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Abstract

We estimate the charged lepton electric dipole moments and the branching ratios of
radiative lepton flavor violating decays in the framework of the two Higgs doublet model
with the inclusion two extra dimensions. Here, we consider that the new Higgs doublet
is accessible to one of the extra dimensions with a Gaussian profile and the fermions are
accessible to the other extra dimension with uniform zero mode profile. We observe that
the numerical values of the physical quantities studied enhance with the additional effects
due to the extra dimensions and they are sensitive to the new Higgs localization.
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1 Introduction

The fermion electric dipole moments (EDMs) provide considerable information about the CP

violation since they are driven by the CP violating interactions. In the standard model (SM),

the CP violation is carried by the complex Cabibo Kobayashi Maskawa (CKM) matrix elements

in the quark sector. For the lepton sector, the possible lepton mixing matrix is the candidate

for non vanishing CP violation. However, their negligibly small theoretical values stimulate

one to search new models beyond the SM and one can obtain relatively greater EDMs with

the extension of the particle spectrum, such as multi Higgs doublet models (MHDM), super-

symmetric model (SUSY), [1],..., etc.. Among fermion EDMs, the charged lepton EDMs are

worthwhile to study since they are clean theoretically. In the literature, there exist various

experimental and theoretical work on the charged lepton EDMs. The experimental results for

electron, muon and tau read de = (1.8± 1.2± 1.0)× 10−27e cm [2], dµ = (3.7± 3.4)× 10−19e cm

[3] and dτ = 3.1 × 10−16e cm [4], respectively. On the other hand, theoretically, the charged

lepton EDMs have been predicted extensively [5]-[10]. They have been analyzed in the frame-

work of the seesaw model in [5]. In [6], the EDMs of the charged leptons were estimated in the

2HDM and de has been predicted at the order of the magnitude of 10−32 e − cm. The work

[7] was devoted to the charged lepton EDMs in the framework of the SM with the inclusion of

non-commutative geometry and, in [8], the effects of non-universal extra dimensions on these

quantities in the two Higgs doublet model were studied . Recently, the charged lepton EDMs

have been estimated in the split fermion scenario [9] and the effect of the localization of the new

Higgs doublet in the split fermion scenario has been analyzed in [10]. In these theoretical works,

some of the possible models and the additional effects due to the extension of the space-time

have been studied to check the possible enhancement in the numerical values of the EDMs. In

addition to the charged lepton EDMs the lepton flavor violating (LFV) interactions are rich

from the theoretical point of view since they also exist at least at the loop level and make it

possible to search the free parameters of the models used. In the SM, their branching ratios

(BRs) are much below the experimental limits since their existence depends on the neutrino

mixing with non zero neutrino masses and, therefore, it is worthwhile to study them in the mod-

els beyond the SM. The improvement of the experimental measurements of the LFV processes

make it possible to understand the new physics effects more accurately. One of the candidate

model beyond the SM is the 2HDM, where the LFV interactions are induced by the internal

neutral Higgs bosons h0 and A0. The µ → eγ and τ → µγ are the examples of LFV interactions

and the current limits for their BRs are 1.2×10−11 [11] and 3.9×10−7 [12], respectively. A new
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experiment at PSI has been described and aimed to reach to a sensitivity of BR ∼ 10−14 for

µ → eγ decay [13] and, at present, the experiment (PSI-R-99-05 Experiment) is still running

in the MEG [14]. For τ → µγ decay an upper limit of BR = 9.0 (6.8) 10−8 at 90% CL has been

obtained [15] ([16]), which is an improvement almost by one order of magnitude with respect

to previous one. Besides the experimental studies, there is an extensive work on the radiative

LFV decays in the literature from the theoretical point of view [17]-[32]. They are analyzed

in the supersymmetric models [17]-[23], [32], in a model independent way [24], in the 2HDM

[24, 25, 26, 27, 28, 29, 30, 31].

This work is devoted to the prediction of the charged lepton EDMs and the BRs of the LFV

processes µ→ eγ, τ → eγ and τ → µγ in the 2HDM. In this model the CP violating nature of

the charged lepton EDMs are carried by the complex Yukawa couplings connected to the new

Higgs-lepton-lepton vertices and they are induced by the internal new neutral Higgs bosons h0

and A0. Similarly, the lepton flavor violation depends on these vertices and the necessary loop

diagrams contain internal neutral Higgs bosons h0 and A0. Furthermore, we extend the space-

time with the additional two spatial dimensions and we consider that the new Higgs doublet

feels one of the extra dimensions (the sixth one) with a Gaussian profile, and the fermions feel

the other extra dimension (the fifth one), with uniform zero mode profile.

