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ABSTRACT
In this study, a novel donor-acceptor type monomer was designed based on selenophene and
benzotriazole with a bulky pendant group and synthesized through Stille coupling reaction. The
monomer was polymerized electrochemically by using cyclic voltammetry and also chemically by
oxidation in the presence of FeCl3. Both polymers were then compared in terms of their optical
properties, electrochemical and spectroelectrochemical behaviors, kinetic and colorimetric proper-
ties and surface morphologies. Independent of the polymerization method, both electrochemically
(E-PSeBTz) and chemically polymerized (C-PSeBTz) coatings showed quite similar properties. Both
polymers have p-doping character and multichromic properties in their oxidized states. The poly-
mers can be fully switched between their oxidized and neutral states in fairly short times with
acceptable optical contrast at different wavelengths. Both polymers exhibit a kmax of 505nm and
the optical band gaps of the materials were found to be 1.85 eV and 1.80 eV for E-PSeBTz and
C-PSeBTz, respectively.
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1. Introduction

In the past decades tremendous amount of work for the
synthesis, characterization and application of the conducting
polymers has been performed in order to make a collection
of materials with various properties in demand for the
emerging technologies in various fields of science and tech-
nology.[1,2] In order to well-tune the versatile properties of
these conducting polymers, many different techniques have
been applied, including the Donor–Acceptor (D–A)
approach. This approach, also called push–pull method, is
based on alternating electron-rich and electron-deficient
blocks along the polymer backbone and always enables a re-
arrangement of the electron density from D to A. This type
of polymers demonstrate a resonance form between D–A
and Dþ–A� which increases the double bond character of
the single bonds in the polymer backbone, thus affecting the
absorption and the electronic properties.[3,4] Hence, this
powerful method enables the ability to finely tune the
absorption, modulate the molecular energy levels and the
band gap by means of selecting different D–A combina-
tions.[5] The numbers of these combinations could be
enhanced even further by the modification of the backbone,
p-bridge introduction[6–8] and side chain engineering.[9–14]

Electrochromism is an important phenomenon due to the
enormous potential in the rapidly developing area of plastic

electronics for the applications of smart windows, organic
displays, smart papers.[15–17] Competing with the conven-
tional inorganic devices, electrochromic devices based on
electrochromic polymers are likely to be the better alterna-
tives due to their low cost, simple processing, high optical
contrast and flexibility.[18] Generally, electrochromic poly-
mers are redox active materials whose optical properties
undergo a reversible change upon oxidation and/or reduc-
tion. More importantly, some polymers can even have more
than two redox states and generate multiple colors (multi-
electrochromism).[19] Of the conjugated electrochromic pol-
ymers, polythiophene, polypyrrole, polyaniline derivatives
are widely studied.[19,20]

In our group, electrochemical synthesis of benzotriazole
(BTz) and selenophene (Se) bearing D–A type polymers
with linear alkyl chain (PSBT)[21] and branched alkyl chain
(PSBTz)[22] were performed (Figure 1). Both polymers were
found to have promising properties for organic solar cell
and electrochromic device applications. BTz was chosen as
the acceptor due to its well-known hetero-aromaticity and
strong electron transporting and accepting properties thanks
to its two-electron withdrawing imine nitrogens.
Additionally, N–H bond of BTz allows easy incorporation of
a convenient alkyl substituent for solution process ability
and structural modification for the tuning the electronic
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properties.[23] Selenophene, on the other hand, is chosen
due to its strong electron donating capacity and advanced
planarity. In fact, in most cases, Se is chosen as p-bridge
between the donor and the acceptor of the D–A copoly-
mers.[24,25] According to literature, Se bearing polymers
have increased conductivity and enhanced light absorption.
Compared to other chalcogenophene derivatives, seleno-
phene incorporation also lowers the band gap of the poly-
mer since HOMO level was not affected but LUMO level is
noticeably lowered.[26–28]

