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Several segmentation methods are implemented and applied to segment the facial masseter tissue from magnetic resonance images.
The common idea for all methods is to take advantage of prior information from different MR images belonging to different
individuals in segmentation of a test MR image. Standard atlas-based segmentation methods and probabilistic segmentation
methods based on Markov random field use labeled prior information. In this study, a new approach is also proposed where
unlabeled prior information from a set of MR images is used to segment masseter tissue in a probabilistic framework. The proposed
method uses only a seed point that indicates the target tissue and performs automatic segmentation for the selected tissue without
using labeled training set. The segmentation results of all methods are validated and compared where the influences of labeled or
unlabeled prior information and initialization are discussed particularly. It is shown that if appropriate modeling is done, there is
no need for labeled prior information. The best accuracy is obtained by the proposed approach where unlabeled prior information

is used.

1. Introduction

Recent advances in medical imaging have enabled the deriva-
tion of useful information about different body parts and tis-
sues. Two major imaging modalities, computed tomography
(CT) and magnetic resonance imaging (MRI), are commonly
used as sources to extract anatomical structures. Despite the
fact that CT is preferred for hard tissues, such as bone, MR
images are commonly used for evaluating the presence and
extent of the soft tissue volumes such as brain and heart.

Nowadays, doctors and clinical specialists take the advan-
tage of imaging modalities in gathering anatomical informa-
tion about a patient and are able to use this information in
diagnosis and prognosis. The further step is to involve artifi-
cial intelligence to automate this diagnosis/prognosis process
for segmenting target tissues.

Currently, most of the automatic soft tissue segmentation
methods in the literature consider tissues like brain, heart,
and lung as target tissues and there are very few works about
facial soft tissue (FST) (e.g., facial muscles) segmentation.
Considering the key role of the face in human life and the

huge increase in craniofacial surgeries around the world,
FST segmentation has become more important in recent
days. Planning before a facial surgery by performing the
modifications virtually prior to the actual operation [1] is very
important to increase the overall success of the actual oper-
ation. In addition, for patients seeking surgical treatment,
it would be very beneficial to have a means to predict the
postsurgical appearance of their face. For this to be done, the
first step is to obtain an anatomic model of the patient’s face.
Such a complicated computer model should include seg-
mented hard (i.e., skull) and soft tissues (i.e., muscles, skin,
and fat). Besides, each FST (e.g., a muscle) should also be seg-
mented from the others when the operation has an effect on
such a tissue.

Soft tissue segmentation is very complicated due to the
fact that soft tissues do not have a constant shape. Moreover,
segmentation becomes more complicated when the soft
tissues interfere with each other and this is always the case
for FSTs. To solve these problems, prior information is com-
monly used in a different manner to improve the segmen-
tation quality.



By prior information, we mean the knowledge that we
took from a set of individual MRI scans which can be consid-
ered as the training set and used to determine prior shapes
and locations of the target tissues. This is quite like the
method when a specialist doctor extracts the target tissue in a
new image based on his/her past experience of viewing thou-
sands of similar images. The standard method is to manually
label the training data and construct an atlas from it [2].
Then, the labeled atlas is registered to the test MRI set and the
labeling is applied to the test set based on the transformation
in the registration process. The atlas can also be used as the
prior labeling information in a Markov random field (MRF)
statistical model to optimize the segmentation [3].

Currently, these methods have been used for soft tissues
other than FST in the literature. We implemented representa-
tive examples of the methods in the literature and compared
them for the purpose of segmentation of masseter muscle.

Moreover, we proposed a new segmentation approach,
which requires very little user interaction. Instead of man-
ually labeled atlases, unlabeled training images are used as
hidden atlases for the purpose of evaluating the effect of
unlabeled prior information. The main reason in using the
unlabeled prior information is that manual labeling of tens
of medical image data sets is a very complicated and time
consuming task and is prone to error.

In our previous work [4], we introduced a new neighbor-
ing model that takes advantage of unlabeled prior informa-
tion presented as registered training images. We used a mod-
ified region growing algorithm to perform the segmentation
for masseter tissue. In the current study, we aim to use the
same neighborhood idea in a newly proposed probabilistic
framework.

The unlabeled prior knowledge was used in our MRF
structure and we tried to optimize the segmentation results
iteratively by using expectation maximization (EM) algo-
rithm. Finally, we compared our method using unlabeled
prior information with the previously mentioned methods
using labeled prior information and evaluate the advantages
and disadvantages of all methods.

2. Literature Survey

2.1. Soft Tissue Segmentation. Although there are plenty
of methods that perform soft tissue segmentation in the
literature, facial soft tissue (FST) segmentation has received
relatively little attention. Considering the visualization simi-
larities between FST and other soft tissues like brain, the seg-
mentation process can be the same theoretically. But due to
different characteristics of these tissues, such as more compli-
cated and interfered structure of FSTs than other soft tissues,
more precise and powerful segmentation methods are needed
for FST segmentation.

