significant. Lastly, ME
metric does not matter because it gives a result of a single residual value.

Furthermore, almost all error metrics that we use generate robust error results. In
other words, each model trial with thousand repetitions gives very similar results.
However, it is seen that SRMSE, R2, and EVS give identical good results for all the
configurations. Therefore they are not useful for comparison in our situation. The best
test scores occur in configuration 3 according to RMSE, MAE, and MdAE metrics as
seen in Table 5.17.

We look at the output of configuration 3, which gives the best result from the six
designs. In Figure 5.5, the model of the configuration 3 is given. Input and output
sizes of each layer and modules between layers are seen. The input size of the LSTM
and the output size of the last layer indicate that by looking at the previous ten days
of the data, the next day is predicted.

In Figure 5.6a, configuration 3 loss values of all experiments are given for S&P500.
It is an acceptable loss function graph since, after some epochs, validation loss falls
under training loss, and both loss functions converge to the zero value. In Figure 5.6b
and in Figure 5.6c, average values of predicted S&P500 train and test values with
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Figure 5.5: LSTM Model, Configuration 3 (S&P500): Model Structure
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(a) Loss Values
(b) Mean of the Predicted Train Values vs. the

Observed Train Values

(c) Mean of the Predicted Test Values vs. the
Observed Test Values

Figure 5.6: LSTM Model, Configuration 3 (S&P500): Results

observed prices of the configuration 3 are given respectively. It is seen that both
training and test predictions follow the observed values nicely.

Similarly in Table 5.18, Table 5.20, Table 5.22, Table 5.24, Table 5.26 and Table 5.28
six different Talos configurations for NASDAQ data are given. Again regularizer val-
ues are fixed and two different epoch values are used for consecutive binary configura-
tions. Results for NASDAQ according to these configurations are given in Table 5.19,
Table 5.21, Table 5.23, Table 5.25, Table 5.27 and Table 5.29 respectively. Summary
table for NASDAQ data is given in Table 5.30. It is seen that the configuration 3 gives
the best results for NASDAQ according to RMSE, MAE and MdAE metrics as we get
for S&P500.

In Figure 5.7, the model structure of the configuration 3 is given for NASDAQ. As
can be seen, the same structure utilized in the S&P500 data is used.

In Figure 5.8a, all of the loss values for each experiment are given for NASDAQ.
Average values of predicted train and test values with observed prices for NASDAQ
are given in Figure 5.8b and in Figure 5.8c respectively. Again both training and test
predictions almost fit the observed values.
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Table 5.18: LSTM Model, Configuration 1 (NASDAQ): Talos Configuration
Configuration 1
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-4 - l1, l2=1e-4
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-4 - l1, l2=1e-4
activation - ReLU ReLU

Table 5.19: LSTM Model, Configuration 1 (NASDAQ): Mean Scores for the Train
set and the Test set by Running 1000 Experiments

Configuration 1
experiment size 1000
time taken by process 286m52s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 45.32 95.58
Scaled RMSE 0.01 0.01
R2 1.00 0.99
MAE 32.57 77.65
EVS 1.00 1.00
ME 498.44 374.15
MdAE 24.80 66.80
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Table 5.20: LSTM Model, Configuration 2 (NASDAQ): Talos Configuration
Configuration 2
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 60
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-4 - l1, l2=1e-4
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-4 - l1, l2=1e-4
activation - ReLU ReLU

Table 5.21: LSTM Model, Configuration 2 (NASDAQ): Mean Scores for the Train
set and the Test set by Running 1000 Experiments

Configuration 2
experiment size 1000
time taken by process 143m16s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 43.13 92.46
Scaled RMSE 0.01 0.01
R2 1.00 0.99
MAE 30.04 74.37
EVS 1.00 1.00
ME 497.08 367.99
MdAE 22.04 63.28
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Table 5.22: LSTM Model, Configuration 3 (NASDAQ): Talos Configuration
Configuration 3
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-6 - l1, l2=1e-6
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation - ReLU ReLU

Table 5.23: LSTM Model, Configuration 3 (NASDAQ): Mean Scores for the Train
set and the Test set by Running 1000 Experiments

Configuration 3
experiment size 1000
time taken by process 234m49s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 36.65 85.31
Scaled RMSE 0.00 0.01
R2 1.00 1.00
MAE 21.44 66.58
EVS 1.00 1.00
ME 492.62 324.16
MdAE 11.35 53.22
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Table 5.24: LSTM Model, Configuration 4 (NASDAQ): Talos Configuration
Configuration 4
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 60
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-6 - l1, l2=1e-6
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation - ReLU ReLU

Table 5.25: LSTM Model, Configuration 4 (NASDAQ): Mean Scores for the Train
set and the Test set by Running 1000 Experiments

Configuration 4
experiment size 1000
time taken by process 142m22s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 37.27 86.72
Scaled RMSE 0.00 0.01
R2 1.00 0.99
MAE 22.08 67.88
EVS 1.00 1.00
ME 495.08 326.28
MdAE 12.54 54.46
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Table 5.26: LSTM Model, Configuration 5 (NASDAQ): Talos Configuration
Configuration 5
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-5 - l1, l2=1e-5
recurrent regularizer l1, l2=1e-5 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation - ReLU ReLU

Table 5.27: LSTM Model, Configuration 5 (NASDAQ): Mean Scores for the Train
set and the Test set by Running 1000 Experiments

Configuration 5
experiment size 1000
time taken by process 231m15s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 42.98 87.34
Scaled RMSE 0.01 0.01
R2 1.00 1.00
MAE 30.36 68.12
EVS 1.00 1.00
ME 499.32 328.67
MdAE 24.61 54.30
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Table 5.28: LSTM Model, Configuration 6 (NASDAQ): Talos Configuration
Configuration 6
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 60
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-5 - l1, l2=1e-5
recurrent regularizer l1, l2=1e-5 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation - ReLU ReLU

Table 5.29: LSTM Model, Configuration 6 (NASDAQ): Mean Scores for the Train
set and the Test set by Running 1000 Experiments

Configuration 6
experiment size 1000
time taken by process 143m38s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 39.57 87.49
Scaled RMSE 0.00 0.01
R2 1.00 1.00
MAE 26.48 68.41
EVS 1.00 1.00
ME 498.17 327.93
MdAE 19.55 54.78
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Figure 5.7: LSTM Model, Configuration 3 (NASDAQ): Model Structure
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(a) Loss Values
(b) Mean of the Predicted Train Values vs. the

Observed Train Values

(c) Mean of the Predicted Test Values vs. the
Observed Test Values

Figure 5.8: LSTM Model, Configuration 3 (NASDAQ): Results
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Table 5.30: LSTM Model (NASDAQ): Scores of the all Configurations
time RMSE SRMSE R2 MAE EVS ME MdAE

