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Abstract The magnetic dipole moments of the D2, and
DS2 ,B2, andBS2 heavy tensor mesons are estimated in frame-
work of the light cone QCD sum rules. It is observed that the
magnetic dipole moments for the charged mesons are larger
than that of its neutral counterpart. It is found that the SU (3)

flavor symmetry violation is about 10 % in both b and c sec-
tors.

1 Introduction

Recent years were quite productive in field of the parti-
cle spectroscopy. Many charmonium and bottomonium like
states are observed by BaBar, Belle, LHCb and BES III col-
laborations [1]. These progresses in experiments stimulated
further theoretical studies and experimental investigations on
this subject [2–6]. Considerable progress has also been made
on spectroscopy of the conventional heavy mesons states con-
taining single charm and bottom quarks such as DsI (2700),
D∗

sJ (2860), DsJ (3040), DJ (2580), DJ (2740), D∗
J (2760),

DJ (3000), D∗
J (3000), B1(5721), B∗

2(5747), Bs1(5830), B∗
s2

(5840), B(5970), etc [7]. Soon after D0 Collaboration
observed the B1(5721) and B2(5747) states [8], which were
both confirmed by the CDF Collaboration [9]. The CDF
Collaboration further observed the Bs1(5830) and B∗

s2
(5840)

states [10] which in turn confirmed by the D0 Collaboration
[11]. Moreover, the masses of the Bs1(5830) and B∗

s2
(5840)

states were determined more accurately by the LHCb Col-
laboration [12].

The masses and decay constants of the heavy tensor meson
D∗

2(2740) and D∗
s2

(2573) states were first studied within
the framework of the QCD sum rules method in [13–15].
These mesons, as well as the B∗

2(5747) and B∗
s2

(5840) tensor
mesons have recently been studied within the same approach
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in [15]. Note that light tensor mesons without, and with
strange quark have also been analyzed in framework of the
QCD sum rules method in [16,17], respectively.

One of the most promising approaches in investigating the
properties of mesons and hadrons is the study of the electro-
magnetic form factors and multipole moments. These studies
can provide useful information about their internal structures.
The electromagnetic properties of usual mesons, as well as
photons and neutrons have comprehensively been studied
from theoretical and experimental sides, and at present it is
the subject of the growing interest from both sides. How-
ever the study of the electromagnetic properties of the tensor
mesons has received less interest, and therefore more effort is
needed in this respect. The magnetic moments of the light ten-
sor mesons were investigated in framework of the light cone
QCD sum rules method (LCSR) in [18]. In the present work
we calculate the magnetic dipole moments of the recently
discovered heavy tensor mesons in LCSR.

The paper is organized as follows. In Sect. 2, the light
cone QCD sum rules are constructed for the magnetic dipole
moments of the heavy tensor mesons. In Sect. 3, the numer-
ical analysis is performed for the obtained sum rules.

2 Theoretical framework

Before presenting the light cone sum rules for the magnetic
dipole moments of the heavy tensor mesons, let us first intro-
duce the matrix element which corresponds to the transition
of the heavy tensor meson with momentum p + q to the
heavy tensor meson with momentum p in presence of the
electromagnetic field, i.e.,

〈TQ(p, ε)| j elρ |TQ(p + q, ε)〉

= ε∗
ξσ (p)

{
2pρ

[
gξλgστ F1(Q

2) − gστ qξqλ

2m2
TQ

F3(Q
2)

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-015-3761-6&domain=pdf
mailto:taliev@metu.edu.tr
mailto:tbarakat@KSU.EDU.SA
mailto:savci@metu.edu.tr


524 Page 2 of 8 Eur. Phys. J. C (2015) 75 :524

+ qξqλ

2m2
TQ

qσqτ

2m2
TQ

F5(Q
2)

]

+(gρσqτ − gρτqσ )

[
gξλF2(Q

2) − qξqλ

2m2
TQ

F4(Q
2)

