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Abstract—Spring Loaded Inverted Pendulum (SLIP) model has
a long history in describing running behavior in animals and
humans as well as has been used as a design basis for robots
capable of dynamic locomotion. Anchoring the SLIP for lossy
physical systems resulted in newer models which are extended
versions of original SLIP with viscous damping in the leg.
However, such lossy models require an additional mechanism
for pumping energy to the system to control the locomotion
and to reach a limit–cycle. Some studies solved this problem
by adding an actively controllable torque actuation at the hip
joint and this actuation has been successively used in many
robotic platforms, such as the popular RHex robot. However,
hip torque actuation produces forces on the COM dominantly at
forward direction with respect to ground, making height control
challenging especially at slow speeds. The situation becomes more
severe when the horizontal speed of the robot reaches zero,
i.e. steady hoping without moving in horizontal direction, and
the system reaches to singularity in which vertical degrees of
freedom is completely lost. To this end, we propose an extension
of the lossy SLIP model with a slider–crank mechanism, SLIP–
SCM, that can generate a stable limit-cycle when the body is
constrained to vertical direction. We propose an approximate
analytical solution to the nonlinear system dynamics of SLIP–
SCM model to characterize its behavior during the locomotion.
Finally, we perform a fixed-point stability analysis on SLIP–SCM
model using our approximate analytical solution and show that
proposed model exhibits stable behavior in our range of interest.

I. INTRODUCTION

The advantages and efficiency of legged morphologies over
wheeled and tracked ones on rough terrain is a widely accepted
hypothesis among the researchers. The main reason behind this
claim is that the legged morphologies are capable of choosing
the optimum footholds on the rough terrain, while the wheeled
(or tracked) platforms face with the worst case scenario most
of the times [1]. Therefore, designing and constructing legged
robots that can negotiate different ground profiles received
considerable attention among the robotics researchers [2], [3].

One of the most remarkable studies in the area of legged
locomotion is that simple spring–mass models, such as the
Spring-Loaded Inverted Pendulum (SLIP) model [4], can cap-
ture COM trajectories of different running animals of varying
sizes and morphologies as well as legged robot platforms.
However, anchoring the SLIP model for lossy physical robot

*Marked authors contributed equally.

platforms requires some extensions on the original template
such as addition of viscous damping in the leg [5]–[7].

The main challenge associated with lossy models is the
necessity of an additional input to compensate for energy
losses of the damping element in the leg in order to sustain
a limit cycle. Some studies on one-legged robot platforms
running in planar direction use hip torque actuation to inject
energy to the system [8], [9]. However, such actuation methods
are infeasible when the horizontal speed of the COM is
small and can not even satisfy a rhythmic hopping when the
locomotion is constrained to the vertical direction. An ad-hoc
solution for this problem is to use linear actuators in series
with the compliant leg to supply additional energy to the
system [10], [11]. However, it requires extensive mechanical
revisions on the robot platforms and has a non-negligible effect
on system dynamics even if the motor is in the idle mode.

Motivated by the problems in the area, we propose an exten-
sion to the lossy SLIP model, when the motion is constrained
to vertical direction, with a slider–crank mechanism for energy
regulation. Fundamentally, a slider–crank mechanism converts
rotary motion to translational motion. Its simple structure
allows use of this mechanism for various applications, since
the first working examples dated back to as early as 3rd

century [12]. In modern times this mechanism is utilized
for various objectives such as micro/nano robotic applications
[13]–[15] and biomedical engineering [16], [17].