Facial soft tissues are usually small and surrounded with
other tissues that share the same intensity values [5]. Different
but neighboring tissues are interfering with each other in
some cases that make tissue detection a hard work even
for a specialist doctor. Other than that, unlike other tissues
like brain that have a specific shape model, FSTs do not have
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a specific shape but they may have different shapes in different
individuals. All these difficulties make the segmentation pro-
cess nearly impossible and thus the requirement of additional
information is inevitable. In this chapter, we will discuss soft
tissue segmentation studies that are related to our work.

Purely intensity-based segmentation and classification
methods assign a label to each pixel in the image and require
only the intensity information that is generated by the MR
imaging device. However, in medical image segmentation,
different anatomical structures may have the same intensity
values or intensity distributions that cannot be distinguished
from each other. In such cases, extra information should be
considered and included in the segmentation process. Spatial
information like neighborhood relationships between pixels
can be very useful in segmenting individual tissues. In addi-
tion to geometrical constraints, relationships between several
different but similar data sets can also be considered. The
additional data that is used in a segmentation process is called
the prior information. Soft tissue segmentation methods usu-
ally use prior information in a different manner to improve
the segmentation accuracy. The prior information is included
mostly in the form of single or multiple atlases. An atlas can
be presented as a single manually segmented data (2D image
or 3D voxel volume or 2D/3D sequences) or can be formed
from multiple manually segmented data [2]. For example, 70
infant brain MRI [6], 275 brain dataset [7], and 14 cardiac
image sequences [8] were used to construct atlases.

As the number of atlases fused increases, the average seg-
mentation accuracy increases [9]. Fusion of a large number
of atlases is more likely to create a smooth estimate of the
structure. However, construction of multiatlas is very hard
because it requires manual segmentation on tens of data. In
addition to that, increased computational cost of registering
large numbers of atlases to the query image is an immediate
practical problem. There are some solutions proposed for
this problem in the literature. In [10], adaptive multiatlas is
proposed where local atlas-based operations are performed.
The proposed algorithm automatically selects the most
appropriate atlases for a target image and automatically stops
registering atlases when no further improvement is expected.
In [11], an appropriate atlas is selected based on the scale
resemblance of the atlas and the query data.

Atlases should be registered to the query data before the
segmentation process. Segmentations in atlases are trans-
formed to the query data and subsequently fused or com-
bined. One way of atlas-based segmentation is to transform
the atlas segments to the test data by using nearest-neighbor
interpolation so that each atlas provides a discrete labeling for
each voxel. The final label can then be decided by “majority
vote” [12]. Nonrigid registration is also used for segmentation
purposes in [13], where atlas is used as a guide to perform
population segmentation through population deformable
registration. The atlas is registered to all of the test sets and
the sets are deformed toward the atlas to achieve population
segmentation.

Another method to incorporate the atlas in the segmenta-
tion process is to use MRF (Markov random field) or HMRF
(hidden Markov random field) models. MRF models are
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commonly used for unsupervised segmentation of medical
data since smoothness constraint can easily be incorporated
to the model by neighboring relations among the pixels to
be segmented. The first studies of brain segmentation use the
basic HMRF formulation where smoothness is defined based
on the resemblance of the neighbors [14, 15]. Then iterative
methods like ICM (iterated conditional model) are used to
find the most probable labeling. In soft tissue segmentation,
standard MRF modeling may not be applied directly since the
parameters of the model need to be tuned for each new image.
To improve standard MRF models, segmentation and regis-
tration are joined in [15]. This method aims to improve seg-
mentation and registration accuracy by incorporating regis-
tered MRI sets in a combined MRF model and estimating the
labels in a registration criterion. It is shown that by using this
combination, the computational cost of registration is re-
duced and there is a sizable improvement in segmentation of
human brain and mouse heart. However, this method needs
the initial prior models to be set precisely.

In [16], distributed MRF segmentation is proposed to
cope with spatially varying intensity distributions. Three
different distribution classes are defined for MRI brain
segmentation. The main problem in this approach is to find a
partition that only includes these three classes.

However, the usual way of improving the MRF perfor-
mance in segmentation is to use parametric model where the
parameters are learned from the image usually by EM (expec-
tation maximization) algorithm [17-19]. An HMRF model
is developed in [20] to segment brain MR images where the
EM algorithm is used to estimate the HMRF model param-
eters by solving maximum likelihood (ML) problem. Since
there is no prior information used in this method, the algo-
rithm is highly sensitive to noise and therefore is not robust.
A commonly preferred method to incorporate the prior
information to the MRF models is to register the atlas to the
test image and to define the initial segment labels of the test
image by the transformed atlases.