]}

ελτ (p + q), (1)

where Fi (Q2) are the form factors, and TQ(p, ε) means
heavy tensor meson with momentum p and polarization ten-
sor εαβ . Since we are interested with the magnetic dipole
moments of heavy tensor mesons, the values of the form fac-
tors at Q2 = −q2 = 0 need to be calculated. The transition
under consideration can be described by the following cor-
relation function,


μνραβ(p, q)

= −
∫

d4x
∫

d4yei(px+qy)〈0|T { jμν(0) j elρ (y) j̄αβ(x)}|0〉,
(2)

where jμν is the interpolating current of the heavy tensor
meson, and j elρ is the electromagnetic current given as,

j elρ = eq q̄γρq + eQ Q̄γρQ,

with the electric charges eq and eQ of the light and heavy
quarks, respectively. The coupling of the tensor meson cur-
rent jμν to the tensor state is defined as,

〈0| jμν |TQ(p, ε)〉 = m3
TQ gTQεμν, (3)

where mTQ is the mass, and gTQ is the coupling constant of
the tensor meson.

It is more convenient to rewrite the correlator (2) by intro-
ducing the electromagnetic background field strength tensor

Fμν = i(qμεν − qνεμ)eiqx ,

of the plane wave, in the following form


μνραβ ερ = i
∫

d4xeipx 〈0|T { jμν(x) j̄αβ(0)|0〉F , (4)

where F means that all vacuum expectation values are cal-
culated in the background electromagnetic field. The corre-
lation function (2) can be obtained by expanding the corre-
lation function (4) in powers of the background field, and
taking into account the terms that are linear in Fμν which
corresponds to the single photon radiation. The advantage of
using the background field is that it separates the hard and
soft photon radiation in an explicitly gauge invariant way (for
more about the details of the background field method, see
[19,20]).

After these preliminary remarks, we can now proceed
deriving the light cone QCD sum rules for the magnetic
dipole moments of the heavy tensor mesons.

These sum rules can be obtained by calculating the cor-
relator function in terms of mesons (physical part) from one

side; and calculating the same correlation function in terms of
quark-gluon degrees of freedom by using the operator prod-
uct expansion (OPE) in deep Eucledian region from theo-
retical side. Matching these two representations of the same
correlation function, the sum rules for the magnetic dipole
moments of the heavy tensor mesons are obtained.

Calculation of the correlation function from the physical
side is performed by inserting the complete set of tensor
meson states having the same quantum number as that of the
interpolating current, and isolating he ground state, as the
result of which we get,


μνραβ ερ = iερ 〈0| jμν |TQ(p, ε)〉
p2 − m2

TQ

〈TQ(p, ε)| j elρ |TQ(p + q, ε)〉 〈TQ(p + q, ε)| j†
αβ |0〉

(p + q)2 − m2
TQ

+ · · · ,

(5)

where dots mean the contribution of the higher states and
continuum.

From experimental point of view the multipole form fac-
tors are more useful than the form factors given in Eq. (1).
The relations between the two sets of the form factors for any
arbitrary q2 are derived in [21]. For the real photon (q2 = 0)

these relations are given as:

F1(0) = GE0(0),

F2(0) = GM1(0),

F3(0) = −2GE0(0) + GE2(0) + GM1(0),

F4(0) = −GM1(0) + GM3(0),

F5(0) = GE0(0) − [GE2(0) + GM1(0)]
+GE4(0) + GM3(0), (6)

where GE

(0) and GM


(0) are the electric and magnetic mul-
tipoles.

Calculation of the correlator function from the physical
side is performed by inserting the complete set of tensor
meson states in Eqs. (1–4), from which for the hadronic part
we get,


μνραβ(p, q) ερ =
m6

TQ
g2
TQ

(p2 − m2
TQ

)
[
(p + q)2 − m2

TQ

]
×εμν(p)ε

∗
ξσ (p)

{
2(p · ε)

[
gξλgστ F1(Q

2)

−gστ qξqλ

2m2
TQ

F3(Q
2) + qξqλ

2m2
TQ

qσqτ

2m2
TQ

F5(Q
2)

]

+(εσqτ − ετqσ )

[
gξλF2(Q

2) − qξqλ

2m2
TQ

F4(Q
2)

]}

×ελτ (p + q)ε∗
αβ(p + q). (7)

123
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Summation over the polarizations of the heavy tensor mesons
can be performed by using the relation,

ε∗
ρσ (p)ελτ (p) = 1

2
Pρλ(p)Pστ (p)

+1

2
Pρτ (p)Pσλ(p) − 1

3
Pρσ (p)Pλτ (p), (8)

where

Pρλ(p) =
(

−gρλ + pρ pλ

m2
TQ

)
.