Configuration 1 286m52s
train scores 45.32 0.01 1.00 32.57 1.00 498.44 24.80
test scores 95.58 0.01 0.99 77.65 1.00 374.15 66.80
Configuration 2 143m16s
train scores 43.13 0.01 1.00 30.04 1.00 497.08 22.04
test scores 92.46 0.01 0.99 74.37 1.00 367.99 63.28
Configuration 3 234m49s
train scores 36.65 0.00 1.00 21.44 1.00 492.62 11.35
test scores 85.31 0.01 1.00 66.58 1.00 324.16 53.22
Configuration 4 142m22s
train scores 37.27 0.00 1.00 22.08 1.00 495.08 12.54
test scores 86.72 0.01 0.99 67.88 1.00 326.28 54.46
Configuration 5 231m15s
train scores 42.98 0.01 1.00 30.36 1.00 499.32 24.61
test scores 87.34 0.01 1.00 68.12 1.00 328.67 54.30
Configuration 6 143m38s
train scores 39.57 0.00 1.00 26.48 1.00 498.17 19.55
test scores 87.49 0.01 1.00 68.41 1.00 327.93 54.78

5.3 LSTM Model with MRA

In this section, we combine LSTM and MRA. First of all, data is decomposed into
two detail parts and one approximation part by using MODWT. Daubechies wavelet,
particularly the “db2=D4” filter and MODWT, are used to decompose the signal with
a level of 2. After denormalizing predictions, each output part and prediction parts
are combined by inverse MODWT separately for train and test parts. Each subseries
(length of 9830) is split into train, validation, and test sets. Almost %70 of each
level is used in the train set (length of 6860), about %15 of each level is used in the
validation set (length of 1485), and nearly %15 of each level is used in the test set
(length of 1485).

The same structure is used in the approximation level as we build in Section 5.2. On
the other hand, one LSTM hidden layer is used for the first and the second detail
levels separately. Each level is modeled by making use of Talos optimization and
hand-tuning. Then similarly, we fit the model to data and predict train/test parts
for 1000 experiments. Finally, we calculate the mean of error metrics and train/test
predictions where we reached results by applying synthesis.

In Table 5.31 configurations of first detail, second detail and approximation are given
for S&P500. Average values of Monte Carlo train RMSE and Monte Carlo test RMSE
are given in Table 5.32. In Table 5.33 mean of 1000 reconstructed scores are pre-
sented for S&P500. It seems that using MRA significantly increases computation
time. While using MRA appears to increase computation time significantly, it im-
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Figure 5.9: LSTM Model+MRA, Configuration 1 (S&P500): Model Structure of the
First Detail

proves the prediction process.

Models of the first detail, the second detail and the approximation for S&P500 are
given in Figure 5.9, Figure 5.10 and Figure 5.11 respectively.

Loss values of the first detail, the second detail and the approximation for S&P500
are given in Figure 5.12a, Figure 5.12b and Figure 5.12c respectively.

Predictions of the first detail, the second detail and the approximation parts for S&P500
are given in Figure 5.13. The first detail and the second detail levels are noticed more
like noise modeling. For this reason, the models used in these levels are less com-
plicated than the model used in the approximation level.It is seen that predictions of
each part follow the observed values smoothly for all levels.

After synthesizing all wavelet levels for S&P500, average of 1000 predicted train and
test graphs are given in Figure 5.14a and Figure 5.14b respectively.

Similarly, configurations of first detail, second detail and approximation are given for
NASDAQ in Table 5.34. Mean values of train RMSE and test RMSE are given in
Table 5.35. In Table 5.36 mean of 1000 reconstructed scores are given for NASDAQ.
As with the S&P500 data, the use of MRA increases computation time but provides
better prediction results for NASDAQ.

Models of the first detail, the second detail and the approximation for NASDAQ are
given in Figure 5.15, Figure 5.16 and Figure 5.17 respectively.

Loss values of the first detail, the second detail and the approximation for NASDAQ
are given in Figure 5.18a, Figure 5.18b and Figure 5.18c respectively.

Predictions of the first detail, the second detail and the approximation parts for NAS-
DAQ are given in Figure 5.19. Again predictions fit observed values pretty well.

Average predictions of 1000 reconstructed train and test graphs for NASDAQ are
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Table 5.32: LSTM Model+MRA, Configuration 1 (S&P500): Mean Scores of the
Wavelet Levels for the Train set and the Test set by Running 1000 Experiments

Configuration 1
experiment size 1000 wavelet filter db2 (D4)
time taken by process 1981m47s wavelet level 2

Monte Carlo Train
RMSE Scores

Monte Carlo Test
RMSE Scores

Detail 1 3.63 7.52
Detail 2 2.31 4.48
Approximation 15.90 26.49

Table 5.33: LSTM Model+MRA, Configuration 1 (S&P500): Mean Scores for the
Synthesized Train set and the Synthesized Test set by Running 1000 Experiments

Configuration 1
experiment size 1000 wavelet filter db2 (D4)
time taken by process 1981m47s wavelet level 2
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 15.29 26.91
Scaled RMSE 0.01 0.01
R2 1.00 0.99
MAE 12.29 22.66
EVS 1.00 1.00
ME 239.30 104.68
MdAE 11.11 20.36

lstm_2: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_2: Dense
input:

output:

(None, 128)

(None, 1)

985979747408

Figure 5.10: LSTM Model+MRA, Configuration 1 (S&P500): Model Structure of
the Second Detail
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lstm_3: LSTM
input:

output:

(None, 10, 2)

(None, 16)

batch_normalization_1: BatchNormalization
input:

output:

(None, 16)

(None, 16)

activation_19: Activation
input:

output:

(None, 16)

(None, 16)

dense_3: Dense
input:

output:

(None, 16)

(None, 128)

dense_4: Dense
input:

output:

(None, 128)

(None, 1)

985982891736

Figure 5.11: LSTM Model+MRA, Configuration 1 (S&P500): Model Structure of
the Approximation
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(a) Loss Values of the First Detail (b) Loss Values of the Second Detail

(c) Loss Values of the Approximation

Figure 5.12: LSTM Model+MRA, Configuration 1 (S&P500): Loss Values of Each
Level
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(a) 1st Detail-Train Prediction (b) 1st Detail-Test Prediction

(c) 2nd Detail-Train Prediction (d) 2nd Detail-Test Prediction

(e) Approximation-Train Prediction (f) Approximation-Test Prediction

Figure 5.13: LSTM Model+MRA, Configuration 1 (S&P500): Train and Test Predic-
tions of the First Detail, the Second Detail and the Approximation Parts

56



(a) Mean of the Predicted Train Values vs. Ob-
served Train Values for Reconstructed Data

(b) Mean of the Predicted Test Values vs. Ob-
served Test Values for Reconstructed Data