In [21], each tissue type is labeled based on the trans-
formed atlas to obtain the probability of each tissue type for
each voxel. The initial class labels are assigned by choosing the
maximum probability tissue type. Then the classification
algorithm is used to locally maximize mutual information by
changing the class of each voxel. The mutual information is
defined based on model probability density function (PDF).
Initial class labels are used as the prior probability of the labels
for brain segmentation.

A manually constructed probabilistic atlas is used in [8]
to estimate the initial model parameters which are used as the
priori information in the classification process. The segmen-
tation algorithm incorporates spatial and temporal contex-
tual information by using 4D Markov random fields. Finally,
the expectation maximization (EM) algorithm is used to
perform segmentation on cardiac MR images.

In the literature, using the atlas as the prior probability of
the labels is the most commonly chosen method to incorpo-
rate the prior information to the segmentation. However, this
requires manually segmented atlases to be prepared. In this

study, we propose another way for this cooperation where no
manually labeled atlas is required.

2.2. Facial Soft Tissue Segmentation. All methods mentioned
above perform segmentation for soft tissues such as brain,
lungs, and cardiac. Very few studies considered facial soft
tissue (FST) segmentation for MR images.

In the literature, FST segmentation is mostly done for
clinical purposes with manual or other simple segmentation
methods where human interaction is required. Manual seg-
mentation can also be combined with the help of segmenta-
tion tools as in [22, 23] where finite element model (FEM)
of the face is constructed from facial MRI scans. In [24],
a clinical study is presented which performs manual seg-
mentation to investigate the differences in facial soft tissues
between MuSK-MG patients and healthy people.

Anatomical visualization is another application of FST
segmentation. In [25], one observer performs semiautomatic
segmentation using the editor module of the 3D Slicer sof-
tware [26] to segment lip muscles and reconstruct 3D models.

Other than manual methods, there are some other auto-
matic or semi-automatic methods studied for FST segmenta-
tion. The main problem with classification algorithms in FST
segmentation is the presence of several tissue types in one
MRI slice. These tissue types may be different in the corre-
sponding slices among different individuals. Therefore, the
segmentation results may be poor or too many manual in-
teractions may be needed.

Ng et al. [27-29] have tested several methods for FST
segmentation using prior knowledge. The process starts with
manual segmentation of the training sets. Then registration of
the training sets to the test set is applied. The training images
are transformed according to the difference between the
shape of the head and the target tissue in each image and also
tissue surface similarity. A tissue template is defined based on
the transformed labeling. The muscle template is employed
by the morphological operators to obtain an initial estimate
of the muscle boundary. The muscle boundary then serves
as the input contour to the gradient vector flow that snake
iterates to the final segmentation. An improved method is
proposed in [28]; that is, shape determinative slices are used
as a guide in 3D segmentation. A similar method is used in
[27] with a new method for determining the dominant slices
of three human masticatory muscles (masseter, lateral, and
medial pterygoids). In [30, 31], the authors proposed a novel
segmentation method based on a 3D statistical model. The
statistical model is made by using manual labeling of the mas-
seter tissue. They show that by using prior shape knowledge,
clinically acceptable results can be achieved.

All these methods need user interaction in several steps
during the segmentation process. Also a manual thresholding
method is used to exclude bone and fat that makes the
method less automatic.

The complete and automatic segmentation of facial soft
tissues still remains as an unsolved problem. In this work,
we aim to investigate some of the methods which have been
tested in segmentation of other soft tissues and try to modify
them to be used in FST segmentation.



3. Methods

3.1. Overview. Our aim in this study is to investigate the role
of the labeled or unlabeled prior information in facial soft
tissue segmentation. For this purpose, we apply several exist-
ing two dimensional (2D) segmentation methods for target
facial soft tissues. These methods are chosen because they
are the representatives in the previous literature, which use
prior information in some way or the other. A comparison
between these methods will clarify different aspects of prior
knowledge-based segmentation methods. These methods are
as follows.

Method a: atlas-based segmentation.

Method b: MRF-based segmentation where initializa-
tion is done by an initial segmentation, which is based
on region growing that started from a seed point.

Method c: MRF-based segmentation where initializa-
tion is done by an initial segmentation, which is based
on region growing using a labeled atlas.

Method d: Bayesian-EM based segmentation using
labeled atlas.

Then our newly proposed segmentation approach, MRF-
based segmentation using unlabeled prior information
(Method e), will be introduced and applied to the same image
sets for 2D segmentation.

Masseter muscle in head is selected as the target tissue in
this study. Masseter is a strong and large muscle, responsible
for jaw motion. An axial view of both right and left masseter
muscles in an MR image is shown in Figure 1. The muscle
borders are specified in green.