Using Eqs. (6) and (8) in Eq. (7), for the physical part of the
correlation function we get,


μνραβ(p, q) ερ =
m6
TQ

g2
TQ

(p2 − m2
TQ

)[(p + q)2 − m2
TQ

]

×
{

1

2
Pμξ (p)Pνσ (p) + 1

2
Pμσ (p)Pνξ (p) − 1

3
Pμν(p)Pξσ (p)

}

×
{

2(p · ε)

[
gξλgστGE0 (0) − gστ qξqλ

2m2
TQ

×
(

− 2GE0 (0) + GE2 (0) + GM1(0)
)

+ qξqλ

2m2
TQ

qσ qτ

2m2
TQ

(
GE0 (0) − [GE2 (0) + GM2 (0)]

+GE4 (0) + GM3(0)
)]

+ (εσ qτ − ετ qσ )

×
[
gξλGM1(0) − qξqλ

2m2
TQ

(
− GM1(0) + GM2 (0)

)]}

×
{

1

2
Pλα(p + q)Pτβ(p + q) + 1

2
Pλβ(p + q)Pατ (p + q)

−1

3
Pλτ (p)Pαβ(p + q)

}
. (9)

It follows from Eq. (9) that the correlation function

μνραβ ερ contains various independent structures, each of
which can be used in determination of the multipole moments
of heavy tensor mesons. In the present work we restrict our-
selves to the calculation of the magnetic dipole momentGM1 ,
and for this goal we choose the structure (εβqν − ενqβ)gμα .
This structure has advantage over the others since it does
not contain contributions coming from the contact terms (for
more detail about the contact terms, see for example [22]).
As the result we get the following sum rules for the magnetic
dipole moment of the heavy tensor mesons,


μνραβ ερ = gμα(εβqν − ενqβ)
m6
TQ

g2
TQ

(p2 − m2
TQ

)[(p + q)2 − m2
TQ

]
1

4

[
GM1 + other structures

]
. (10)

Denoting the coefficient of the (εβqν−ενqβ)gμα structure as
the invariant function 
, we get the following final result for
the physical part of the correlator function for the magnetic
dipole moment GM1 ,


 =
m6

TQ
g2
TQ

(p2 − m2
TQ

)
[
(p + q)2 − m2

TQ

] 1

4
GM1 . (11)

In order to construct the corresponding sum rules the cor-
relation function 
μνραβ ερ needs to be calculated from the
QCD side in terms of quark and gluon degrees of freedom
using the operator product expansion, for which we need the
interpolating current jμν . The interpolating current for the
ground state heavy tensor meson with the quantum numbers
2+ can be chosen as,

jμν = i

2

[
q̄(x)

(
γμ

↔
Dν +γν

↔
Dμ

)
Q(x)

]
, (12)

where q and Q denote the light and heavy quark fields, and

the derivative operator
↔
Dμ with respect to xμ can be written

as,

↔
Dμ (x) = 1

2

[ →
Dμ (x)− ←

Dμ (x)
]
,

which acts on the right and left sides, and the covariant deriva-
tives in it are defined as

→
Dμ (x) =→

∂ μ (x) − i
g

2
λa Aa

μ(x),

←
Dμ (x) =←

∂ μ (x) + i
g

2
λa Aa

μ(x),
(13)

where λa are the Gell–Mann matrices, and Aa
μ(x) is the

gluon field. In the present work we use the Fock–Schwinger
gauge in which the external field Aa