Figure 5.14: LSTM Model+MRA, Configuration 1 (S&P500): Reconstructed Results

lstm_1: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_1: Dense
input:

output:

(None, 128)

(None, 1)

786787798040

Figure 5.15: LSTM Model+MRA, Configuration 1 (NASDAQ): Model Structure of
the First Detail

lstm_2: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_2: Dense
input:

output:

(None, 128)

(None, 1)

787057408488

Figure 5.16: LSTM Model+MRA, Configuration 1 (NASDAQ): Model Structure of
the Second Detail

57



Table
5.34:L

ST
M

M
odel+M

R
A

,C
onfiguration

1
(N

A
SD

A
Q

):Talos
C

onfiguration
C

onfiguration
1

w
aveletfilter=

db2
(D

4)
w

aveletlevel=
2

D
etail1

D
etail2

A
pproxim

ation
loss

m
se

loss
m

se
loss

m
se

optim
izer

A
dam

optim
izer

A
dam

optim
izer

A
dam

tim
e-steps

10
tim

e-steps
10

tim
e-steps

10
batch

size
1024

batch
size

1024
batch

size
1024

epochs
50

epochs
50

epochs
100

LayerParam
eters

L
ST

M
L

ayer
LayerParam

eters
L

ST
M

L
ayer

LayerParam
eters

L
ST

M
L

ayer
B

etw
een

L
ayers

D
ense

L
ayer

#
ofnodes

128
#

ofnodes
128

#
ofnodes

16
-

128
kernelinitializer

-
kernelinitializer

-
kernelinitializer

norm
al

-
-

batch
norm

alization
-

batch
norm

alization
-

batch
norm

alization
-

yes
-

kernelregularizer
-

kernelregularizer
-

kernelregularizer
l1,l2=1e-6

-
l1,l2=1e-6

recurrentregularizer
-

recurrentregularizer
-

recurrentregularizer
l1,l2=1e-4

-
-

bias
regularizer

-
bias

regularizer
-

bias
regularizer

l1,l2=1e-5
-

l1,l2=1e-5
activation

-
activation

-
activation

-
R

eL
U

R
eL

U 58



Table 5.35: LSTM Model+MRA, Configuration 1 (NASDAQ): Mean Scores of the
Wavelet Levels for the Train set and the Test set by Running 1000 Experiments

Configuration 1
experiment size 1000 wavelet filter db2 (D4)
time taken by process 2008m34s wavelet level 2

Monte Carlo Train
RMSE Scores

Monte Carlo Test
RMSE Scores

Detail 1 10.03 21.60
Detail 2 4.83 12.66
Approximation 35.26 64.93

Table 5.36: LSTM Model+MRA, Configuration 1 (NASDAQ): Mean Scores for the
Synthesized Train set and the Synthesized Test set by Running 1000 Experiments

Configuration 1
experiment size 1000 wavelet filter db2 (D4)
time taken by process 2008m34s wavelet level 2
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 33.12 65.41
Scaled RMSE 0.00 0.01
R2 1.00 1.00
MAE 20.74 52.67
EVS 1.00 1.00
ME 612.95 244.27
MdAE 11.67 44.05
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lstm_3: LSTM
input:

output:

(None, 10, 2)

(None, 16)

batch_normalization_1: BatchNormalization
input:

output:

(None, 16)

(None, 16)

activation_19: Activation
input:

output:

(None, 16)

(None, 16)

dense_3: Dense
input:

output:

(None, 16)

(None, 128)

dense_4: Dense
input:

output:

(None, 128)

(None, 1)

787060703528

Figure 5.17: LSTM Model+MRA, Configuration 1 (NASDAQ): Model Structure of
the Approximation
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(a) Loss Values of the First Detail (b) Loss Values of the Second Detail

(c) Loss Values of the Approximation

Figure 5.18: LSTM Model+MRA, Configuration 1 (NASDAQ): Loss Values of Each
Level
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(a) 1st Detail-Train Prediction (b) 1st Detail-Test Prediction

(c) 2nd Detail-Train Prediction (d) 2nd Detail-Test Prediction

(e) Approximation-Train Prediction (f) Approximation-Test Prediction

Figure 5.19: LSTM Model+MRA, Configuration 1 (NASDAQ): Train and Test Pre-
dictions of the First Detail, the Second Detail and the Approximation Parts
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(a) Mean of the Predicted Train Values vs. Ob-
served Train Values for Reconstructed Data

(b) Mean of the Predicted Test Values vs. Ob-
served Test Values for Reconstructed Data

Figure 5.20: LSTM Model+MRA, Configuration 1 (NASDAQ): Reconstructed Re-
sults

given in Figure 5.20a and Figure 5.20b respectively.

Although the predictions look very good in both S&P500 and NASDAQ figures, even
small differences are significant in trading. In the approach using LSTM only, the
predictions look very favorable also. However, no matter how good the models’ pre-
dictions are, small differences between them are of great importance for investors.
These differences can only be noticed from the results of error metrics.

5.4 Hybrid LSTM-Wavenet Model without MRA

In this section, we use PPS as an internal activation function for the time series. De-
tails of polynomial wavelets are given in Section 4.2. Suppose the polynomial wavelet
function created by the nth derivative of the sigmoid function is utilized for the nth
node of the LSTM layer. In that case, outcomes are much worse than employing a
single polynomial wavelet function in each cell.

The polynomial wavelet function created by the 6th derivative of the sigmoid func-
tion is utilized to form a wavelet activation function in each cell. Coefficients of the
polynomial function can be found by using (4.18) which is given in Section 4.2. Data
preparation, time-steps, and network structure are the same as shown in Section 5.2.

First of all we create 16 different activation functions since we have 16 nodes in
LSTM layer. We use the 6th derivative of the sigmoid function to create polynomial
wavelet activation functions as we mentioned above. Each activation function with
index j is generated as:

ψj6(x) = ψ

(
x− uj
vj

)
, (5.1)

where u is the translation (or location) and v is the dilation (or scale) parameters for
j = 1, 2, . . . , 16. The subscript 6 denotes the degree of derivative.

In [66] it is stated that since wavelets are quickly vanishing functions, it is important
not to choose too small dilation parameters. Moreover, Radhwane and Bereksi in [47]
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point out that random initialization of the translation and dilation parameters may
results in too local wavelets. We initialize these parameters as following:

u1 ≈
1

2

(
β − α
n

)
(5.2)

and

v1 ≈
1

2

(
β + α

n

)
, (5.3)

where β is the maximum value in the training set, α is the minimum value in the
training set and n is the number of LSTM nodes. Therefore initial translation and
dilation parameters for S&P500 data are u1 = 40 and v1 = 50. On the other hand,
the same values of u1 = 40 and v1 = 50 are obtained under the same configurations
for the initial parameters of NASDAQ.