The extra dimension scenario is a candidate as a possible solution to the hierarchy problem

of the SM. In the literature [33]-[75], the effects of extra dimensions on various phenomena

have been studied extensively. In the extra dimension scenarios the compactification of extra

dimension to a circle S1 with radius R results in appearing new particles, namely Kaluza-Klein

(KK) modes in the theory. In the case that all the fields feel the extra dimensions, so called

universal extra dimensions (UED), the extra dimensional momentum, therefore the KK number

at each vertex, is conserved. If the extra dimensions are not felt by some fields in the theory,

such type is called non-universal extra dimensions where there is no restriction to conserve the

KK number at each vertex. This leads to the possibility of the tree level interaction of KK

modes with the ordinary particles. In another scenario, so called the split fermion scenario,

the fermions are assumed to locate at different points in the extra dimension with Gaussian

profiles and the hierarchy of fermion masses can be obtained from the overlaps of fermion wave

functions [76]-[91].

In the present work, we consider two extra dimensions and assume that the new Higgs

doublet is accessible to one of the extra dimensions with a Gaussian profile around origin

and also around another point near to the origin. In addition to this, we take the fermions
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are accessible to the other extra dimension with uniform zero mode profile. Here the extra

dimensions are compactified to the orbifold S1/Z2 × S1 so that the chiral structure of four

dimensional fermions are ensured. The localization of Higgs bosons in the extra dimension has

been considered previously. The idea of the localization of the SM Higgs, using the localizer

field, has been studied in [92]. [10] was devoted to the localized new Higgs scalars in the

extra dimension where the localization is measured by the strength of the small coupling of the

localizer field to the new Higgs scalar. In [30], the BRs of the radiative LFV decays in the split

fermion scenario, with the assumption that the new Higgs doublet is restricted to the 4D brane

or to a part of the bulk in one and two extra dimensions, in the framework of the 2HDM has

been studied. In [31, 93] the new Higgs doublet localization effects on radiative LFV decays

and LFV Z boson decays have been estimated.

Our analysis shows that the inclusion of lepton KK modes due to the fifth dimension re-

sults in an enhancement in the charged lepton EDMs and the BRs of LFV li → ljγ decays.

Furthermore, we observe that these physical quantities are strongly sensitive to the location of

the new Higgs doublet Gaussian profiles in the sixth dimension.

The paper is organized as follows: In Section 2, we present EDMs of the charged leptons

and the BRs of the radiative LFV decays in the 2HDM with the inclusion of two spatial extra

dimensions. Section 3 is devoted to discussion and our conclusions.

2 Charged Lepton Flavor Physics in the two Higgs dou-

blet model where the leptons and the new Higgs dou-

blet feel different extra dimensions.

2.1 Electric dipole moments of charged leptons

The fermion EDM carries a valuable information about the existence of the CP violation since

it emerges from the CP violating fermion-fermion-photon interaction. The possible source of

CP the violation is the complex CKM matrix (lepton mixing matrix) elements for quarks (for

leptons), in the framework of the SM. However, their estimated numerical values are extremely

small and this makes it interesting to investigate new complex phases by considering the physics

beyond the SM. The extension of the Higgs sector may bring additional complex phases with

the assumption that the flavor changing neutral currents (FCNC) are permitted at tree level

with new complex Yukawa couplings. The 2HDM is one of the candidate to switch on the

additional CP phase to enhance the amount of the possible CP violation. On the other hand,
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the addition of the spatial extra dimensions bring new contributions which are sensitive to the

compactification scale 1/R where R is the radius of the compactification. In the present work,

we consider two additional dimensions and assume that the new Higgs doublet feels one of the

extra dimensions with a Gaussian profile, and the fermions accessible to the other one.