μ(x) satisfies the condi-
tion xμAa

μ(x) = 0.
The correlation function is calculated from the QCD side

in deep Eucledian region p2 → −∞, and (p + q)2 → −∞
after contracting the corresponding heavy and light quark
fields, as a result of which we get,


μνραβ ερ = −i

16

∫
eip·x e−i(p+q)·yd4x〈

0
∣∣∣{Sq(y − x)γμ

[ →
∂ ν (x)

→
∂ β (y)− →

∂ ν (x)
←
∂ β (y)

− ←
∂ ν (x)

→
∂ β (y)+ ←

∂ ν (x)
←
∂ β (y)

]
SQ(x − y)γα

}
+{β ↔ α} + {ν ↔ μ} + {β ↔ α, ν ↔ μ}| 0 〉F , (14)

where we set y = 0 after performing derivative with respect
to y.

We see from Eq. (14) that, the expressions of the propa-
gators of the light and heavy quarks are needed in order to
calculate the correlation function. The light quark propagator

123
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in presence of the external field is calculated in [23], whose
expression is given as:

Sq(x − y) = S f ree
q (x − y) − 〈q̄q〉

12

[
1 − i

mq

4
( 	 x− 	 y)

]

+ (x − y)2

192
m2

0〈q̄q〉
[

1 − i
mq

6
( 	 x− 	 y)

]

−igs

∫ 1

0
du

{ 	 x− 	 y
16π2(x − y)2 Gμν(u(x − y))σμν

−u(xμ − yμ)Gμν(u(x − y))γ ν

× i

4π2(x − y)2 − i
mq

32π2 Gμν(u(x − y))σμν

×
[

ln

(
− (x − y)2�2

u
+ 2γE

)]}
, (15)

where � is the scale parameter separating the perturbative
and nonperturbative domains. This parameter is estimated in
[24] to have the value � = (0.5÷1.0) GeV; and Sfree(x− y)
is the free quark operator whose expression is given as:

Sfree
q (x − y) = i( 	 x− 	 y)

2π2(x − y)4 − mq

4π2(x − y)2 . (16)

The propagator for the heavy quark have the following
form in coordinate space:

SQ(x − y) = S f ree
Q − gs

16π2

∫ 1

0
duGμν(u(x − y))

×
(
i[σμν( 	 x− 	 y) + ( 	 x− 	 y)σμν]

×K1(mQ

√−(x − y)2)√−(x − y)2

+2σμνK0(mQ

√
−(x − y)2)

)}
+ · · · , (17)

where Ki (mQ
√−x2) are the modified Bessel functions, and

Sfree
Q =

m2
Q

4π2

×
{
K1(mQ

√
−(x − y)2)√

−(x − y)2
+ i

( 	 x− 	 y)
−(x − y)2 K2(mQ

√
−(x − y)2)

}
.

Few words about the expression of the quark propagator are
in order. The complete light cone expansion of the light quark
propagator in presence of the external field is calculated in
[23], which includes the contributions coming from nonlocal
three q̄Gq, and four-particle q̄qq̄q, q̄G2q operators. Using
the expansion in conformal spin, one can show that afore-
mentioned contributions are small (for more detail see [25]),
therefore we shall neglect them in further analysis.

There are three type of contributions to the correlation
function: (1) perturbative part, when photon interacts per-
turbatively with the quark propagator (light or heavy). (2)
“Mixed” contributions, which take place when heavy quark

propagator interacts with the photon field perturbatively, and
light quark fields form quark condensate. (3) “Long distance”
contribution. It takes place when photon is radiated at long
distance.