Each activation function for S&P500 and NASDAQ time series is produced as fol-
lows:

ψj6(x) = ψ

(
x− 40 ∗ j

50 ∗ j

)
, (5.4)

where j is the index of the activation functions.

We use two different approaches for hybrid LSTM-Wavenet model without MRA. In
the first method the same wavelet activation function is used for all 16 LSTM nodes.
Wavelet activation function that is used for S&P500 and NASDAQ data is

ψ6
6(x) = ψ

(
x− 240

300

)
, (5.5)

where the superscript 6 denotes that we use the 6th activation function and the sub-
script 6 shows the degree of the derivative.

In the second strategy, we use (5.4) for S&P500 and NASDAQ. In other words, the
translation and the dilation parameters are changing in each LSTM nodes. As a result,
16 different activation functions are produced.

In Table 5.37 configuration parameters of the first approach are given for S&P500. In
other words, these are parameters for hybrid LSTM-Wavenet structure by using the
same wavelet activation function for all LSTM nodes. After using these parameters
we get results as given in Table 5.38. It is clear that results are better than LSTM and
LSTM+MRA methods.

In Figure 5.21, the model of the configuration 1 is given for S&P500.

In Figure 5.22a, loss values of all experiments are given for S&P500 according to
the first approach. It is a good loss function graph since after some epochs validation
loss falls under training loss and both loss functions converge to zero value. In Fig-
ure 5.22b and in Figure 5.22c, average values of predicted train and test values versus
observed prices are given respectively. It is seen that both training and test predictions
follow the related observed values nicely. In previous approaches given in Section 5.2
and Section 5.3, it is also seen that the predictions follow the observed data very well.
For this reason, it is more useful to examine the error scores.
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Table 5.37: Hybrid LSTM-Wavenet Model, Configuration 1 (S&P500):
Talos Configuration

Configuration 1
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-6 - l1, l2=1e-6
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation ψ6

6(x)a ReLU ReLU
a ψ6

6(x) = ψ
(
x−240
300

)

Table 5.38: Hybrid LSTM-Wavenet Model, Configuration 1 (S&P500): Mean Scores
for the Train set and the Test set by Running 1000 Experiments

Configuration 1
experiment size 1000
time taken by process 459m45s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 9.71 22.82
Scaled RMSE 0.00 0.01
R2 1.00 1.00
MAE 6.37 17.33
EVS 1.00 1.00
ME 86.70 126.88
MdAE 3.76 13.74
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lstm_1: LSTM
input:

output:

(None, 10, 2)

(None, 16)

batch_normalization_1: BatchNormalization
input:

output:

(None, 16)

(None, 16)

activation_19: Activation
input:

output:

(None, 16)

(None, 16)

dense_1: Dense
input:

output:

(None, 16)

(None, 128)

dense_2: Dense
input:

output:

(None, 128)

(None, 1)

593942585752

Figure 5.21: Hybrid LSTM-Wavenet Model, Configuration 1 (S&P500): Model
Structure
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(a) Loss Values
(b) Mean of the Predicted Train Values vs. the

Observed Train Values

(c) Mean of the Predicted Test Values vs. the
Observed Test Values

Figure 5.22: Hybrid LSTM-Wavenet Model, Configuration 1 (S&P500): Results
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Table 5.39: Hybrid LSTM-Wavenet Model by API Structure, Configura-
tion 2 (S&P500): Talos Configuration

Configuration 2
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16x1 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-6 - l1, l2=1e-6
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation ψj6(x)a ReLU ReLU
a ψj6(x) = ψ

(
x−40∗j
50∗j

)
for j = 1, . . . , 16

Configuration parameters of the second approach are given in Table 5.39 for S&P500.
In the second approach, the translation and the dilation parameters are altering in
each node’s activation function. Results are given in Table 5.40. Again outcomes are
preferable to LSTM and LSTM+MRA methods. Nevertheless, operating unchanging
dilation and translation parameters gives superior results in terms of both error scores
and computation time.

The model of the the configuration 2 for S&P500 is presented in Figure A.1 in Ap-
pendix A. Because different activation functions are used in the LSTM layer, each
LSTM node is shown in separate branches.

In Figure 5.23a, loss values of all experiments are given for S&P500 with respect to
the second approach. In Figure 5.23b and in Figure 5.23c, mean values of predicted
train and test values versus observed prices are given respectively.

Similarly, the same two approaches are applied, and results are obtained for NAS-
DAQ. Parameters of the The Talos configuration 1 are given in Table 5.41 for NAS-
DAQ. Outcomes of error metrics are given in Table 5.42. Results are preferable to
LSTM and LSTM+MRA approaches.

In Figure 5.24, the model of the configuration 1 is given for NASDAQ where hybrid
LSTM-Wavenet model is utilized.

In Figure 5.25a, loss values of all experiments are given for NASDAQ with respect to
the configuration 1. In Figure 5.25b and in Figure 5.25c, average values of predicted
train and test values versus observed prices are given respectively. Since the predic-
tion graphs are similar, improvements in LSTM and LSTM+MRA can be noticed by
looking at the error scores.
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Table 5.40: Hybrid LSTM-Wavenet Model by API Structure, Configuration 2
(S&P500): Mean Scores for the Train set and the Test set by Running 1000 Ex-
periments

Configuration 2
experiment size 1000
time taken by process 2464m15s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 9.58 24.04
Scaled RMSE 0.00 0.01
R2 1.00 0.99
MAE 6.29 18.40
EVS 1.00 1.00
ME 84.81 128.34
MdAE 3.77 14.48

(a) Loss Values
(b) Mean of the Predicted Train Values vs. the

Observed Train Values

(c) Mean of the Predicted Test Values vs. the
Observed Test Values

Figure 5.23: Hybrid LSTM-Wavenet Model by API Structure, Configuration 2
(S&P500): Results
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Table 5.41: Hybrid LSTM-Wavenet Model, Configuration 1 (NASDAQ):
Talos Configuration

Configuration 1
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-6 - l1, l2=1e-6
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation ψ6

6(x)a ReLU ReLU
a ψ6

6(x) = ψ
(
x−240
300

)

Table 5.42: Hybrid LSTM-Wavenet Model, Configuration 1 (NASDAQ): Mean
Scores for the Train set and the Test set by Running 1000 Experiments

Configuration 1
experiment size 1000
time taken by process 391m24s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 30.15 64.57
Scaled RMSE 0.00 0.01
R2 1.00 1.00
MAE 16.18 46.77
EVS 1.00 1.00
ME 355.23 373.57
MdAE 7.54 34.45
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lstm_1: LSTM
input:

output:

(None, 10, 2)

(None, 16)

batch_normalization_1: BatchNormalization
input:

output:

(None, 16)

(None, 16)

activation_19: Activation
input:

output:

(None, 16)

(None, 16)

dense_1: Dense
input:

output:

(None, 16)

(None, 128)

dense_2: Dense
input:

output:

(None, 128)

(None, 1)

498762458504

Figure 5.24: Hybrid LSTM-Wavenet Model, Configuration 1 (NASDAQ): Model
Structure
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(a) Loss Values
(b) Mean of the Predicted Train Values vs. the

Observed Train Values

(c) Mean of the Predicted Test Values vs. the
Observed Test Values

Figure 5.25: Hybrid LSTM-Wavenet Model, Configuration 1 (NASDAQ): Results
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Table 5.43: Hybrid LSTM-Wavenet Model by API Structure, Configura-
tion 2 (NASDAQ): Talos Configuration

Configuration 2
loss mse
optimizer Adam
time-steps 10
batch size 1024
epochs 100
Layer Parameters LSTM Layer Between Layers Dense Layer
# of nodes 16x1 - 128
kernel initializer normal - -
batch normalization - yes -
kernel regularizer l1, l2=1e-6 - l1, l2=1e-6
recurrent regularizer l1, l2=1e-4 - -
bias regularizer l1, l2=1e-5 - l1, l2=1e-5
activation ψj6(x)a ReLU ReLU
a ψj6(x) = ψ

(
x−40∗j
50∗j

)
for j = 1, . . . , 16

Parameters of the Talos configuration 2 are given in Table 5.43 for NASDAQ. Results
of error metrics are given in Table 5.44. It gives better results than the LSTM and
LSTM+MRA methods. However, working with fixed dilation and translation param-
eters produces more favorable results in terms of both error scores and computation
time.

The model of the configuration 2 for NASDAQ, where hybrid LSTM-Wavenet model
is used, is given in Figure A.2 in Appendix A.

In Figure 5.26a, loss values of all experiments are given for NASDAQ with respect to
the configuration 2. In Figure 5.26b and in Figure 5.26c, average values of predicted
train and test values versus observed prices are represented respectively.

5.5 Hybrid LSTM-Wavenet Model with MRA

In this section, we combine MRA and the hybrid LSTM-Wavenet model. MRA,
data preparation, and selection of the time-step are made precisely in the same way
with the method given in Section 5.3. On the other hand, we utilize two different
approaches mentioned in Section 5.4 to create activation functions.

We model each level by taking advantage of both Talos optimization and hand-tuning
again. After that, a thousand experiments are operated for model fitting and train/test
parts’ predictions. After running experiments, the mean of error metrics and train/test
predictions are estimated for each wavelet level.

In Table 5.45 selected Talos configuration parameters of the first detail, the second
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Table 5.44: Hybrid LSTM-Wavenet Model by API Structure, Configuration 2 (NAS-
DAQ): Mean Scores for the Train set and the Test set by Running 1000 Experiments

Configuration 2
experiment size 1000
time taken by process 2379m44s
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 30.70 67.30
Scaled RMSE 0.00 0.01
R2 1.00 1.00
MAE 16.94 49.41
EVS 1.00 1.00
ME 355.76 378.39
MdAE 8.53 36.80

(a) Loss Values
(b) Mean of the Predicted Train Values vs. the

Observed Train Values

(c) Mean of the Predicted Test Values vs. the
Observed Test Values

Figure 5.26: Hybrid LSTM-Wavenet Model by API Structure, Configuration 2 (NAS-
DAQ): Results
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lstm_1: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_1: Dense
input:

output:

(None, 128)

(None, 1)

559345413200

Figure 5.27: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500):
Model Structure of the First Detail

detail and the approximation parts are given for S&P500. It is seen that the first
approach of the wavenet structure is applied to the approximation part. Wavenet
structure is not used in the first detail and the second detail since the mentioned levels
may be counted as a noise. Catching the noise structure is handled without the need
for wavenets. Daubechies wavelet, particularly the “db2=D4” filter and MODWT, are
used to decompose the signal with a level of 2 like we select in Section 5.3.

Mean RMSE scores of each wavelet levels for S&P500 are given in Table 5.46 ac-
cording to the configuration 1.

In Table 5.47 average error scores of reconstructed train and test data are shown
for S&P500 with respect to configuration 1. The proposed method (hybrid LSTM-
Wavenet+MRA) outperforms the previous methods according to the error results.

Model structures of the first detail, the second detail and the approximation for S&P500
by the configuration 1 are given in Figure 5.27, Figure 5.28 and Figure 5.29 respec-
tively.

Loss values of the first detail, the second detail and the approximation for S&P500 by
the configuration 1 are given in Figure 5.30a, Figure 5.30b and Figure 5.30c respec-
tively.

Averaged train and test predictions of the first detail, the second detail and the ap-
proximation for S&P500 by the configuration 1 are depicted in Figure 5.31.

Reconstructed average train and test predictions for S&P500 by the configuration 1
are shown in Figure 5.32a and Figure 5.32b respectively.

In Table 5.48 selected Talos configuration parameters of the first detail, the second
detail and the approximation parts are given for S&P500. At that point, we remark
that the second approach, we mention in Section 5.4, is used to create activation
functions. Since each activation function is created by (5.4), we observe 16 different
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Table 5.46: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500): Mean
Scores of the Wavelet Levels for the Train set and the Test set by Running 1000
Experiments

Configuration 1
experiment size 1000 wavelet filter db2 (D4)
time taken by process 2103m30s wavelet level 2

Monte Carlo Test
RMSE Scores

Monte Carlo Train
RMSE Scores

Detail 1 3.61 7.46
Detail 2 2.30 4.48
Approximation 7.73 17.25

Table 5.47: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500): Mean
Scores for the Synthesized Train set and the Synthesized Test set by Running 1000
Experiments

Configuration 1
experiment size 1000 wavelet filter db2 (D4)
time taken by process 2103m30s wavelet level 2
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 8.04 17.93
Scaled RMSE 0.00 0.01
R2 1.00 1.00
MAE 6.56 15.17
EVS 1.00 1.00
ME 50.05 77.81
MdAE 5.46 13.47

lstm_2: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_2: Dense
input:

output:

(None, 128)

(None, 1)

559375002144

Figure 5.28: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500):
Model Structure of the Second Detail
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lstm_3: LSTM
input:

output:

(None, 10, 2)

(None, 16)

batch_normalization_1: BatchNormalization
input:

output:

(None, 16)

(None, 16)

activation_19: Activation
input:

output:

(None, 16)

(None, 16)

dense_3: Dense
input:

output:

(None, 16)

(None, 128)

dense_4: Dense
input:

output:

(None, 128)

(None, 1)

559378203816

Figure 5.29: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500):
Model Structure of the Approximation
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(a) Loss Values of the First Detail (b) Loss Values of the Second Detail

(c) Loss Values of the Approximation

Figure 5.30: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500): Loss
Values of Each Level
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(a) 1st Detail-Train Prediction (b) 1st Detail-Test Prediction

(c) 2nd Detail-Train Prediction (d) 2nd Detail-Test Prediction

(e) Approximation-Train Prediction (f) Approximation-Test Prediction

Figure 5.31: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500): Train
and Test Predictions of the First Detail, the Second Detail and the Approximation
Parts of S&P500
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(a) Mean of the Predicted Train Values vs. Ob-
served Train Values for Reconstructed Data

(b) Mean of the Predicted Test Values vs. Ob-
served Test Values for Reconstructed Data

Figure 5.32: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (S&P500): Re-
constructed Results

lstm_1: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_1: Dense
input:

output:

(None, 128)

(None, 1)

953058565200

Figure 5.33: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration
2 (S&P500): Model Structure of the First Detail

activation functions specific to the corresponding nodes.