For this work, we designed another novel D–A type
monomer, based on selenophene and BTz, with a bulky pen-
dant group; (1,3-bis(decyloxy)-5-ethylbenzene) instead of
linear or branched alkyl side chains (Figure 1). The novel
monomer, SeBTz, was synthesized through Stille coupling
reaction and then polymerized electrochemically using cyclic
voltammetry and also chemically using oxidative polymer-
ization in the presence of FeCl3. The electrochemical, spec-
troelectrochemical, colorimetric, kinetic and morphology
properties of the electrochemically polymerized (E-PSeBTz)
and chemically polymerized (C-PSeBTz) coatings were com-
paratively investigated. Additionally, these results were also
compared with that of PSBT and PSBTz. Both PSeBTz poly-
mers were found to be a medium band gap polymer
(<2.0 eV), having p-dopable and multi-electrochromic prop-
erties. Polymers showed switching times in order of couple
seconds and good to acceptable optical contrasts.

2. Experimental

2.1. Materials and equipments

N-butyllithium solution (n-BuLi), potassium carbonate,
1-bromodecane, benzotriazole, bromic acid, acetic acid, tri-o-
tollyphosphine, bis(triphenylphosphine)palladium(II) dichlor-
ide, FeCl3, hydrazine monohydrate THF, DMF, chloroform,
hexane, diethyl ether were purchased from Sigma Aldrich
Chemical Co. Ltd. 1-Bromomethyl-3,5-dimethoxybenzene was
purchased from TCI. Tributyl(selenophen-2-yl)stannane and
4, 7 dibromo-2H-benzo[d[1–3]triazole were synthesized
according to earlier described methods.[29,30] The commodity
chemicals and solvents were used as received and THF was
dried over Na/benzophenone and distilled prior to use.

Moisture sensitive reactions were conducted under argon ath-
mosphere, unless mentioned otherwise. For the purification
of the materials, Merck Silica Gel 60 was used as the station-
ary phase with different corresponding mobile phase solvents
in the column chromatography. 1H and 13C NMR spectra
were recorded on a Bruker Spectrospin Avance DPX-400
Spectrometer with an internal reference of trimethylsilane
(TMS). The chemical shifts were reported in ppm relative to
CDCl3 at 7.26 ppm and 77ppm, and DMSO at 2.54 ppm and
39.52ppm for the 1H and 13C, respectively. Indium tin oxide
(ITO) was used as the working electrode, platinum wire was
used as the counter electrode and Ag wire was used as the
pseudo reference electrode for the electrochemical studies
which were carried out in a three-electrode cell using a
Gamry 600 potentiostat. The spectroelectrochemical studies
were performed by Agilent 8453 UV–Vis spectrophotometer.
Colorimetric measurements of polymer were performed at all
stages of the oxidation process and the colors of the polymers
were identified with using CIE (Commision Internationale de
L’Eclairage) coordinates. CIE coordinate system composes of
three components including luminance (L), hue (a), and sat-
uration (b). Molecular weight of the polymer was measured
by Gel Permeation Chromatography (GPC). The polymer was
dissolved in THF (2mg/mL), stirred for 6 h and filtered
through the 0.2 l filters before running in the universal cali-
brated PL_GPC 220 instrument. HRMS study was done with
a Water SYNAPTM system. Scanning Electron Microscopy
(SEM) (JEOL, Model JSM-6400) was used to investigate the
surface morphology of the monomer and the polymers.

2.2. Synthesis of the monomer

Electron donating selenophene and electron deficient benzo-
triazole units were chosen to build the donor–acceptor type
monomer. Bulky pendant groups were introduced to
enhance the absorption. Additionally, linear alkyl chains
were attached to ensure the solubility. The synthesis of the
monomer was performed via Stille coupling reaction
between 2-(3,5-bis(decyloxy)benzyl)-4,7-dibromo-2H-ben-
zo[d][1–3]triazole and tributyl(selenophen-2-yl)stannane via
the palladium with a yield of 99%. The chemical synthesis
pathway of the monomer is shown in Figure 2.