The perturbative contribution is calculated from Eq. (14)
by replacing heavy or light propagator with,

Sabμν(x − y) → −1

4
q̄a(x)�ρq

b(y)(�ρ)μν, (18)

where �ρ are the full set of Dirac matrices. As has already
been noted, when a photon interacts with the light quark
fields matrix elements of the nonlocal operators such as
q̄(x)�q(y) and q̄(x)Gμν�q(y) appear between vacuum and
photon states. These matrix elements are parametrized in
terms of the photon distribution amplitudes (DAs), which are
the key nonperturbative parameters in light cone sum rules,
whose explicit expressions are given below,

〈γ (q)|q̄(x)σμνq(0)|0〉 = −ieq 〈q̄q〉(εμqν − ενqμ)

×
∫ 1

0
dueiūqx

(
χϕγ (u) + x2

16
A(u)

)

− i

2(qx)
eq 〈q̄q〉

[
xν(εμ − qμ

εx

qx
) − xμ

(
εν − qν

εx

qx

)]

×
∫ 1

0
dueiūqx hγ (u)

×〈γ (q)|q̄(x)γμq(0)|0〉

= eq f3γ

(
εμ − qμ

εx

qx

)∫ 1

0
dueiūqxψv(u)

×〈γ (q)|q̄(x)γμγ5q(0)|0〉

= − 1

4
eq f3γ εμναβενqαxβ

∫ 1

0
dueiūqxψa(u)

×〈γ (q)|q̄(x)gsGμν(vx)q(0)|0〉
= −ieq 〈q̄q〉(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxS(αi )

×〈γ (q)|q̄(x)gs G̃μν iγ5(vx)q(0)|0〉
= −ieq 〈q̄q〉(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qx S̃(αi )

×〈γ (q)|q̄(x)gs G̃μν(vx)γαγ5q(0)|0〉
= eq f3γ qα(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxA(αi )

×〈γ (q)|q̄(x)gsGμν(vx)iγαq(0)|0〉
= eq f3γ qα(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxV(αi )

×〈γ (q)|q̄(x)σαβgsGμν(vx)q(0)|0〉
= eq 〈q̄q〉

{[
(εμ − qμ

εx

qx
)

(
gαν − 1

qx
(qαxν + qν xα)

)
qβ

−
(

εμ − qμ
εx

qx

)(
gβν − 1

qx
(qβ xν + qν xβ)

)
qα

−
(

εν − qν
εx

qx

)(
gαμ − 1

qx
(qαxμ + qμxα)

)
qβ

+
(

εν − qν
εx

q.x

)(
gβμ − 1

qx
(qβ xμ + qμxβ)

)
qα

]

×
∫

Dαi e
i(αq̄+vαg)qxT1(αi )

+
[(

εα − qα
εx

qx

)(
gμβ − 1

qx
(qμxβ + qβ xμ)

)
qν

123
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−
(

εα − qα
εx

qx

)(
gνβ − 1

qx
(qν xβ + qβ xν)

)
qμ

−
(

εβ − qβ
εx

qx

)(
gμα − 1

qx
(qμxα + qαxμ)

)
qν

+
(

εβ − qβ
εx

qx

)(
gνα − 1

qx
(qν xα + qαxν)

)
qμ

]

×
∫

Dαi e
i(αq̄+vαg)qxT2(αi )

+ 1

qx
(qμxν − qν xμ)(εαqβ − εβqα)

∫
Dαi e

i(αq̄+vαg)qxT3(αi )

+ 1

qx
(qαxβ − qβ xα)(εμqν − ενqμ)

∫
Dαi e

i(αq̄+vαg)qxT4(αi )

}
,

(19)

where ϕγ (u) is the leading twist-2, ψv(u), ψa(u), A and V
are the twist-3, and hγ (u), A, Ti (i = 1, 2, 3, 4) are the
twist-4 photon DAs, and χ is the magnetic susceptibility. The
photon DAs are calculated in [20] and their explicit expres-
sions are given in Appendix A. The measure Dαi is defined
as∫

Dαi =
∫ 1

0
dαq̄

∫ 1

0
dαq

∫ 1

0
dαgδ(1 − αq̄ − αq − αg).