Mean RMSE scores of each wavelet levels for S&P500 are given in Table 5.49 ac-
cording to the configuration 2.

In Table 5.50 average error scores of reconstructed train and test data are given for
S&P500 with respect to the configuration 2. This configuration also outperforms
LTSM, LSTM+MRA and hybrid LSTM-Wavenet methods. However, the configura-
tion 1 is preferable to the configuration 2, relating to the error results and the compu-
tation time.

Model structures of the first detail and the second detail for S&P500 by the config-
uration 2 are given in Figure 5.33, and Figure 5.34, respectively. The model for the
approximation part is given by Figure A.3 in Appendix A.

Loss values of the first detail, the second detail and the approximation for S&P500 by
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Table 5.49: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration 2
(S&P500): Mean Scores of the Wavelet Levels for the Train set and the Test set by
Running 1000 Experiments

Configuration 2
experiment size 1000 wavelet filter db2 (D4)
time taken by process 4318m36s wavelet level 2

Monte Carlo Test
RMSE Scores

Monte Carlo Train
RMSE Scores

Detail 1 3.60 7.47
Detail 2 2.29 4.48
Approximation 7.12 17.27

Table 5.50: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration 2
(S&P500): Mean Scores for the Synthesized Train set and the Synthesized Test set
by Running 1000 Experiments

Configuration 2
experiment size 1000 wavelet filter db2 (D4)
time taken by process 4318m36s wavelet level 2
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 7.45 17.96
Scaled RMSE 0.00 0.01
R2 1.00 0.99
MAE 5.81 15.18
EVS 1.00 1.00
ME 49.43 77.41
MdAE 4.56 13.50

lstm_2: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_2: Dense
input:

output:

(None, 128)

(None, 1)

953086007840

Figure 5.34: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration
2 (S&P500): Model Structure of the Second Detail
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(a) Loss Values of the First Detail (b) Loss Values of the Second Detail

(c) Loss Values of the Approximation

Figure 5.35: Hybrid LSTM-Wavenet Model+MRA, Configuration 2 (S&P500): Loss
Values of Each Level

the configuration 2 are given in Figure 5.35a, Figure 5.35b and Figure 5.35c respec-
tively.

Averaged train and test predictions of the first detail, the second detail, and the ap-
proximation for S&P500 by the configuration two are given in Figure 5.36.

Reconstructed average train and test predictions for S&P500 by the configuration 2
are given in Figure 5.37a and Figure 5.37b respectively.

After showing the results for the S&P500, similarly, the outcomes for the NASDAQ
are shown. Again, as stated in Section 5.4, two distinct approaches are employed.
While activation function parameters are fixed in one, these parameters change for
each node in the other.

In Table 5.51 selected parameters of the first detail, the second detail and the approx-
imation parts by Talos configuration 1 are given for NASDAQ.

Mean RMSE scores of each wavelet levels for NASDAQ are given in Table 5.52
according to the configuration 1.

In Table 5.53 average error scores of reconstructed train and test data are given for
NASDAQ with respect to the configuration 1. The proposed method outperforms the
previous models.
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(a) 1st Detail-Train Prediction (b) 1st Detail-Test Prediction

(c) 2nd Detail-Train Prediction (d) 2nd Detail-Test Prediction

(e) Approximation-Train Prediction (f) Approximation-Test Prediction

Figure 5.36: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration
2 (S&P500): Train and Test Predictions of the First Detail, the Second Detail and the
Approximation Parts of S&P500
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(a) Mean of the Predicted Train Values vs. Ob-
served Train Values for Reconstructed Data

(b) Mean of the Predicted Test Values vs. Ob-
served Test Values for Reconstructed Data

Figure 5.37: Hybrid LSTM-Wavenet Model+MRA, Configuration 2 (S&P500): Re-
constructed Results

Table 5.52: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):
Mean Scores of the Wavelet Levels for the Train set and the Test set by Running
1000 Experiments

Configuration 1
experiment size 1000 wavelet filter db2 (D4)
time taken by process 2257m23s wavelet level 2

Monte Carlo Train
RMSE Scores

Monte Carlo Test
RMSE Scores

Detail 1 10.89 22.02
Detail 2 5.88 12.78
Approximation 17.63 38.79

Table 5.53: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):
Mean Scores for the Synthesized Train set and the Synthesized Test set by Running
1000 Experiments

Configuration 1
experiment size 1000 wavelet filter db2 (D4)
time taken by process 2257m23s wavelet level 2
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 18.41 40.62
Scaled RMSE 0.00 0.00
R2 1.00 1.00
MAE 12.02 32.21
EVS 1.00 1.00
ME 214.12 184.95
MdAE 7.86 26.91

87



lstm_1: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_1: Dense
input:

output:

(None, 128)

(None, 1)

916157246544

Figure 5.38: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):
Model Structure of the First Detail

In Figure 5.38, Figure 5.39 and Figure 5.40 model structures of the first detail, the
second detail and the approximation for NASDAQ by the configuration 1 are given
respectively.

In Figure 5.41a, Figure 5.41b and Figure 5.41c loss values of the first detail, the
second detail and the approximation for NASDAQ by the configuration 1 are given
respectively.

Averaged train and test predictions of the first detail, the second detail and the ap-
proximation for NASDAQ by the configuration 1 are given in Figure 5.42.

Reconstructed average train and test predictions for NASDAQ by the configuration 1
are given in Figure 5.43a and Figure 5.43b respectively.

Concerning the configuration 2 for NASDAQ, the parameters of activation functions
are changing, as explained in Section 5.4.

In Table 5.54 selected parameters of the first detail, the second detail and the approx-
imation parts by Talos configuration 2 are given for NASDAQ.

Mean RMSE scores of each wavelet levels for NASDAQ are given in Table 5.55
according to the configuration 2.