All images used in this work are whole head and neck 3D
MRI sets which are obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [32]. All image sets are axial
T1 weighted sets with 1.2 mm slice thickness. Each set con-
tains 256 slices with 256 x 217 pixels resolution. Ten different
sets are randomly selected as the experimental data. In each
experiment, leave-one-out technique is used, that is, each set
is selected as the test set and the remaining 9 sets are used as
the training set. This process is repeated for all sets.

A block diagram is given in Figure2 to explain the
methods and their relationships. More details about each
block are provided in Section 3.3.

3.2. Implemented Methods

Method a. Atlas-based segmentation is one of the popular
methods in medical image analysis, especially in brain soft
tissue segmentation [2, 16, 33]. We implemented the same
method for facial soft tissue segmentation. In this method, an
affine registration and histogram equalization are applied to
the images and then a transform from each training image to
the test image is achieved by using a nonrigid registration. The
manual labels are then transformed by the computed trans-
formation and the final segmentation result is achieved by
averaging all of the transformed labels. The method includes
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FIGURE I: A sample slice. Target tissue borders are shown in green.

blocks (i), (ii), (iii), (v), and (viii) as shown in Figure 2. The
details for each step are explained in Section 3.3.

Method b. In this method, we try to perform MRF-based
segmentation without using any prior information. This will
help us to understand the basic MRF segmentation (which is
considered as a baseline) and the effect of prior information.
The segmentation process is like the method used in [20]
that performs segmentation for brain MR images. The per-
formance with this basic MRF approach is poor, because the
convergence of the EM algorithm strongly depends on the
initial labeling and parameters. Thus, different from [20], we
use a region growing algorithm to obtain an initial seg-
mentation starting from a seed point. The results of this
algorithm are used as initial labels. Initial parameters are also
computed from this initial segmentation. This causes a better
performance in the final segmentation as we may expect. This
method includes block: (i), (ii), (iv), (vi), and (ix) as shown in
Figure 2 and explained in details in Section 3.3.

Method c. This method is similar to Method b except that
the region growing algorithm in this section (which is also
explained in part (vii) in Section 3.3) is a modified version
of the basic form described in part (vi) in Section 3.3. In the
basic region growing, only the neighboring relations are con-
sidered. However, the modified region growing method also
uses unlabeled training data. This modified region growing
algorithm is used for the initialization of the segmentation
to investigate the effect of the initial estimate in MRF-based
segmentation and also to be fair in comparison between
MRF-EM method and our proposed approach where we per-
form MRF-based segmentation with initials obtained from
the modified region growing algorithm that takes advantage
of the unlabeled prior information. So this method cannot be
called a prior-free method. This method includes blocks (i),
(ii), (iv), (vii), and (ix) as shown in Figure 2.

Method d. The importance of using prior information in
medical image segmentation is discussed before. In this
method, the prior information is in the form of labeled atlases
and EM algorithm is used for the estimation of the model
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FIGURE 2: Block diagram of all methods.

parameters. The initial labels are estimated by constructing
a probabilistic atlas from the binary outputs of block (iii) in
Figure 2.

The method is similar to [21], in which a probabilistic
atlas is used in MRF-EM segmentation and initialization. This
method includes block (i), (ii), (iii), and (x) as shown in
Figure 2 and explained in details in Section 3.3.

Method e. This method is our proposed approach that takes
the advantage of unlabeled prior information. The prior
information is used in initialization as described in part (vii)
in Section 3.3. We introduce a new formulization to include
unlabeled prior information in MRF-EM-based segmenta-
tion as explained in part (xi). Instead of just considering to
be or not to be neighbors, as was done in the standard MRF
approaches, we included color differences of the neighbors.
By using this feature, the average difference between the tar-
get tissue distribution and the training images is computed.
This prior information is then used in the Bayesian frame-
work to find out a posteriori probability. Model parameters
and the true labeling are computed iteratively by the EM
algorithm. This method includes blocks (i), (ii), (iv), (vii),
and (xi) as shown in Figure 2 and explained in details in
Section 3.3.

3.3. Explanation of the Blocks

(i) Affine Registration. All data sets are registered three dimen-
sionally by an affine registration method with 9 degrees of
freedom (3 for rotation, 3 for shearing, and 3 for translation)
so the slices will roughly correspond to each other. Normal-
ized mutual information is used as the similarity measure in
the registration process. The registration is performed auto-
matically by using Amira software [34].

(ii) Histogram Equalization. To solve the intensity bias field
problem, a simple histogram equalization method is used as
explained in [35]. In this method, histogram of all images is

|

Method e

calculated and the average histogram is equalized. Then the
intensity values of pixels in each slice are remapped to the new
intensity value.