Figure 1. Chemical structures of the Se and BTz containing polymers, PSBT,[21] PSBTz[22] and PSeBTz (this study).

198 F. DEMIR ET AL.



2.2.1. Synthesis of 4,7-dibromo-2-(3,5-dimethoxybenzyl)-
2H-benzo[d][1–3]triazole (2)

4,7-Dibromo-2H-benzo[d][1–3]triazole (1) was synthesized
according to the previously described method.[30] 4,7-
Dibromo-2H-benzo[d][1–3]triazole (1) (5.00 g, 0,02mol) was
dissolved in dry DMF (15mL) under argon atmosphere at
0 �C and NaH (0.52 g, 0.02mol) was added at that tempera-
ture. The reaction mixture was heated to 60 �C.
1-(Bromomethyl)-3,5-dimethoxybenzene (5.00 g, 0.02mol) was
added and the mixture was refluxed overnight. The product was
extracted with chloroform and the organic phase was washed
with brine and concentrated to obtain the crude product.
Column chromatography (chloroform) gave pure product as a
yellowish white solid (2.83 g, 37% yield). 1H NMR (400MHz,
CDCl3) d 7.74 (s, 2H), 6.6 (d, J¼ 2.2Hz, 2H), 6.41 (t, J¼ 2.2Hz,
1H), 5.85 (s, 2H), 3.77 (s, 6H). 13C NMR (100MHz, CDCl3) d
161.0, 144.0, 135.9, 129.8, 110.1, 106.5, 100.6, 60.9, 55.4. HRMS
(ESI-TOF-MS, m/z) calculated for C15H13Br2N3O2, 427.9432
found 247.9445 (Supporting Information).

2.2.2. Synthesis of 5-((4,7-dibromo-2H-benzo[d][1–3]tria-
zole-2-yl)Methyl)benzene-1,3-diol (3)

4,7-dibromo-2-(3,5-dimethoxybenzyl)-2H-benzo[d][1–3]tria-
zole (2) (2.83 g, 6.63mmol) was dissolved in acetic acid
(125mL). 47% HBr/H2O solution (50mL) was added to the
suspension mixture and heated until clear solution observed
and then refluxed overnight at 120 �C. The reaction was
cooled to room temperature, poured into cold water and the
product was filtered. The filtered material was washed with
water a few times and dried. No further purification was
performed and the product was obtained as gray/brown
solid (2.32 g, 87% yield). 1H NMR (400MHz, DMSO) d 9.45
(s, 2H), 7.70 (s, 2H), 6.25 (d, J¼ 1.9Hz, 2H), 6.19 (t,
J¼ 1.9Hz, 1H), 5.90 (s, 2H). 13C NMR (100MHz, DMSO) d
158.7, 143.2, 136.5, 130.2, 109.43, 106.1, 102.6, 60.3. HRMS

(ESI-TOF-MS, m/z) calculated for C13H9Br2N3O2, 397.8963;
found 397.8989 (Supporting Info)