Actually, our goal is to develop an energetically conservative
model for the one-legged hopping robot platform built in
our laboratory [18] and apply it on this robot by physically
constructing the slider–crank mechanism. The use of slider–
crank mechanism in legged locomotion applications is also
studied before [19], [20]. In [19], a slider–crank mechanism
consisting of an electromagnetic clutch and a passive trigger
with elastic stopper is constructed. Hence, required amount of
energy by connecting and disconnecting the clutch repetitively
is transferred to the system although motor works contin-
uously. On the other hand, [20] implements a bio-inspired
control strategy called ‘active energy removal (AER)’ by using
a slider–crank mechanism in order to regulate for energy
variations due to the terrain variations. Distinctively, we aim
to obtain an analytical solution for the system dynamics of the
proposed model and investigate the stability properties.978-1-4673-7509-2/15/$31.00 c©2015 IEEE
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Despite their simple nature, the stance dynamics of the
spring–mass models are non-integrable during the stance phase
for planar locomotion [21]. Addition of a slider–crank mech-
anism brings additional dynamics to the original model and
makes the solutions more complex than already they are.
Therefore, we propose an approximate analytical solution for
the SLIP–SCM model to represent its COM trajectories for a
single stride. Approximate analytical solutions have also been
frequently used in literature to solve non-integrable legged
locomotion trajectories [6], [22]–[24] with some has been
verified in experimental robot platforms [7].

In this paper, we are particularly interested in extending
the lossy SLIP model with a slider–crank mechanism in
order to obtain an energetically conservative model, meaning
that it can inject or remove energy energy from the system.
Section II details the SLIP–SCM model and its dynamics.
Section III explains the the proposed approximate analytical
solution as well as the performed simulation studies to assess
its prediction performance. Finally, Section IV introduces the
dead-beat controller designed to regulate system response and
our fixed-point stability analysis.

II. VERTICAL SLIP MODEL WITH SLIDER–CRANK
MECHANISM (SLIP–SCM)

A. SLIP–SCM Model

The hopper robot, we consider is simply modeled with a
point mass, m, attached to a massless compliant leg. The leg
consists of a linear spring having a compliance, k, and viscous
damping, d, and connected to robot body through the links of
the slider–crank mechanism as illustrated in Fig. 1. Notation
used throughout the paper is given in Table I.

Note that presence of damping in the system results in
energy loss, since the initial energy will be exhausted after a
certain number of hops. Therefore an additional energy input
is required to maintain steady hopping at a desired level. To
accomplish this, we use a slider–crank mechanism between the
robot body and the leg spring to supply the required energy at
each stride by compressing the leg spring to store additional
energy in order to compensate damping losses. Similarly,
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Fig. 1. Schematic of the SLIP–SCM Model (l1: crank arm length, l2:
connecting rod length, d̄: effective damping coefficient, θ: angle between the
body and the crank arm)

TABLE I
NOTATION USED THROUGHOUT THE PAPER

Extended SLIP-SCM Parameters
y, ẏ Vertical position & velocity
k, d Linear spring compliance & Viscous damping
l0 Spring rest length
m Body mass

Return Maps
f Numerical solution
f̂ Approximate analytical solution
† Note that subscripts represent the system parameters at critical times such as
ytd, yb, and ylo represent the leg position at touchdown, bottom and liftoff
events, respectively.

linear actuators are also used for energy regulation purposes
in vertical hopping robot models [10], [11].

The SLIP–SCM model has hybrid system dynamics (as
the standard SLIP model [4]); consisting of flight and stance
phases of locomotion. The flight phase corresponds to duration
when the robot follows a ballistic trajectory during the flight,
whereas the stance phase corresponds to duration when the
robot is in contact with the ground. The transitions between
these phases are determined by touchdown and liftoff events,
whose details are illustrated in Fig. 1.

Being a one-dimensional system, state of SLIP–SCM model
can be defined as Z := [y ẏ]. Then, apex point is defined as
the highest point during the flight phase for each stride and
associated state for the kth stride is defined as

Zk := [ya 0] . (1)

The apex states are critical points for our system, since we
discretize the continuous locomotion around these states and
design our controllers to regulate system behavior around these
points as in most literature studies [6], [9], [25].

Although we only control the system response at apex states,
we need to characterize the continuous locomotion in order to
predict the next apex state. Considering the system dynamics,
apex to apex return map of the SLIP–SCM model can be
formulated as

Zk+1 = f(Zk, u) := f tda ◦ f btd ◦ f lob ◦ falo(Zk), (2)

where f tda , f btd, f lob and falo corresponds to descent, com-
pression, decompression and ascent phases of locomotion,
respectively. The control input, u, will be applied during the
compression phase via changing the crank angle to bring
additional compression in the leg spring.