(iii) Manual Segmentation. In this step, masseter muscle is
segmented manually in the selected slices. The manual
segmentation is performed by a professional expert. The time
required for labelling is very long and depends on the expert’s
ability. The output of this block is a set of binary images that
indicate the masseter area in each image.

(iv) Seed Point and Threshold Selection. In this step, a seed
point inside the target tissue and a threshold are selected by
the user for each image. These values are being used for initial
segmentation in the further steps. Since the histogram of the
test images is equalized previously, the threshold is kept con-
stant for all test images. Thus, seed point marking and thres-
hold selection are done only once.

(v) Nonrigid Registration. All 9 unlabeled training images are
registered nonrigidly to the test set by Demon’s registration
method [33]. By applying the nonrigid registration, target
tissue in the training set tends to change shape toward the
shape of the tissue in the test set. The process is fully automatic
but it is highly time consuming.

(vi) Region Growing (RG). The seed point and threshold
values from (iv) are used in this step to perform initial label-
ing. Region growing method is used in this step which uses
the initial seed point and threshold to segment the target
region in a 2D image based on intensity information only. The
result of this step is a binary image that includes target tissue
pixels (labeled as 1) and background pixels (labeled as 0).

(vii) Modified Region Growing (Region Growing with Prior
Information). The region growing algorithm in this step is
a modified version of the basic region growing method. It
is modified to take the advantage of prior information. In
this case, region growing is done not only by considering



the neighboring pixels on the same slice but by considering
the corresponding pixels in the other data sets, that is, train-
ing sets, although they are not segmented a priori. Since the
training sets are registered, they roughly share the same co-
ordinates and hopefully have the same locations for target
structures.

We assume that pixels are connected to each other
through the neighboring system as shown in Figure 3. The
current pixel is connected to the corresponding pixels in the
upper and lower slices and 9 other training images as well as 8
nearest neighbors in the same slice. These 19 neighbor pixels
effect the classification of the current pixel. A new criterion
U(d;) is defined for growing the region as follows:

Q(d;) = 'di_g |’
R(d) =Y |d;~d], )
JEN;

U (d;) = aQ(d;) + PR(d;).
Here d; is the current pixel and d; is the neighbor pixel

from the neighboring set Nj. d is the intensity mean of the
pixels of the already segmented region in the current step.
The term Q(d;) involves the comparison of only the intensity
value of the current pixel. The term R(d;) represents the
influence of the neighboring pixels. Two parameters o and f3
control the effect of each term Q and R.  and f3 are set manu-
ally and kept constant throughout the experiments. The algo-
rithm checks not only the pixel’s intensity, but U for each pixel
to be lower than a preset threshold and proceeds as in the
original RG algorithm. If the neighbors of the pixel have simi-
lar values as the already segmented tissue mean, this increases
the probability for the current pixel to be included to the
already segmented region.

(viii) Averaging. To obtain a single segmentation of the test
set, an average image is computed from the labels produced
in (v) for the training images. By performing majority voting
procedure on the average image, we select the pixels that are
repeated more than 4 times out of total 9 images. The output
of this step is a binary image that is the final segmentation
result of Method a.

(ix) MRE-EM with Smoothness Term as the Prior Information.
In this part we briefly discuss the mathematical aspects of
MREF-EM based method that is implemented in this study. Let
S be a rectangular lattice for a 2D image of size n X n as

S={(hw)l<h, w<n}. 2)

Each element of S corresponds to a pixel such that the
location in the image space is specified by the indices # and w.
In MRF models, sites are normally treated as an unordered set
but when a 2D image is modeled then h, w are ordered pixel

locations as
S=A{1,...,m}, (3)

where m is the number of pixels in the image and is equal to
n’. An observation D = {d,,...,d,,} is a rectangular array
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FIGURE 3: Neighboring system. The dark cube is the current pixel
and the bright cubes are the neighbors.

of pixel values in low level vision problems. In this case, each
pixel in the observation set d takes a value in set D.
Let L be a discrete set of M labels as

L={1,...,M}. (4)

Segmentation process is defined as assigning a unique
value to each site in S in a way that whole domain of S is
supported. So it is a mapping from S to L as

f:S— L ()

Then the set of labeling for all sites in S is shown as F =
{F,,....F,}.

We call the family F a random field. F; = f; refers to the
event where F, takes the value f;. The probability that random
variable F; takes the value f; is abbreviated as P( f;), and the
joint probability is denoted and abbreviated as P(f). Random
field F is said to be MRF on S with neighborhood system N
if and only if

(1) P(f) >0,
2) P(fifsw) = P(fifNi)'

A set of random variables F is said to be a Gibbs random
field (GRF) with respect to N if the distribution takes the
following form:

Vf € F,
(6)

P(f) 71y e—(l/T)U(f)’ (7)

where T' is a constant named temperature, and U(f) is the
energy function (8). Z is the normalization term. The energy
function of the Gibbs distribution can be expressed as the
sum of several terms. Each term is described by the cliques
of a certain size as

u(f)= Y i)+ ) va(fufy)

{i}eC, {ii'}eC,

+ Z V3(fi’fi',fi//)+....