Separating out the coefficient of the structure (εβqν −
ενqβ)gμα from the QCD and the phenomenological parts
of the correlation function and equating them, we get the
magnetic moments of the heavy tensor mesons. In order to
suppress the contributions of the higher states and continuum,
we apply double Borel transformation with respect to the
variables p2 and (p+q)2. As the result of these calculations
we obtain the following sum rules for the magnetic dipole
moment of the heavy tensor mesons,

m6
TQ

g2
TQ

4
e
−m2

TQ
/M2

GM1 (q
2 = 0)

= − 1

1152π2

[
eu〈g2

s G
2〉M2

(
−2m2

bI2 + m4
bI3

) ]

− e−m2
b/M

2

3456mbπ2 M
2
{

9mb

(
eu〈g2

s G
2〉 + 96ebmbπ

2〈ūu〉
)

+4euπ
2
[
18m2

b〈ūu〉 (A(u0) + 2 j̃1(hγ ) + 4 j̃2(hγ )
)

+〈g2
s G

2〉〈ūu〉χϕγ (u0) + 36 f3γm
3
bψ

a(u0)
]}

+ 1

32π2 ebm
4
bM

4
(
I2 − m2

bI3

)
+ e−m2

b/M
2

96
euM

4

×
{

8 f3γ j̃1(ψ
v) + 8mb〈ūu〉χϕγ (u0)

− f3γ

[
6ψa(u0) − 4ψv(u0) + ψa′(u0)

]}
+ e−m2

b/M
2

16π2 euM
6

− 1

32π2 m
2
bM

6

×
[

− 2ebI2 + 3ebm
2
bI3 + 4ebm

4
bI4 + 2eum

4
bI4 + 2(eb − eu)m

6
bI5

]

+ e−m2
b/M

2

6912M2 mb

{
432ebm

2
0m

2
b〈ūu〉 + eu〈g2

s G
2〉

×
[

− 4〈ūu〉A(u0) + 4(5 − 4u)〈ūu〉 j̃1(hγ )

+40〈ūu〉 j̃2(hγ ) + mb

(
− 8mb〈ūu〉χϕγ (u0) + f3γ (−8 j̃1(ψ

v)

+6ψa(u0) − 4ψv(u0) + ψa′(u0))
)]}

+ e−m2
b/M

2

3456M4 eu〈g2
s G

2〉m3
b

×
[
〈ūu〉

(
A(u0) + 2 j̃1(hγ ) + 4 j̃2(hγ )

)
+ 2 f3γmbψ

a(u0)
]

+ e−m2
b/M

2

3456M6 eu〈g2
s G

2〉m5
b〈ūu〉A(u0)

+ e−m2
b/M

2

3456mbπ2 eu
{

4(〈g2
s G

2〉 − 18m4
b)π

2〈ūu〉A(u0)

+〈g2
s G

2〉
[

− 3m3
b + π2

(
4(2 + u)〈ūu〉 j̃1(hγ )

+16〈ūu〉 j̃2(hγ ) + mb
{−12mb〈ūu〉χϕγ (u0)

+ f3γ

[−12 j̃1(ψ
v) − 2ψa(u0) + (−2 + u)(4ψv(u0) − ψa′(u0))

]} )]}
,

(20)

where

u0 = M2
1

M2
1 + M2

2

, M2 = M2
1 M

2
2

M2
1 + M2

2

.

The functions in (n = 1, 2), and j̃1( f (u)) are defined as:

j̃1( f (u)) =
∫ 1

u0

du f (u),

j̃2( f (u)) =
∫ 1

u0

du(u − u0) f (u),

In =
∫ s0

m2
b

ds
e−s/M2

sn
,

where s0 is the continuum threshold.
Since we have the same heavy tensor mesons in the initial

and final states, we can set M2
1 = M2

2 = 2M2, as the result
of which we have,

u0 = M2
1

(M2
1 + M2

2 )
= 1

2
.

Physically this means that each quark and antiquark carries
the half the photon momentum.