B. System Dynamics

The dynamics of the hybrid SLIP–SCM model is investi-
gated considering the flight and stance phases of locomotion.
Assuming the links in the slider–crank mechanism are locked
to keep crank angles fixed during the flight phase, system
dynamics of the point mass can be written as free fall dynamics
under gravity as

ÿ = −g. (3)



The dynamics of the stance phase is more complex than
the flight phase, since both slider–crank and spring–mass
dynamics effects the point mass during its locomotion. In
order to simplify our analysis, we approach the robot leg
as a combination of a compliant leg and a slider–crank
mechanism. Therefore, we first assume the links of the slider–
crank mechanism are massless as in the standard SLIP model
[4]. Then, we redefine the leg damping as d̄ between the
point mass and the toe of the leg as illustrated in Fig. 1 to
model energy losses due to slider–crank actuation during the
compression and decompression phases. Similar leg damping
definitions are also used in literature to support analytical
tractability of the dynamic equations [10].

Based on the aforementioned assumptions, the stance dy-
namics of the SLIP–SCM model can now be written as

ÿ = −g − k

m
(y − l0 − l1 cos(θ)− l2 cos(α))− d̄

m
ẏ, (4)

where α = sin−1 ((l1/l2) sin θ) and represents the angle
between the crank arm and the connecting rod.

Note that the crank angle θ varies during the stance phase,
since its angular position is determined by a DC motor rotating
slider–crank links. The additional compression starts with an
initial crank angle, θ1, and continues to compress the leg spring
until it reaches the desired crank angle, θ2, or the bottom
event. Therefore, the crank angle for the stance phase can be
formulated as

θ(t) =

{
ωt+ θ1, if 0 ≤ t < t∗

θ2, if t∗ ≤ t ≤ tlo
(5)

for the cases when the crank angle reaches the desired angle
θ2 at time t∗. An alternative formulation can be given as

θ(t) =

{
ωt+ θ1, if 0 ≤ t < tb

ωtb + θ1, if tb ≤ t ≤ tlo
(6)

for the cases when compression duration is not sufficient for
the DC motor to reach the desired crank angle.

III. AN APPROXIMATE ANALYTIC SOLUTION TO
SLIP–SCM STANCE DYNAMICS

In this section, we aim to obtain position and velocity
trajectories of the SLIP–SCM model for the stance phase.
Therefore, we propose an approximate analytical solution to
overcome the issues of nonlinearity in the system dynamics.

A. An Approximate Analytical Solution to Stance Equations

Our solution for (4) begins with a simple assumption
that our additional compression on leg is instantaneous. This
approximation helps us to simplify our stance equations by
removing the additional terms coming from (5) and (6).
Physically, this corresponds to a DC motor with a high velocity
to adjust crank instantly to the desired angle, θ2.

In order to further simplify our equations we define a
distance vector, r, between the point mass and the leg such
that ri := l1 cos(θi) + l2 cos(αi), i = 1, 2. Then, the control
action becomes instantaneous change of the distance vector

from r1 to r2 at the beginning of the compression phase. The
approximated stance equations now take the form

ÿ = −g − k

m
(y − l0 − r2)− d̄

m
ẏ. (7)

The approximated form of the stance equations in (7) re-
sembles an ordinary second order differential equation, whose
exact analytic solution is possible. For the present study, we
will use the method of undetermined coefficients to solve for
position and velocity trajectories during the stance phase.