2.2.3. Synthesis of 2-(3,5-bis(decyloxy)benzyl)-4,7-dibromo-
2H-benzo[d][1–3]triazole (4)

Potassium carbonate (6.59 g, 39.2mmol) and 1-bromodecane
(3.21 g, 14.5mmol) were added into two-necked flask and
dry DMF (8mL) were added under argon atmosphere.
5-((4,7-Dibromo-2H-benzo[d][1–3]triazol-2-yl)methyl)benzene-
1,3-diol (3) (2.32 g, 5.81mmol) was dissolved in another flask
with dry DMF (5mL) under argon atmosphere. Both solu-
tions were degassed by argon for 30min. Solution (3) was
added dropwise to the first solution. When the addition was
completed, the reaction solution was heated to 80 �C and
stirred overnight. After the reaction was complete (TLC), the
solution was poured into large amount of cold water. The
crude product was extracted using diethyl ether and then
washed with brine. Further purification was carried out by col-
umn chromatography on silica gel using chloroform and hex-
ane (3:1) as the eluent to obtain the pure compound as a white
solid (1.78 g, 45% yield). 1H NMR (400MHz, CDCl3) d 7.41
(s, 2H), 6.55 (d, J¼ 1.7Hz, 2H), 6.37 (t, J¼ 2.2Hz, 1H), 5.80
(s, 2H), 3.86 (t, J¼ 6.5Hz, 4H), 1.75–1.65 (m, 4H), 1.44–1.17
(m, 28H), 0.90–0.80 (m, 6H). 13C NMR (100MHz, CDCl3) d
160.6, 144.1, 135.7, 129.7, 110.1, 106.9, 101.5, 67.2, 59.7, 30.9,
28.5, 28.4, 28.3, 28.2, 25.0, 21.7, 13.1. HRMS (ESI-TOF-MS,
m/z) calculated for C33H49Br2N3O2, 680.2249; found 680.2283
(Supporting Info)

2.2.4. Synthesis of the monomer, 2-(3,5-bis(Decyloxy)-
benzyl)-4,7-di(selenophen-2-yl)-2H-benzo[d][1–3]-
triazole (6)

Tributyl(selenophen-2-yl)stannane (5) was synthesized accord-
ing to the previously reported method.[29] Tributyl(selenophen-

Figure 2. Synthetic pathway for the novel monomer, 2-(3,5-bis(decyloxy)benzyl)-4,7-di(selenophen-2-yl)-2H-benzo[d][1–3]triazole (6).
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2-yl)stannane (2.10 g, 4.98mmol) was dissolved in dry THF
(8mL) in a two-necked flask under argon atmosphere. In
another flask, 2-(3,5-bis(decyloxy)benzyl)-4,7-dibromo-2H-ben-
zo[d][1–3]triazole (4) (1.65 g, 2.43mmol) was dissolved with
dry THF (5mL) under argon. Solution (4) was added
into two-necked flask slowly and degassed for 1 h.
Bis(triphenylphosphine) palladium(II) dichloride (85mg,
0.12mmol) and tri-o-tolyphosphine (0.30 g, 0.97mmol) were
added quickly and reaction mixture was refluxed overnight.
After the completion of the reaction, the mixture was cooled to
room temperature and solvent was removed under reduced
pressure. Purification was carried out by column chromatog-
raphy on silica gel using chloroform and hexane (1:1) as the
eluent to obtain the pure compound as orange–yellow liquid
(1.89 g, 99%). 1H NMR (400MHz, CDCl3) d 8.20 (d,
J¼ 3.9Hz, 2H), 8.07 (d, J¼ 5.6Hz, 2H), 7.60 (s, 2H), 7.43–7.38
(m, 2H), 6.65 (d, J¼ 2.1Hz, 2H), 6.40 (t, J¼ 2.1Hz, 1H), 5.87
(s, 2H), 3.91 (t, J¼ 6.6Hz, 4H), 1.78–1.67 (m, 4H), 1.44–1.17
(m, 28H), 0.88 (t, J¼ 6.7Hz, 6H). 13C NMR (100MHz, CDCl3)
d 160.5, 145.1, 142.3, 136.5, 131.4, 130.5, 128.3, 125.6, 123.2,
106.9, 101.4, 67.2, 59.7, 30.9, 28.5, 28.4, 28.3, 28.2, 25.0, 21.7,
13.1. HRMS (ESI-TOF-MS, m/z) calculated for C41H56N3Se2O2,
782.2694; found 782.2703.