In Table 5.56 average error scores of reconstructed train and test data are given for
NASDAQ with respect to the configuration 2. The results show that the configura-
tion 2 has better error results than LSTM, LSTM+MRA, and hybrid LSTM-Wavenet
methods have. But still, configuration 1 is superior to the configuration 2 according
to error results and the computation time.

In Figure 5.44, and Figure 5.45 model structures of the first detail and the second
detail for NASDAQ by the configuration 2 are given, respectively. In Chapter A, the
approximation part’s model structure is given in Figure A.4.
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lstm_2: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_2: Dense
input:

output:

(None, 128)

(None, 1)

916192724472

Figure 5.39: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):
Model Structure of the Second Detail

lstm_3: LSTM
input:

output:

(None, 10, 2)

(None, 16)

batch_normalization_1: BatchNormalization
input:

output:

(None, 16)

(None, 16)

activation_19: Activation
input:

output:

(None, 16)

(None, 16)

dense_3: Dense
input:

output:

(None, 16)

(None, 128)

dense_4: Dense
input:

output:

(None, 128)

(None, 1)

916195893600

Figure 5.40: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):
Model Structure of the Approximation

89



(a) Hybrid LSTM-Wavenet Model+MRA, Con-
figuration 1 (NASDAQ): Loss Values of the First
Detail

(b) Hybrid LSTM-Wavenet Model+MRA, Con-
figuration 1 (NASDAQ): Loss Values of the Sec-
ond Detail

(c) Hybrid LSTM-Wavenet Model+MRA, Con-
figuration 1 (NASDAQ): Loss Values of the Ap-
proximation

Figure 5.41: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):
Loss Values of Each Level
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(a) 1st Detail-Train Prediction (b) 1st Detail-Test Prediction

(c) 2nd Detail-Train Prediction (d) 2nd Detail-Test Prediction

(e) Approximation-Train Prediction (f) Approximation-Test Prediction

Figure 5.42: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ):
Train and Test Predictions of the First Detail, the Second Detail and the Approxi-
mation Parts of S&P500
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(a) Mean of the Predicted Train Values vs. Ob-
served Train Values for Reconstructed Data

(b) Mean of the Predicted Test Values vs. Ob-
served Test Values for Reconstructed Data

Figure 5.43: Hybrid LSTM-Wavenet Model+MRA, Configuration 1 (NASDAQ): Re-
constructed Results

lstm_1: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_1: Dense
input:

output:

(None, 128)

(None, 1)

899261562608

Figure 5.44: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration
2 (NASDAQ): Model Structure of the First Detail
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Table 5.55: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration 2
(NASDAQ): Mean Scores of the Wavelet Levels for the Train set and the Test set by
Running 1000 Experiments

Configuration 2
experiment size 1000 wavelet filter db2 (D4)
time taken by process 4368m23s wavelet level 2

Monte Carlo Train
RMSE Scores

Monte Carlo Test
RMSE Scores

Detail 1 10.81 21.87
Detail 2 5.84 12.75
Approximation 17.85 40.27

Table 5.56: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration 2
(NASDAQ): Mean Scores for the Synthesized Train set and the Synthesized Test set
by Running 1000 Experiments
Configuration 2
experiment size 1000 wavelet filter db2 (D4)
time taken by process 4368m23s wavelet level 2
Monte Carlo Scores Reconstructed Train Scores Reconstructed Test Scores
RMSE 18.59 41.97
Scaled RMSE 0.00 0.01
R2 1.00 1.00
MAE 11.84 33.24
EVS 1.00 1.00
ME 214.91 188.37
MdAE 7.23 27.59

lstm_2: LSTM
input:

output:

(None, 10, 2)

(None, 128)

dense_2: Dense
input:

output:

(None, 128)

(None, 1)

899288873336

Figure 5.45: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration
2 (NASDAQ): Model Structure of the Second Detail
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(a) Loss Values of the First Detail (b) Loss Values of the Second Detail

(c) Loss Values of the Approximation

Figure 5.46: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration
2 (NASDAQ): Loss Values of Each Level

In Figure 5.46a, Figure 5.46b and Figure 5.46c loss values of the first detail, the
second detail and the approximation for NASDAQ by the configuration 2 are given
respectively.

Averaged train and test predictions of the first detail, the second detail and the ap-
proximation for NASDAQ by the configuration 2 are given in Figure 5.47.

Reconstructed average train and test predictions for NASDAQ by the configuration 2
are given in Figure 5.48a and Figure 5.48b respectively.

5.6 Discussion

In Table 5.57 and in Table 5.58 error and computation time results of LSTM, LSTM+MRA,
hybrid LSTM-Wavenet and hybrid LSTM-Wavenet+MRA methods are given for S&P500
and NASDAQ, respectively. It is seen that using MRA improves the capability of
both LSTM and hybrid LSTM-Wavenet models. Changing dilation and translation
parameters of the wavelet activation function does not change the error results too
much compared to using constant dilation and translation parameters for all nodes in
LSTM. However, it causes an excessive computation time. The proposed method (hy-
brid LSTM-Wavenet+MRA) outperforms LSTM, LSTM+MRA, and hybrid LSTM-
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(a) 1st Detail-Train Prediction (b) 1st Detail-Test Prediction

(c) 2nd Detail-Train Prediction (d) 2nd Detail-Test Prediction

(e) Approximation-Train Prediction (f) Approximation-Test Prediction

Figure 5.47: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration
2 (NASDAQ): Train and Test Predictions of the First Detail, the Second Detail and
the Approximation Parts

96



(a) Mean of the Predicted Train Values vs. Ob-
served Train Values for Reconstructed Data

(b) Mean of the Predicted Test Values vs. Ob-
served Test Values for Reconstructed Data

Figure 5.48: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration
2 (NASDAQ): Reconstructed Results

Wavenet methods for financial time series in terms of error metrics. Therefore, it
is clear that utilizing wavelets in both MRA and activation functions improves the
performance of the train/test predictions.

In Section 5.1 it is stated that all training, validation and, test sets show different
characteristics. Notably, the changes between the training sets and the test sets are
relatively significant. Distinctions between the descriptive statistics of the training set
and descriptive statistics of the test set are noticeable for both S&P500 and NASDAQ.
Since such a difference occurs in the time series’s progression, it is reasonable to see
an absolute distinction between the RMSE values of the training set and the test set
for both S&P500 and NASDAQ. (see Table 5.57 and Table 5.58)

RMSE errors are relatively low compared to time series values. For example, the
mean of training data is 654.61, and the mean of the test data is 2283.34 for S&P500.
On the other hand, in the results obtained from the four methods, the maximum RMSE
value for the training set is 15.29, and the minimum RMSE value is 7.45 for S&P500.
Furthermore, in all results given in Table 5.57 and Table 5.58, the maximum RMSE
is 29.06, and the minimum RMSE is 17.93 for the test set for S&P500.