In order to ensure liftoff from the ground and enable a
hybrid locomotion, the system must be under-damped. Thus,
we first assume that d̄2 − 4mk < 0 and define the damping
ratio, ξ := d̄/(2

√
mk), the natural frequency of the system,

w0 :=
√
k/m, the damped frequency, wd := w0

√
1− ξ2 and

the forcing term, F := −g+kl0/m+kr2/m to solve for (7).
The solutions for position and velocity trajectories now take
form with the new system parameters

y(t) = e−ξw0t (A1 cos(wdt) +A2 sin(wdt)) + F/w0, (8)
ẏ(t) = e−ξw0t (B1 cos(wdt) +B2 sin(wdt)) . (9)

plugging the initial conditions at touchdown state yields the
coefficients as

A1 = ytd − F/w2
0, A2 = (ẏtd + ξw0A)/wd,

B1 = −A1(ξw0 + wd), B2 = A2(wd − ξw0).

For a full characterization, we also solve for time of critical
events in an approximate analytical nature. Section III-B de-
tails our approximate analytical solution, f̂ , for touchdown and
liftoff times during a single stride. Combining the complete
apex to apex return map as in (2), we obtain an analytical pre-
dictors for the position and velocity trajectories of the SLIP–
SCM model for a single stride. Fig. 2 illustrates a comparative
study where we illustrate the prediction performance of f̂ with
respect to the numeric solution of the system dynamics in (4).
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Fig. 2. Comparison of a single stride locomotion between approximate
analytical solution and numeric integration of SLIP-SCM dynamics.



B. Evaluation of Critical Times

In this section, we try to find an analytical solution (at least
an approximate one) for the critical times on the stance phase
which are touchdown time, ttd, when the hybrid dynamics
switches to stance phase, the bottom time, tb, when we stop
applying additional compression on the leg spring if it didn’t
already reach the desired value, and the liftoff time, tlo, which
determines the end of the stance phase.

Since the model follows a ballistic trajectory during descent
phase, the solution for ttd is pretty straightforward and can be
computed as

ttd =
√

2(y0 − r1 − l0)/g, (10)

The second critical time we want to identify is the bottom
time, which corresponds to time instant when the maximal leg
compression occurs, ẏ = 0. Fortunately, an analytical solution
is available for the bottom time when we use (9) to solve for
tb when ẏ(tb) = 0. The solution for tb can be simply found
via trigonometric equalities as

tb = tan−1
(
A2wd −A1ξw0

A1wd +A2ξw0

)
/wd. (11)

Note that solution of (11) generates infinitely many time values
but we use the one that lies between ttd and tlo.

We complete our discussion by finding an approximate
solution for the liftoff time, which can be determined by
equating the net force acting on the leg to zero as

h(t) := k(y(t)− l0 − r2) + dẏ(t) = 0. (12)

However an exact solution for tlo is not possible due to
the damping in the leg, since presence of damping yields
multiple conditions for liftoff event [6]. Therefore, we utilize
a simple approximation strategy to estimate damping time
by using famous Newton–Raphson method. Although it is an
iterative numerical method, we only use the first iteration as an
approximation solution by choosing t0lo = 2tb as initial guess.
Then, solution for liftoff time can be computed as

tlo = t0lo − h(t0lo) / ḣ(t0lo). (13)

C. Assessing Predictive Performance

Although Fig. 2 yields promising results about the perfor-
mance of f̂ , we need to assess its predictive performance
for a wide range of initial condition, ya, and control input,
θ2. We choose the initial condition (apex height) for our
simulation studies in the range [lrest, 2lrest], where lrest
represents the rest length of the robot when the slider–crank
system completely stretches as lrest = 0.4 m. This choice is
based on both biological observations and physical limitations
of the robot platforms, since exceeding this threshold results in
huge initial energy. For θ2, we benefit from simulation studies
to ensure a stable fixed point for the initial condition range.
Our manual calibration tests result in control input in the range
[15o, 45o]. Both the initial condition and control input ranges
as well as system parameters used for our simulation studies

TABLE II
INITIAL CONDITION RANGES AND SIMULATION PARAMETERS

ya θ2 k d̄ m l0 l1, l2
(m) (o) (N/m) (Ns/m) (kg) (m) (m)

[0.4, 0.8] [15o, 45o] 2500 10 3 0.2 0.1

are given in Table II. The robot parameters are chosen to be
consistent with our one-legged hopping robot platform [7].