The Yukawa Lagrangian responsible for the lepton EDM in a two extra dimensions, respect-

ing the considered scenario, reads:

LY = ξE6 ij l̄iL|z=0 φ2|y=0EjR|z=0 + h.c. , (1)

where L and R denote chiral projections L(R) = 1/2(1 ∓ γ5). Here liL (EjR), with family

indices i, j, are the lepton doublets (singlets), φ2 is the new Higgs doublet.We choose the Higgs

doublets φ1 and φ2 as

φ1 =
1√
2

[(

0
v +H0

)

+

( √
2χ+

iχ0

)]

;φ2 =
1√
2

( √
2H+

H1 + iH2

)

. (2)

with the vacuum expectation values,

< φ1 >=
1√
2

(

0
v

)

;< φ2 >= 0 , (3)

and collect SM (new) particles in the first (second) doublet. Notice thatH1 andH2 are the mass

eigenstates h0 and A0 respectively since no mixing occurs between two CP-even neutral bosons

H0 and h0 at tree level, in our case. Here, we assume that the new Higgs scalars (S = h0, A0)

are localized in the extra dimension at the point zH , zH = ασ with Gaussian profiles,

S(x, z) = AH e
−β(z−zH)2 S(x) , (4)

by an unknown mechanism1 with the normalization constant

AH =
2 (β)1/4

(2π)1/4
√

Erf [
√
2 β (π R + zH)] + Erf [

√
2 β (π R− zH)]

. (5)

Here the parameter β = 1/σ2 regulates the amount of localization, where σ, σ = ρR, is the

Gaussian width of S(x, z) in the extra dimension. The function Erf [z] is the error function,

which is defined as

Erf [z] =
2√
π

∫ z

0
e−t2 dt . (6)

1We consider the zero mode Higgs scalars and we do not take into account the possible KK modes of Higgs
scalars since the mechanism for the localization is unknown and we expect that the those contributions are
small due to their heavy masses.
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On the other hand, the five dimensional lepton doublets and singlets have both chiralities and

the four dimensional Lagrangian is constructed by expanding these fields into their KK modes.

Besides, the fifth extra dimension denoted by y is compactified on an orbifold S1/Z2 with radius

R. The KK decompositions of the lepton fields read

li(x, y) =
1√
2πR

{

l
(0)
iL (x) +

√
2

∞
∑

n=1

[

l
(n)
iL (x) cos(ny/R) + l

(n)
iR (x) sin(ny/R)

]

}

,

Ei(x, y) =
1√
2πR

{

E
(0)
iR (x) +

√
2

∞
∑

n=1

[

E
(n)
iR (x) cos(ny/R) + E

(n)
iL (x) sin(ny/R)

]

}

, (7)

where, l
(0)
iL (x) and E

(0)
iR (x) are the four dimensional lepton doublets and lepton singlets respec-

tively.

Now, we present the effective EDM interaction for a charged lepton l and it reads

LEDM = idl l̄ γ5 σ
µν l Fµν , (8)

where Fµν is the electromagnetic field tensor, ’dl’ is EDM of the charged lepton l and it is

a real number by hermiticity. In Fig. 1 we present the 1-loop diagrams which contribute to

the EDMs of leptons with the help of the complex Yukawa couplings. Here, we assume that

there is no CKM type lepton mixing matrix and, therefore, only the neutral Higgs part gives a

contribution to their EDMs. The complex Yukawa couplings of the new Higgs doublet to the

leptons play the main role in the determination of lepton EDM and they are modified with the

reduction of the extra dimensions. To obtain the lepton-lepton-Higgs interaction coupling in

four dimensions we need to integrate the combination l̄
(0(n))
iL (R)(x, y)S(x, z) l

(n(0))
jR (l) (x, y), appearing

in the part of the Lagrangian (eq. (1)), over the fifth and sixth dimensions. Using the KK basis

for lepton fields (see eq. (7)), we get

∫ πR

−πR
dz

∫ πR

−πR
dy δ(z) δ(y) l̄

(0(n))
iL (R)(x, y)S(x, z) l

(n(0))
jR (L)(x, y) = Vn l̄

(0(n))
iL (R)(x)S(x) l

(n(0))
jR (L)(x) , (9)

where the factor Vn reads

Vn =
AH

2πR
, (10)

and the function AH is defined in eq. (5). Here, the fields l
(n(0))
iL , l

(n(0))
iR are four dimensional

left and right handed zero (n) mode lepton fields. Here we define the Yukawa couplings in four

dimensions as

ξEij = Vn ξ
E
6 ij , (11)
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where ξE6 ij are Yukawa couplings in six dimensions (see eq. (1)) 2 Notice that we consider the

compactification of two extra dimensions on (S1/Z2 × S1).