On the other hand, when we look at NASDAQ data, the mean of training data is
1147.35, and the mean of the test data is 5701.76. Again, in the results belong to
the four methods, the maximum RMSE value for the training set is 36.65, and the
minimum RMSE value is 18.41 for NASDAQ. Additionally, the maximum RMSE is
85.31, and the minimum RMSE is 40.62, according to the test set for NASDAQ.

When the SRMSE values are examined, it is seen that the error difference between
training and test sets is tiny for both S&P500 and NASDAQ. The reason is that the
time series observations are quite high compared to the observed RMSE values. Be-
sides, in the analysis of statistical values given in Section 5.1, it is seen that there are
many differences and changes between training and test data. This situation causes
some differences between the RMSE values of training and test data. (see Table 5.57
and Table 5.58)

As mentioned in Section 5.2, SRMSE, R2, and EVS values are too close for both the
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Table 5.57: Summary Table for Results (S&P500): Mean Scores for the Train set and
the Test set by Running 1000 Experiments

time RMSE SRMSE MAE MdAE
LSTM (conf. 3) 228m29s
train scores 11.93 0.00 8.06 4.86
test scores 29.06 0.01 23.30 19.93
LSTM+MRA
(conf. 1)

1981m47s

train scores 15.29 0.01 12.29 11.11
test scores 26.91 0.01 22.66 20.36
Hybrid (conf. 2,
by API)

2464m15s

train scores 9.58 0.00 6.29 3.77
test scores 24.04 0.01 18.40 14.48
Hybrid (conf.1) 459m45s
train scores 9.71 0.00 6.37 3.76
test scores 22.82 0.01 17.33 13.74
Hybrid+MRA
(conf. 2, by API)

4318m36s

train scores 7.45 0.00 5.81 4.56
test scores 17.96 0.01 15.18 13.50
Hybrid+MRA
(conf. 1)

2103m30s

train scores 8.04 0.00 6.56 5.46
test scores 17.93 0.01 15.17 13.47
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Table 5.58: Summary Table for Results (NASDAQ): Mean Scores for the Train set
and the Test set by Running 1000 Experiments

time RMSE SRMSE MAE MdAE
LSTM (conf. 3) 286m52s
train scores 36.65 0.00 21.44 11.35
test scores 85.31 0.01 66.58 53.22
LSTM+MRA
(conf. 1)

2008m34s

train scores 33.12 0.00 20.74 11.67
test scores 68.41 0.01 52.67 44.05
Hybrid (conf. 2,
by API)

2379m44s

train scores 30.70 0.00 16.94 8.53
test scores 67.30 0.01 49.41 36.80
Hybrid (conf.1) 391m24s
train scores 30.15 0.00 16.18 7.54
test scores 64.57 0.01 46.77 34.45
Hybrid+MRA
(conf. 2, by API)

4368m23s

train scores 18.59 0.00 11.84 7.23
test scores 41.97 0.01 33.24 27.59
Hybrid+MRA
(conf. 1)

2257m23s

train scores 18.41 0.00 12.02 7.86
test scores 40.62 0.00 32.21 26.91
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training set and the test set, so these metrics are insufficient to make comparisons be-
tween LSTM, LSTM+MRA, hybrid LSTM-Wavenet and hybrid LSTM-Wavenet+MRA
models. On the other hand, ME does not provide an explanatory comparison since it
looks at a single error value. Lastly, MdAE is not entirely useful for financial time
series since it is robust against outliers. However, outliers like big jumps contain
essential information for financial time series.

As a result, RMSE and MAE values of the test results are compared. For both
S&P500 and NASDAQ data, RMSE and MAE test error values of both LSTM and
hybrid LSTM-Wavenet methods decrease when MRA is used. Similarly, if wavelets
are used as an activation function, then RMSE and MAE test error values of both
LSTM and LSTM+MRA methods decrease for both stock data. Altering dilation and
translation parameters gives insufficient results in terms of both computation time and
error scores. Consequently, the best test scores are obtained by the hybrid LSTM-
Wavenet+MRA method with constant dilation and translation parameters for both
S&P500 and NASDAQ data. It is seen that the single use of wavelets in different sub-
jects increases the performance in time series prediction, and even the use of wavelets
for two various approaches (MRA and wavenet) at the same time increases the per-
formance the most.
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CHAPTER 6

CONCLUSION AND OUTLOOK

The hybrid LSTM-Wavenet+MRA method is presented as a proposed approach due
to the motivation of the lack of combining two wavelet methods in the literature.
The proposed method is compared with LSTM, LSTM+MRA, and hybrid LSTM-
Wavenet methods to predict the next moment. S&P500 and NASDAQ global stock
market indexes are selected for the application, where the next step of an index is
essential.

Results emphasize the importance of using wavelets in modeling financial time se-
ries. When it is desired to make a forecast using observed data, it is noticed that
the performance increases significantly. It is seen that the use of the two different
wavelet methods gives the best results and also increases the performances. The tech-
nique that combines the two different wavelet approaches could enable investors to
make better buying and selling decisions. Attention needs to be paid to the theory of
wavelets in terms of both MRA and WNN to improve models in applied fields.

For more improvement, the LSTM method could be combined with other nonlinear
methods (CNN, etc.) with wavelets to predict different types of time series. It should
also be possible to develop a system that makes automatic parameter selection re-
gardless of the kind of time series. Besides, determining the type of wavelets used
as activation functions more smartly might also be analyzed in the parameter choice
point. Specific to financial time series like stock market data, related news, and other
features could also be obtained from different sources and used in the model. En-
suring that the model is correct, the parallel GPU programming, distributed hardware
structure, time reduction optimization, and such issues that are required for a real-time
operation could improve the applicability of the approach.
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APPENDIX A

MODELS OF API STRUCTURES

In the appendix part, API structure models of hybrid LSTM-Wavenet and hybrid
LSTM-Wavenet+MRA approaches, which we mention in Section 5.4 and Section 5.5,
are illustrated for S&P500 and NASDAQ.

Hybrid LSTM-Wavenet models by API structures for S&P500 and NASDAQ are
shown in Figure A.1 and Figure A.2, respectively. Subsequently, in Figure A.3 and
Figure A.4 hybrid LSTM-Wavenet+MRA models by API structures are presented for
each stock market. Each figure shows the right and left parts of the respective model.
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Figure A.1: Hybrid LSTM-Wavenet Model by API Structure, Configuration 2
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Figure A.2: Hybrid LSTM-Wavenet Model by API Structure, Configuration 2 (NAS-
DAQ): Model Structure
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Figure A.3: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration 2
(S&P500): Model Structure of the Approximation
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Figure A.4: Hybrid LSTM-Wavenet Model+MRA by API Structure, Configuration 2
(NASDAQ): Model Structure of the Approximation
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