Our goal is to evaluate the prediction performance of f̂ with
respect to numerical solution, f . To accomplish this, we first
define two error metrics Eap and Elv as

Eap := 100× |ya − ŷa|
ya

, Elv := 100× |ylo − ŷlo|
ylo

(14)

where Eap and Elv correspond to percentage prediction errors
for apex position and liftoff velocity, respectively. Note that
we compare liftoff velocity, since the vertical velocity of the
apex state will be zero by definition.

Considering the simulation parameter ranges listed in Ta-
ble II and error metrics defined in (14), we performed exten-
sive simulation studies to assess prediction performance of f̂
by running 10000 unique tests (100×100 tests in both ranges).
The resulting error across all experiments are computed as

Eap = 1.31± 1.05, Elv = 1.93± 1.44 (15)

Although these errors are relatively high as compared to simi-
lar approximate analytical solutions in literature [6], [22]–[24],
they can be easily compensated with adaptive controllers such
as the one proposed in [25]. Additionally, we use deadbeat
controllers to regulate system output as will be explained in
Section IV-A, which results in very low steady state tracking
errors with respect to our prediction errors.

Finally, we project our prediction results onto θ2 in order
to investigate the effect of our control action on the mean
prediction error. Fig. 3 illustrates prediction error vs. the
control input with mean and standard deviations as error bars.

Our results show that there is an increasing trend in mean
prediction error for both position and velocity variables as
θ2 decreases. This information is useful to design optimal
controllers to reduce prediction errors for some applications.
More importantly, the behavior in Fig. 3 can be divided into
two classes, since prediction error has a rapid jump when
θ2 < 32o. This difference occurs based on the sufficiency of
DC motor speed to reach desired angular position, θ2. The

Fig. 3. Percentage position and velocity prediction errors vs. θ2.
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white region corresponds to the case when the DC motor
reaches θ2 during the compression phase as in (5) and the
shadowed region represents the part when the DC motor
cannot reach θ2 during the compression as in (6). Using a
better actuator will definitely enlarge the white region in Fig. 3,
however, it may not be realistic for physical applications. Our
goal here is to present a possible problem that is highly likely
to be faced when using slider–crank mechanisms for energy
injection in legged locomotion models.

IV. DEAD-BEAT CONTROLLER AND STABILITY ANALYSIS

A. Dead-Beat Controller

Our goal in this section is to design a closed-loop con-
troller for the SLIP–SCM model to regulate its output during
the locomotion. Therefore, we propose a dead-beat control
strategy to control the apex heights of the SLIP–SCM model
for each stride. Our motivation here is to utilize f̂ instead of
numerically solving actual system dynamics in (4).

Fig. 4 illustrates the block diagram of the proposed dead-
beat control strategy for SLIP–SCM model. The simulation-
based SLIP–SCM plant uses the original, nonlinear system
dynamics in (4) to simulate locomotion. However, the dead-
beat controller block uses f̂ to generate control inputs, θ∗2 .

The goal of the controller block is to find optimum control
input, θ∗2 , such that y∗a, y

n+1
a by using θ∗2 = f̂−1(y∗a, y

n+1
a ) as

illustrated in Fig. 4. However, f̂ does not provide an inverse
solution of the system, therefore, the dead-beat controller is
implemented in the form of an optimization problem as

θ∗2 = arg min
θ2

|f̂(yn+1
a , θ2)− y∗a|. (16)

In order to assess the performance of the dead-beat con-
troller for different apex states, we perform a sinusoidal path
tracking test for SLIP–SCM model. Fig. 5 shows both the de-
sired sinusoidal path and the output of the dead-beat controller.
Note that system output converges to desired sinusoidal path
with a mean percentage prediction error 9.5× 10−3.
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Fig. 5. Apex tracking performance of sinusoidal reference trajectory.