Finally, the EDMs dl of charged leptons (l = e, µ, τ) can be calculated as a sum of contri-

butions coming from neutral Higgs bosons h0 and A0,

dl = −iGF√
2

e

32π2
Qτ cH ((ξ̄D ∗

N,lτ )
2 − (ξ̄DN,τl)

2)

(

1

mτ
(F1(yh0

)− F1(yA0
))

+ 2
∞
∑

n=1

1
√

m2
τ +m2

n

(F1(yn,h0
)− F1(yn,A0

))

)

, (12)

for l = e, µ and

dτ = −iGF√
2

e

32π2
Qτ cH ((ξ̄D ∗

N,ττ )
2 − (ξ̄DN,ττ)

2)

(

1

mτ

(F2(rh0
)− F2(rA0

))

+ 2
∞
∑

n=1

1
√

m2
τ +m2

n

(F1(yn,h0
)− F1(yn,A0

))

)

, (13)

where

cH = e
−2 z

2

H

σ2 , (14)

for the case that the new Higgs scalars S are localized around the point zH different than origin.

If the new Higgs localization is around the origin cH reaches one. The functions F1(w), F2(w)

read

F1(w) =
w (3− 4w + w2 + 2 lnw)

(−1 + w)3
,

F2(w) = w lnw +
2 (−2 + w)w ln 1

2
(
√
w −

√
w − 4)

√

w (w − 4)
, (15)

with yn,S = m2
τ+m2

n

m2

S

, mn = n
R
, yS = y0,S, rS = 1

yS
and Qτ is charge of τ lepton. In eq. (12)

and (13) we take into account only internal τ -lepton contribution respecting our assumption

that the Yukawa couplings ξ̄EN,ij, i, j = e, µ, are small compared to ξ̄EN,τ i i = e, µ, τ due to the

possible proportionality of the Yukawa couplings to the masses of leptons in the vertices [94].

Here we used the parametrization

ξ̄EN,τl = |ξ̄EN,τl| ei θl . (16)

Therefore, the Yukawa factors in eqs. (12), (13) can be written as

((ξ̄D ∗

N,lτ)
2 − (ξ̄DN,τl)

2) = −2 i sin 2θl |ξ̄DN,τl|2 , (17)

2In the following we use the dimensionful complex coupling ξ̄EN with the definition ξEN,ij =
√

4GF√
2

ξ̄EN,ij where

N denotes the word ”neutral”.
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where l = e, µ, τ and θl is the CP violating parameter which is the source of the lepton EDM.

Notice that, we make our calculations in arbitrary photon four momentum square q2 and take

q2 = 0 at the end.

2.2 The radiative LFV decays

LFV l1 → l2γ decays exist at loop level in the SM and the numerical values of their BRs

are far from the experimental estimates. Therefore, one goes the models beyond where the

particle spectrum is extended and the additional contributions result in an enhancement in the

numerical values of the physical parameters. Due to the extended Higgs sector, the version

of the 2HDM, permitting the existence of the FCNCs at tree level, is one of the candidate

to obtain relatively large BRs of the decays under consideration. Furthermore, we take into

account the effects of two spatial extra dimensions which causes to enhance the BRs due to

the fact that the particle spectrum is further extended after the compactification. Here, we

consider the effects of the additional Higgs sector with the assumption that the new Higgs scalar

zero modes are localized in one of the extra dimension with Gaussian profiles by an unknown

mechanism, on the other hand, the zero modes of charged leptons have uniform profile in the

other extra dimension. The Yukawa Lagrangian responsible for the LFV interactions in two

extra dimensions are given in eq. (1).

Now, we will present the decay widths of the processes µ→ eγ, τ → eγ and τ → µγ. Since

they appear at least at one loop level in the 2HDM (see Fig. 1) there exist the logarithmic

divergences in the calculations. These divergences can be eliminated by using the on-shell

renormalization scheme3. The decay width Γ for the l1 → l2γ decay reads

Γ(l1 → l2γ) = c1(|A1|2 + |A2|2) , (18)

for l1 (l2) = τ ;µ (µ or e; e). Here c1 =
G2

F
αemm3

l1

32π4 , A1 (A2) is the left (right) chiral amplitude and

taking only τ lepton for the internal line, they read

A1 = Qτ
1

48m2
τ

{

6mτ ξ̄
E∗

N,τl2
ξ̄E∗

N,l1τ
cH

(

(

F1(yh0)− F1(yA0)
)

+ 2
∞
∑

n=1

mτ
√

m2
τ +m2

n

(

F1(yn,h0)− F1(yn,A0)
)

)

+ml1 ξ̄
E∗

N,τl2 ξ̄
E
N,τl1 cH

(

(

G(yh0) +G(yA0)
)

3In this scheme, the self energy diagrams for on-shell leptons vanish since they can be written as
∑