3 Numerical analysis

This section is devoted to the numerical analysis of the sum
rules for the magnetic dipole moments of the heavy ten-
sor mesons obtained in the previous section. The values of
the input parameters entering into sum rules are, 〈ūu〉(μ =
1 GeV) = 〈d̄d〉(μ = 1 GeV) = −(0.243)3 GeV3,
|
μ=1 GeV = (0.8 ± 0.2)〈ūu〉(μ = 1 GeV), m2

0 = (0.8 ±
0.2) GeV2 which are obtained from the mass sum rule anal-
ysis for the light baryons [26,27], and B, B∗ mesons [28].
For the heavy quark masses we have used their MS val-
ues, which are given as: m̄b(m̄b) = (4.16 ± 0.03) GeV
and m̄c(m̄c) = (1.28 ± 0.03) GeV [29–35]. The magnetic
susceptibility of quarks was estimated in [36–38] in frame-
work of the QCD sum rules. As we have noted earlier, the
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residues and masses of the heavy tensor mesons were calcu-
lated within the QCD sum rules method in [13–15], and their
values are gD2 = 0.0228 ± 0.0068, gDS2

= 0.023 ± 0.011,
gB2 = 0.0050 ± 0.0005, gBS2

= 0.0060 ± 0.0005.
Having decided the values of the input parameters, we

are ready now to perform numerical analysis of the sum
rules for the magnetic dipole moment of the heavy tensor
mesons.The sum rule contains two unphysical parameters:
a) The Borel mass parameter M2, and continuum threshold
s0. It is known that the physical results should be indepen-
dent of the these parameters. Therefore, our primary goal is
to find such domain of these parameters for which the mag-
netic dipole moment is practically independent of them. The
“working region” of M2 is determined as follows: The upper
bound of M2 can be found by requiring that the contributions
coming from higher states constitutes about 40 % of the per-
turbative part. The lower bound of M2 could be fixed by
demanding that the higher twist contributions are less than
that of the leading twist contributions. In other words, the
light cone expansion with increasing twist should be conver-
gent. These requirements leads us to the following domains
for the Borel mass parameter:

2.0 GeV2 ≤ M2 ≤ 4.0 GeV2, for D2 and DS2 mesons,

4.5 GeV2 ≤ M2 ≤ 7.0 GeV2, for B2 and Bs2 mesons.

The second parameter entering to the sum rules is the
continuum threshold s0. Generally speaking, this parameter
is not arbitrary and it is related to the energy of the first excited
state. The energy necessary for the transition of the meson
from ground state to first excited state is

√
s0 −mground. This

difference varies, usually, from 0.3 to 0.8 GeV, where in our
numerical analysis we have used their average value, i.e.,√
s0 − mground = 0.5 GeV.
In Figs. 1, 2 and 3 we present the dependence of the mag-

netic dipole moments of D+
2 , D0

2 and DS2 tensor mesons on
M2, at various fixed values of the continuum threshold. From
these figures we get the following results,

GM1(q
2 = 0) =

⎧⎨
⎩

0.75 ± 0.25, for D0
2

−2.10 ± 0.20, for D−
2

−2.20 ± 0.20, for D−
S2

in units of e/2mTQ .
Similar analysis performed for heavy tensor mesons con-

taining b-quark, whose results are presented in Figs. 4, 5 and
6, respectively. From the analysis of these figures we obtain,

GM1(q
2 = 0) =

⎧⎨
⎩

3.8 ± 0.7, for B+
2

−1.3 ± 0.3, for B0
2

−1.4 ± 0.3, for B0
S2

in units of e/2mTQ .
In conclusion, The magnetic dipole moments of the heavy

tensor mesons are calculated in framework of the light cone

s0 = 9.5 GeV 2
s0 = 9.0 GeV 2

M 2 (GeV 2)

G
D
0 2

M
1(
e/
2m

D
0 2
)

4.03.53.02.52.0

1.25

1.00

0.75

0.50

0.25

0.00

Fig. 1 The dependence of the magnetic dipole moment of the D0
2

tensor meson on M2, at two fixed values of s0 = 9.0 GeV2, and
s0 = 9.5 GeV2

s0 = 9.5 GeV 2
s0 = 9.0 GeV 2

M 2 (GeV 2)

G
D
− 2

M
1
(e
/2
m

D
− 2
)

4.03.53.02.52.0

-1.6

-1.8

-2.0

-2.2

-2.4

Fig. 2 The same as Fig. 1, but for the D−
2 tensor meson

s0 = 9.5 GeV 2
s0 = 9.0 GeV 2

M 2 (GeV 2)