{i,i',i"}eC,

(8)

The Hammersley-Clifford theorem [36] gives necessary
and sufficient conditions under which the equivalence of
MRF and GRF models can be achieved.
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Then, the conditional probability P(f; | fy) can be
written as follows:

e_[zi’eNi Vafis fi)l
> ei[zi’ENi Vo(ffi)l” )

i€l

P(fil f) =

Here, the model includes only pairwise (n = 2) clique
potentials. The smoothness term can be defined by pair-wise
clique potentials as follows:

sites on the clique have the same label

Vi (fiofr) = {/i B

otherwise.
(10)

Here, 8 is the smoothing parameter and k € {0, 1} defines
the class label (i.e., 1 for the segmented tissue and 0 for the
other tissues).

By using Bayes estimation, the posterior probability can
be computed from the prior distribution (i.e., smoothness in
MREF literature) and the likelihood,

P@1)P() @

P(f1d) = ==,

where P(d | f) is the conditional pdf of the observations d
and P(f) is the prior probability of labelings f. In standard
MRF modeling, P(f) is initialized as random. P(d | f)
for the Gaussian MRF model case is the following intensity
distribution function:

L @)

2
27wk

P(difi = k) = (12)

Here, the parameter set is 0 = {y, 07}

Minimizing the Bayes risk is equal to maximizing the
posterior probability. The expectation maximization (EM)
algorithm is employed to maximize the posterior probability.
In this iterative algorithm, the posterior probability for step
t + 1 is computed in the expectation step by using the model
parameters y and o at iterative step t as follows:

piHl G(d; .“k>o'k)P(fi =k| fN,-)
M Gdapao)P(fizzl fy)  (13)
=P(f.=kld,),

where G(d,, ., 0.) is the Gaussian distribution for class label
kinstep t (12) and P(f; = k | fy ) is the prior probability (9)
over S at step t. ,

Then the model parameters are obtained in the maxi-
mization step as follows:

(t+1) _ Yies pY (k1d;)d;

e = Yies PO (k1d) (14)
PO (k| d;) (d; — )"
(O_(t+1))2 _ Yies ( | z)( i #l)
k ZiES P(t) (k I dl)

This process is repeated until the likelihood difference,
thatis, |P'(d;, 4y, 0,)— P (d;, py, )|/ P (d;, iy, 0,), becomes
less than a threshold. The threshold value is kept as 0.001 in
this study. Then the labels are assigned to the pixels according
to the posterior probability (13).

(x) Bayesian-EM with Probabilistic Atlas. This part is like (ix)
but different in that prior probability is not in the form of the
smoothness term, but is introduced as a probabilistic atlas in
the expectation step (13) of the EM algorithm as follows:

Pl _ G (d, e Uk)P(fi =k| PIt\Ii) 15)
ik = :
Y2, Gdy s 0,) P(fi =21 PY)

Here, P(f; = k | Pf\]i ) is the prior probability that is equal
to the probabilistic atlas as follows:

P(fi=k|Py)=Py™. (16)

Piktlas is the probability of the pixel i to have label k. The
probability is computed by using manually segmented train
images obtained in (iii). This probability is kept constant
throughout the segmentation.

(xi) MRF-EM with Unlabeled Prior Information. In this part,
we try to incorporate the prior information to the MREF-
EM framework not by using a labeled atlas but by using the
original unlabeled images in the training set that can be called
the “latent atlas” A new definition is proposed for the prior
probability which uses unlabeled prior information. By doing
this, through the EM learning steps, the incorporation of
the atlas and the model is updated and learned until conver-
gence.

Unlike other methods that perform a MAP estimation to
estimate the labeling and use it in pair-wise clique potential
computation, we define the prior probability P(f; = k | Py)
without using labels. To take advantage of unlabeled training
images, we compute the difference between the mean of each
class in the current step (y) and the intensity value of the
corresponding pixel i in the neighboring set N;. We prefer the
pixels with less difference to have higher clique potentials and
so we subtract the difference value from 1. The value 1 is the
maximum value that the difference result can take. By
performing summation over all training images, the overall
prior probability for pixel i is computed as follows:

P(fi=k|Py)=1-) |wm-dj 17)

ieN;

where N; is the same neighboring system as shown in Figure 3
which includes training sets and k € {0, 1} is the class label
(i.e., 1 for the segmented tissue and 0 for the other tissues).
Figure 4 shows the presentation of prior information, (17), for
sample image.