3. Results and discussion

3.1. Synthesis of the polymer by electrochemical
polymerization

As schematically presented in Figure 3, electrochemical poly-
merization of the monomer was carried out in the presence
of 0.01 M monomer, 0.1 M TBAPF6 in ACN/DCM (95/5
v/v) in a three-electrode cell equipped with Pt counter elec-
trode and Ag wire pseudo reference electrode. E-PSeBTz
films were coated on an ITO glass by scanning potentio
dynamically wherein the potential was cycled between 0 V
and þ1.4 V with 100mV/s scan rate of 20 cycles. The
coated E-PSeBTz film was washed using ACN to remove
unreacted monomer and excess TBAPF6 after the
electropolymerization.

As seen in Figure 4a, in the first cycle of the electrochem-
ical polymerization, an irreversible oxidation peak emerges
at a potential of (Eoxm) 1.21 V indicating the formation of
a reactive intermediate for the monomer, SeBTz. With the
consecutive cycles (Figure 4b), the peak current increases,
indicating the formation of thin film of PSeBTz on ITO
coated glass slide revealing an oxidation potential of 1.19 V
(Eoxdoping). The oxidation potential of the monomer

Figure 3. Schematic presentation of (a) electrochemical polymerization and (b) chemical polymerization of SeBTz.

Figure 4. Single scan cyclic voltammogram of the monomer, SeBTz (a) and electrochemical synthesis of PSeBTz in 0.1 M TBAPF6/ACN/DCM at a scan rate of
100mV/s for 20 cycles (b). (ITO working electrode versus Ag wire pseudo reference electrode.
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SeBTz was found to be almost the same as the previously
reported SBT[21] and SBTz[22] due to the same main back-
bone of the three monomers.

3.2. Synthesis of the polymer by chemical oxidation

Anhydrous FeCl3 (43.7mg, 269lmol) was taken into the
reaction balloon which was filled with argon and dissolved
in a minimum amount of EtOAc. 2-(3,5-bis(decyloxy)ben-
zyl)-4,7-di(selenophen-2-yl)-2H-benzo[d][1–3]triazole (60mg,
79,94lmol) dissolved in a minimum amount of EtOAc was
prepared in a vial and dropwise introduced to the reaction

balloon under dark environment. The reaction was stirred at
room temperature for 24h. Cold MeOH was added to the
reaction balloon to precipitate all polymers. To eliminate the
excess amount of FeCl3, the polymer was washed with large
amount of MeOH continuously using suction filtration. The
polymer was then taken into a balloon and 5% hydrazine
monohydrate solution was introduced and stirred for 30min
in order to stop the polymerization. Then, chloroform and
hydrazine monohydrate were removed under reduced vac-
uum. The polymer was precipitated with MeOH, filtrated by
suction filtration and washed with MeOH and acetone
respectively until no color change was observed. After dried

Figure 5. Single scan cyclic voltammogram in a monomer-free 0.1 M TBAPF6/ACN at a scan rate of 100mV/s for PseBTz synthesized (a) electrochemically and
(b) chemically.

Figure 6. Normalized electronic absorption spectra of the (a) electrochemically and (b) chemically synthesized polymer in 0.1M TBAPF6/ACN solution.

Table 1. Summary of electrochemical and spectroelectrochemical properties of PSBT,[21] PSBTz[22] and PSeBTz (this work) synthesized both electrochemical and
chemical methods.