G
D
− S
2

M
1
(e
/2
m

D
− S
2
)

4.03.53.02.52.0

-1.6

-1.8

-2.0

-2.2

-2.4

Fig. 3 The same as Fig. 1, but for the D−
S2

tensor meson

QCD sum rules. It is observed that the magnetic moments of
the charged tensor mesons are larger compared to the neutral
ones. The SU (3) symmetry breaking in heavy tensor mesons
containing beauty quarks is about 10 %, while in the charmed
meson sector it is quite large.
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s0 = 40.0 GeV 2
s0 = 37.5 GeV 2

G
B+ 2
M

1(
e/
2 m

B+ 2
)

6.56.05.55.04.5

5.0

4.5

4.0

3.5

3.0

2.5

Fig. 4 The same as Fig. 1, but for the B+
2 tensor meson, at two fixed

values of s0 = 37.5 GeV2, and s0 = 40.0 GeV2

s0 = 40.0 GeV 2
s0 = 37.5 GeV 2

G
B0 2
M

1(
e/
2m

B0 2
)

6.56.05.55.04.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

Fig. 5 The same as Fig. 4, but for the B0
2 tensor meson

s0 = 40.0 GeV 2
s0 = 37.5 GeV 2

G
B0 S

2
M

1
(e
/2
m

B0 S
2
)

6.56.05.55.04.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

Fig. 6 The same as Fig. 4, but for the B0
s2

tensor meson
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Appendix A: Photon distribution amplitudes

Explicit forms of the photon DAs [20]:

ϕγ (u) = 6uū
[
1 + ϕ2(μ)C

3
2
2 (u − ū)

]
,

ψv(u) = 3[3(2u − 1)2 − 1]
+ 3

64
(15wV

γ − 5wA
γ )[3 − 30(2u − 1)2

+35(2u − 1)4],
ψa(u) = [1 − (2u − 1)2][5(2u − 1)2 − 1]

×5

2

(
1 + 9

16
wV

γ − 3

16
wA

γ

)
,

A(αi ) = 360αqαq̄α
2
g

[
1 + wA

γ

1

2
(7αg − 3)

]
,

V(αi ) = 540wV
γ (αq − αq̄)αqαq̄α

2
g,

hγ (u) = −10(1 + 2κ+)C
1
2
2 (u − ū),

A(u) = 40u2ū2(3κ − κ+ + 1)

+8(ζ+
2 − 3ζ2)[uū(2 + 13uū)

+2u3(10 − 15u + 6u2) ln(u)

+2ū3(10 − 15ū + 6ū2) ln(ū)],
T1(αi ) = −120(3ζ2 + ζ+

2 )(αq̄ − αq)αq̄αqαg,

T2(αi ) = 30α2
g(αq̄ − αq)[(κ − κ+)

+(ζ1 − ζ+
1 )(1 − 2αg) + ζ2(3 − 4αg)],

T3(αi ) = −120(3ζ2 − ζ+
2 )(αq̄ − αq)αq̄αqαg,

T4(αi ) = 30α2
g(αq̄ − αq)[(κ + κ+)

+(ζ1 + ζ+
1 )(1 − 2αg) + ζ2(3 − 4αg)],

S(αi ) = 30α2
g{(κ + κ+)(1 − αg)

+(ζ1 + ζ+
1 )(1 − αg)(1 − 2αg)

+ζ2[3(αq̄ − αq)
2 − αg(1 − αg)]},

S̃(αi ) = −30α2
g{(κ − κ+)(1 − αg)

+(ζ1 − ζ+
1 )(1 − αg)(1 − 2αg)

+ζ2[3(αq̄ − αq)
2 − αg(1 − αg)]}.

The parameters entering the above DA’s are borrowed from
[20] whose values are ϕ2(1 GeV) = 0, wV

γ = 3.8 ± 1.8,

wA
γ = −2.1 ± 1.0, κ = 0.2, κ+ = 0, ζ1 = 0.4, ζ2 = 0.3,

ζ+
1 = 0, and ζ+

2 = 0.
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