As can be observed from the image, the prior information
gives a good estimate of the pixels that may be in the target
tissue. This image is like an imaginary image that a specialist
may have in her/his mind due to seeing thousands of MRI
pictures.



FIGURE 4: A presentation of prior information used in Method e.

The important point about this picture is that the target
tissue is fully unconnected from the neighboring tissues. This
feature helps the segmentation process a lot in the segmenta-
tion of FSTs that are generally connected to the neighboring
tissues.

4. Results and Discussion

4.1. Evaluation. The validation of the segmentation methods
was done by comparing the automatic segmentation results
with the manual segmentation results. For this purpose, the
target tissue is segmented manually in each slice by an expert.
This process is repeated for all 10 experimental sets and these
manual segmentations are only used as the ground truth.

We used dice metric x [37] to evaluate the correspondence
between the segmentation result and the ground truth. The
metric is defined as follows:

K=2X

nT
T x 100%, (18)
where S is the segmented area and T is the ground truth.

4.2. Results. The overall accuracy results of 2D segmentation
for all methods for all sets are shown in Table 1 and Figure 6
for better visualization.

Atlas-based segmentation is known to be successful in
brain tissue classification but as you can see in Tablel,
Method a, the results are not very good for the masseter
tissue. This is because human brain’s shape is mostly similar in
different individuals but facial tissues like masseter may have
various shapes in different people.

This method completely depends on the atlas and when
the shape and position of the tissue of the atlas are different
from the shape and position of the tissue of the test data, then
the registration may result in a very wrong answer.

As you can see in Table 1, the segmentation result is very
poor for set 4 due to the difference between the tissue and
head shapes of the atlas and the data set 4. If we exclude set
4, the average accuracy is increased about 5% and becomes
77.66%.

This problem can be solved either by selecting the ex-
perimental data similar to the atlas or by increasing the
number of training images in a way that covers all possible
shapes, which is not very realistic.

The segmentation result for Method b is very successful in
most cases, such as sets 1, 2, 3, and 8, but in some cases, such
as sets 4 and 5, segmentation results are poor. To investigate
this issue, we checked the initial labeling for the worst result
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TABLE 1: Accuracy results for all data sets and methods.

Case M. a M. b M. c M.d M.e
Case 1 66.66 88.24 86.87 86.98 93.07
Case 2 83.23 86.12 93.33 93.37 83.74
Case 3 76.72 88.01 84.18 71.56 90.03
Case 4 30.24 49.92 82.86 82.68 78.39
Case 5 84.75 19.34 78.9 84.16 90.67
Case 6 60.98 75.3 77.56 59.88 7723
Case 7 81.97 68.97 74.38 71.89 66.49
Case 8 82.16 92.65 75.68 89.14 93.4
Case 9 83.35 82.4 90.71 94.69 96.11
Case 10 79.13 68.25 92.89 91.05 96.07
Average 72.92 71.92 83.74 82.54 86.52

(i.e., set 5) and the best result (i.e., set 8). The region growing
outcome for sets 5 and 8 is shown in the original image in
Figures 5(a) and 5(b). As you can see, the initial labeling is so
poor in case of set 5 that ends in poor overall segmentation
where case 8 starts with a good estimate and results in more
than 92% accuracy.

In Method c, we tried to solve the problem of initial
labeling where a modified region growing algorithm (vii) was
used for initialization. As you see in Table 1, there is about
12% improvement in the average segmentation accuracy.
This shows the importance of initial labeling in MRF-EM seg-
mentation and also using prior information in region grow-
ing algorithm. The prior information used here is unlabeled
raw training images. Although there is an overall improve-
ment in the segmentation performance, in some cases
accuracy decreases. For example, for previously investigated
sets 5 and 8, although the accuracy is improved about 59% for
set 5, there is about 17% decrease for set 8.

The initial labeling with modified RG for sets 5 and 8 are
shown in Figures 5(c) and 5(d). The improvement in set 5
and decrement in set 8 are very clearly observed. The prior
information brings improvement for set 5 where there is an
intensity inhomogeneity but it is not useful for set 8, which
has a shape different than the training sets. However, the
overall improvement is noticeable and there is not any big
decline for different cases as can be seen in Figure 5.

The segmentation performance for Method d is close to
the MRF-based segmentation with modified region growing
method (Method c) but it is about 1% lower. Despite the
large amount of manual interaction required for the prior
information in the MRF-EM part, this method shows lower
accuracy than the previous method. This is mostly because of
the initial estimation that is constant (16) for all images.