Polymer
Eoxm
(V)

Eoxdoping
(V)

Eoxde-doping
(V)

Ereddoping
(V)

Eredde-doping
(V)

Eoxonset
(V)

HOMO
(eV)

LUMO�
(eV)

kmax-onset

(nm)
kmax

(nm)
Eg

op

(eV)
Doping
nature

PSBT 1.20 1.00 0.80 �1.70 �1.30 n.a n.a n.a 743 511 1.67 p/n-dopable
PSBTz 1.18 1.22 1.00 – – 1.13 �5.88 �4.06 682 527 1.82 p-dopable
E-PSeBTz 1.21 1.19 1.05 – – 0.77 �5.52 �3.60 672 505 1.85 p-dopable
C-PSeBTz – 1.27 0.81 – – 0.69 �5.44 �3.57 689 505 1.80 p-dopable
�LUMO energy level was calculated from optical data.
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under hot vacuum to remove the solvents, pure polymers of
about 24.4mg were finally collected with a yield of about
40%. GPC: number average molecular weight (Mn): 5980,
molecular average molecular weight (Mw): 8641, polydisper-
sity index (PDI): 1.4. 1H NMR (400MHz, CDCl3) d 8.2–6.3
(br, aromatic protons), 6.0–5.5 (br, �N-CH2), 4.1–3.5 (br,
�O-CH2), 2.0–1.0 (br, �CH2), 1.0–0.7 (br, �CH3).

3.3. Electrochemical properties of the polymers

As shown in Figure 5, both E-PSeBTz and C-PSeBTz have
only p-doping property with a reversible redox couple at
1.19V/1.05 V and 1.27V/0.81 V, respectively. It is worth to
note that, p-doping property means that the positive charges
are formed on the polymer backbone upon oxidation, bal-
anced by the negatively charged counter ions. These positive
charges can easily migrate throughout the polymer backbone
and to nearby chains being responsible for conductivity of
the doped polymer.[31] The HOMO energy level of the

Figure 7. Colors with the L, a, and b values of the electrochemically and chem-
ically synthesized polymers at given potentials.

Figure 8. Percent transmittance change monitored at maximum wavelengths of the electrochemically synthesized polymer (top) and chemically synthesized
polymer (bottom) in 0.1 M TBAPF6/ACN electrolyte solution.

Table 2. Optical contrast and switching times of PSBT[21], PSBTz[22] and
E-PSeBTz and C-PSeBTz from this work.

Optical contrast (DT%)

Switching times (s)Wavelength (nm) % Transmittance

PSBT (2008) 1200 56 0.4
511 32 2.4

PSBTz (2014) 1220 40 1.5
860 16 4.2

E-PSeBTz this work 505 23 2.2
990 35 1.3

C-PSeBTz this work 505 9 1.7
995 44 1.4
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polymers were estimated as �5.52 eV and �5.44 eV for E-
PSeBTz and C-PSeBTz, respectively using the onset of the
corresponding oxidation (Eoxonset) 0.77V and 0.69V by cal-
culating the energy levels based on to the vacuum level from
the given equation HOMO¼ �(4.75þ Eoxonset) (eV).

3.4. Spectroelectrochemical properties of the polymers

In order to investigate the spectroelectrochemical properties
of the electrochemically and chemically synthesized polymer
films, UV–Vis spectra were performed in a monomer free
solution at different potentials sequentially to observe the
changes in absorbance as the polymer film was oxidized in
stepwise manner. Figure 6 reveals the spectroelectrochemis-
try of the electrochemically and chemically prepared films at
neutral state and doped states. E-PSeBTz and C-PSeBTz
films revealed similar absorption spectra for both neutral
and oxidized states. Maximum absorption peak of the neu-
tral PSeBTz films corresponding to distinctive p–p� transi-
tion were observed at 505 nm.

The band gaps of E-PSeBTz and C-PSeBTz were calcu-
lated as 1.85 eV and 1.80 eV, respectively from the onset of
the p–p� transition for the neutral films (Eg

op¼ 1241/øonset).
As polymer films do not show any n-doping character, the
LUMO energy level could not be calculated from the cyclic
voltammogram. Instead, they were estimated using the
optical band gap value (Eg

el¼ jHOMO-LUMOj) to be
�3.60 eV and �3.57 eV for E-PSeBTz and C-PSeBTz,
respectively. All corresponding data were summarized in
Table 1. The band gap of both E-PSeBTz and C-PSeBTz
were found to be higher than those of PSBT (1.67 eV) and
PSBTz (1.82 eV). Such an increase might be explained by
relatively shorter polymer chains and depressed conjugation
caused by the steric hindrance due to the comparatively
bulky alkyl chain of PSeBTz films.