B. Stability Analysis

Although the dead-beat controller explained in Section IV-A
allows us to regulate the outputs of the SLIP–SCM model,
a fixed-point stability analysis is required for a full charac-
terization of the system. To accomplish this, we investigate
fixed-point stability analysis of the system for both the control
input, θ2, and the apex height, ya. Note that both of these
stability investigations require to find a fixed point of the
system to check system stability around it. Then, stability can
be deduced by differentiating f̂ with respect to either θ2 or ya
and checking if the eigenvalues of the Jacobian matrix is inside
the unit disk or not. As SLIP–SCM model is a one-dimensional
system, we perform a numeric differentiation for our parameter
ranges defined in Table II to simplify our derivations.

We first perform fixed-point stability analysis for different
control inputs, θ2 on f̂ . In order to accomplish this, we first
find the initial apex heights yielding fixed-points for each θ2
in our range of interest as ya = f̂(ya, θ2). Note that it is
not possible to find fixed-points after a certain degree, since
the energy supplied by the controller will not be sufficient
to compensate for damping losses and hence will result in a
lower apex height. Fig. 6 (A) shows the apex heights yielding
fixed-points for each control input, θ2. We then perturb θ2 and
find the perturbed response as ỹa = f̂(ya, θ2+∆θ2). Then the
eigenvalue for each control input is computed as

λ = | ỹa − ya | / ∆θ2. (17)

Fig. 6 (B) shows the eigenvalues of f̂ with respect to θ2. Our
system shows stable behavior in our range of interest, since
the eigenvalue stays inside the unit disk when we change θ2.

Finally, we perform fixed-point stability analysis for dif-
ferent apex heights. Thus, we perturb initial apex height as
ỹa = f̂(ya + ∆ya, θ2) and compute the eigenvalue for fixed
control inputs. Fig. 7 shows that eigenvalues stay well inside
the unit disk (stable response) for our range of interest. We
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also present a comparison of eigenvalues obtained via both
our approximate solution and the numeric integration.

V. CONCLUSION

In this paper, we presented an extension to lossy Spring-
Loaded Inverted Pendulum (SLIP) model with a slider–crank
mechanism (SLIP–SCM) to obtain an energetically conserva-
tive model. The slider–crank mechanism is used to supply ad-
ditional energy input to our vertically constrained locomotion
model during the compression phase by supporting additional
compression and hence energy storage on the spring. This
additional energy is used to compensate for energy losses due
to the damping element in the leg.

Despite their simple nature, the legged locomotion models
have non-integrable system dynamics hindering exact analyti-
cal solutions to their equations of motion. Addition of slider–
crank mechanism to the system aggravates this problem and
requires approximations and assumptions on system character-
istics to obtain analytical solutions to system dynamics. Thus,
we proposed an approximate analytical solution to SLIP–SCM
system dynamics and derived the center of mass trajectories of
the system for a single stride. Our extensive simulation studies
showed that proposed approximate solution is successful in
predicting the system response, since the mean prediction error
for both position and velocity trajectories stay well below 2%.

Finally, we performed a fixed-point stability analysis of the
SLIP–SCM model by considering the variations in both the
control input and the initial conditions. Our stability analysis
showed that SLIP–SCM model, together with our approximate
analytical solutions to its dynamics, exhibits a stable behavior
in our desired range of interest.
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[18] İ. Uyanık, “Adaptive control of a one-legged hopping robot through dy-
namically embedded spring-loaded inverted pendulum template,” M.Sc.,
Bilkent Univ., Ankara, Turkey, August 2011.

[19] D. Chang, J. Kim, D. Choi, K.-J. Cho, T. Seo, and J. Kim, “Design of
a slider-crank leg mechanism for mobile hopping robotic platforms,” J.
Mech. Sci. Technol., vol. 27, no. 1, pp. 207–214, 2013.

[20] B. Andrews, B. Miller, J. Schmitt, and J. E. Clark, “Running over
unknown rough terrain with a one-legged planar robot,” Bioinspir.
Biomim., vol. 6, no. 2, p. 026009, 2011.
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