Finally, our proposed method (Method e) shows the best
overall performance among all tested methods. In 6 out of
ten data, the accuracy of this method is over 90%. The worst
results are for sets 6 and 7 which also cause poor results by
using normal EM-MRF method (Method c). So we can con-
clude that poor initialization is the problem for these cases.
But this comment is not true for other low accuracies for sets
2and 4.
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() (b)

FIGURE 5: Initial labeling for (a) set 5 with RG, (b) set 8 with RG, (c) set 5 with modified RG, and (d) set 8 with modified RG.

(© (d) (e)

FIGURE 6: Manual segmentation is given top left. Segmentation results using (a) method a, (b) method b, (c) method ¢, (d) method d, and (e)
method e.
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The main problem is in finding a generic solution that
results in a good accuracy for all of the images. But this
requires that the training set should be big enough to overlap
all possible shapes. Since manual labeling is not required for
Method e, using many data as the prior information is pos-
sible. Another problem may be due to the affine registration
which also may sometimes cause poor initialization.

When labeled prior information is used with the modified
RG algorithm, Method ¢ which uses MRF modality performs
better than other methods. When unlabeled information is
used, then Method e performs better than all other methods.
It is important to note that the only manual interaction is the
selection of a seed point and a threshold for region growing
algorithm. The threshold value is kept constant because of the
previously applied histogram equalization algorithm. Since
Method e does not use any labeled training images, selection
of a seed point for target tissue indication is inevitable. The
rest of the method is fully automatic. The segmentation
results of all methods for a test image are shown in Figure 6.
Segmentation of the top and the bottom slices of the masseter
muscle is more challenging because of the dimensions of the
tissue. The results of our proposed method for images in the
bottom slices are shown in Figure 7.

The average accuracy of the proposed method is about
3.5% lower than the results of our previous work [4], where
test images which have similar masseter shape were selected
manually. However, in this study the images were selected
randomly to provide a fair comparison between implemented
methods.

5. Conclusion

In this study, we tested four different state-of-the-art methods
for facial soft tissue segmentation on magnetic resonance
images. Each method has a different way of including the
prior information to the segmentation process. Some use
labeled data as the prior information, some use this labeled
data only as an initial estimation of the segment, and some
do not use prior information at all.

Our main interest in this work was to investigate the
role of the prior information in FST segmentation by using
different methods. We applied all these methods on 10
different MRI data sets belonging to different individuals and
aimed to segment the masseter muscle in them. The experi-
mental MRI sets were registered 3 dimensionally before the
segmentation so the slices roughly corresponded to each
other.

Method a is fully based on the registration of the labeled
training images to the test image. The average accuracy of this
method is 72.92%. Method b is an MRF-EM based segmen-
tation method where initial segment estimation is obtained
by region growing which starts from a seed point. No prior
information is used in this method and the acquired average
accuracy is 71.92%.

According to our results, although Method a uses labeled
prior information, the accuracy of Method b is very close to
it. This shows that atlas-based methods are not as successful
as expected in segmentation of FSTs. The most important
reasons for this failure are the variation of the tissue shape
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FIGURE 7: Results of the segmentation algorithm for the bottom
slices.

among the sets and the existence of similar tissues in the
neighborhood of the target tissue.

Method c is similar to Method b, except for the fact
that the initial segment estimate is obtained by the modified
region growing algorithm which uses prior information from
the unlabeled training set. The accuracy is improved by 12%
which emphasizes the importance of initial estimate in
MRF-EM process and also the importance of using prior
information.

In Method d, the similar MRF-EM framework is used
but this time the labeled training images are used for both
the initialization and the MRF model implementation. The
method reaches 82.54% accuracy that is close to Method e
which does not use any manual labeling. We may conclude
that determining the target tissue with a seed point and a
threshold (like we did in Method c) is more informative for
MRF-EM framework than labeled atlases.

In the end, Method e uses unlabeled prior information
both in initial estimation and during MRF-EM optimization.
The average accuracy for this method is 86.52% which is
the best result between the tested methods. The proposed
approach starts from the same initial estimates as Method
c but it uses prior information inside the MRF-EM process
that causes about 4% improvement in the final segmentation
accuracy. The importance of using prior information can be
shown better when we compare Method b with our proposed
method where using prior information causes about 15%
improvement.

In the previous studies, Ng et al. [27] performed masseter
segmentation with average of 91.6% accuracy. Manually
segmented training images are used in their study which is
difficult and time consuming. Other than that, they have a cri-
teria to only select the training images that are similar to the
test image which reduces the robustness of the method. Our
proposed approach achieves accuracy close to their result
without using additional manual information or criteria.

We also believe that by increasing the number of training
sets, although unlabeled, the accuracy of the method will be
improved.
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The final goal of this study is to segment the masseter
tissue three dimensionally and use the results to construct a
realistic biomechanical face model for any individual.
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