Upon increasing oxidation of E-PSeBTz film, the absorb-
ance transitions corresponding to the p–p� transitions of
around 500 nm decreased in intensity and typical evolution
of peaks around 1000 nm generated corresponding to polar-
onic and bipolaronic bands due to the formation of free
charge carriers. Similarly for C-PSeBTz film, increased oxi-
dation decreased the intensity of absorption transitions at
400 nm and 500 nm for p–p� transitions and increased that
of polaron–bipolaron bands at 1000 nm.

3.5. Colorimetric properties of the polymers

Colorimetry measurements of the polymer films were per-
formed at all stages of the oxidation processes and the cor-
responding colors were identified as L, a, b values. Polymers
displayed red and orange colors in their neutral states and
multi-chromism (green, gray, and bluish gray for E-PSeBTz)
(light and dark green for C-PSeBTz) in different oxidized
states as summarized in Figure 7. It is worth to compare the
colors of the polymers with different side chains. PSBT with
linear alkyl chain were reported to be purple in its neutral
state while in its oxidized states blue color with green inter-
mediates was observed.[21] PSBTz with the branched alkyl
chain, on the other hand, displayed red purple color in its
neutral state and transmissive blue in its oxidized state.[22]

Such differences show that side chain engineering is crucial
in terms of their effect on the electrochromic properties of
the resulting polymers with the same conjugated main chain.

3.6. Kinetic properties of the polymers

C-PSeBTz showed 9% transmittance change at 505 nm and
44% at 995 nm (Figure 8). Switching times were recorded as
2.2 s and 1.3 s for E-PSeBTz and 1.7 s and 1.4 s for C-
PSeBTz for the corresponding wavelengths, as summarized
and compared with PSBT,[21] and PSBTz[22] (Table 2).

3.7. Morphological properties of the polymers

The surface morphological properties of the monomer
(SeBTz) and the electrochemically (E-PSeBTz) and chem-
ically (C-PSeBTz) synthesized polymers were investigated
using SEM. The surface morphologies are quite different
among each other (Figure 9). The monomer surface seems
to have filament like hairy, E-PSeBTz has cauliflower like
structure while C-PSeBTz has compact, uniform and
smooth surface.

4. Conclusion

A novel monomer, consisting of selenophene and benzotria-
zole with a bulky pendant group, was designed using D–A
approach, synthesized through Stille coupling and polymer-
ized both electrochemically and chemically. Optical proper-
ties, electrochemical and spectroelectrochemical behaviors,

Figure 9. SEM images of (a) monomer SeBTz, (b) electrochemically synthesized (E-PSeBTz) and (c) chemically synthesized (C-PSeBTz).
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kinetic and colorimetric properties and surface morphologies
of E-PSeBTz and C-PSeBTz were investigated and com-
pared. The electrochemical and optical studies revealed that
both polymer films have p-doping character, can be revers-
ibly oxidized and reduced, displays red color in their neutral
states and multichromic properties in their oxidized states.
Additionally, the polymers have considerably short switching
times and moderate contrast ratios. Both polymers can be
regarded as medium band gap polymers with band gaps less
than 2.0V. These results show that PSeBTz and its deriva-
tives can be satisfactory candidates for many research fields
including organic solar cell applications and electrochromic
devices. Besides, in order to tune these properties, many
other potential acceptor units can be introduced to the
monomer structure. Also the monomer can be used as a
co-monomer for the synthesis of copolymers with better
properties. Within our ongoing project studies, we are cur-
rently studying on a series of D–A type copolymers contain-
ing of SeBTz and benzodithiophene derivatives for organic
solar cell studies.
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