(p) =
(p̂−ml1)

¯∑(p)(p̂−ml2) , however, the vertex diagrams (see Fig.1) give non-zero contribution. In this case, the
divergences can be eliminated by introducing a counter term V C

µ with the relation V Ren
µ = V 0

µ + V C
µ , where

V Ren
µ (V 0

µ ) is the renormalized (bare) vertex and by using the gauge invariance: kµV Ren
µ = 0. Here, kµ is the

four momentum vector of the outgoing photon.
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+ 2
∞
∑

n=1

m2
τ

m2
τ +m2

n

(

G(yn,h0) +G(yn,A0)
)

)}

,

A2 = Qτ
1

48m2
τ

{

6mτ ξ̄
E
N,l2τ

ξ̄EN,τl1
cH

(

(

F1(yh0)− F1(yA0)
)

+ 2
∞
∑

n=1

mτ
√

m2
τ +m2

n

(

F1(yn,h0)− F1(yn,A0)
)

)

+ml1 ξ̄
E
N,l2τ ξ̄

E∗

N,l1τ cH

(

(

G(yh0) +G(yA0)
)

+ 2
∞
∑

n=1

m2
τ

m2
τ +m2

n

(

G(yn,h0) +G(yn,A0)
)

)}

, (19)

where yn,S = m2
τ+m2

n

m2

S

, mn = n
R

and Qτ is the charge of τ lepton. Here the vertex factor cH is

defined in eq. (14). The function F1(w) is given in eq. (15) and G(w) reads

G(w) =
w (2 + 3w − 6w2 + w3 + 6w lnw)

(−1 + w)4
. (20)

3 Discussion

In this work, we study the EDMs of charged leptons and the BRs of the LFV l1 → l2γ decays

in the 2HDM with the addition of two spatial extra dimensions. Here we take that the leptons

feel the fifth dimension, and the new Higgs doublet is localized with Gaussian profile in the

sixth one. We consider that the extra dimensions are compactified on S1/Z2 × S1 so that the

chiralities of four dimensional lepton fields are guaranteed. On the other hand, we choose the

location of the new Higgs doublet around the origin and also at the point near to the origin so

that we estimate the possible effects coming from its position in the extra dimension.

The existence of the lepton EDM interactions depend on the CP violating phases and, in

the present work, we consider the complex Yukawa couplings appearing in the FCNC at tree

level in the framework of the 2HDM. The leptonic complex Yukawa couplings ξ̄EN,ij, i, j = e, µ, τ

are set of free parameters in the 2HDM and we consider the Yukawa couplings ξ̄EN,ij, i, j = e, µ,

as smaller compared to ξ̄EN,τ i i = e, µ, τ and we assume that ξ̄EN,ij is symmetric with respect to

the indices i and j. Notice that the new Higgs masses are among the free parameters and we

take their numerical values as mh0 = 100GeV , mA0 = 200GeV .

The inclusion of the spatial extra dimension that is felt by the leptons brings new contri-

butions due to their KK excitations. The additional vertices appearing in the calculation of

EDMs are coming from the fermion-KK fermion-new Higgs interaction where the KK number

is not conserved. Here the compactification of fifth dimension results in a new parameter,

called the compactification radius R, and it should take the numerical values not to contradict

with the experimental measurements. For the new Higgs doublet, we consider the localization
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with Gaussian profile at any point near to the origin in the sixth dimension. Therefore, the

localization width σ = ρR and the possible localization point zH = ασ is other free parame-

ters which should be examined. The direct limits from searching for KK gauge bosons imply

1/R > 800 GeV , the precision electro weak bounds on higher dimensional operators generated

by KK exchange place a far more stringent limit 1/R > 3.0 TeV [95] and, from B → φKS, the

lower bounds for the scale 1/R have been obtained as 1/R > 1.0 TeV , from B → ψKS one

got 1/R > 500 GeV , and from the upper limit of the BR, BR (Bs → µ+µ−) < 2.6 × 10−6, the

estimated limit was 1/R > 800 GeV [80]. Here we take the compactification scale in the broad

range, 100GeV ≥ 1/R ≥ 1000GeV , the width σ = ρR with ρ ∼ 0.001 and the parameter α,

which regulates the localization point zH = ασ, in the interval 0.001 ≥ α ≥ 1.

Now, we start to estimate the charged lepton EDMs and to study the compactification scale

1/R and the new Higgs location point dependencies of these measurable quantities.

In Fig. 2, we plot EDM de with respect to the scale 1/R for the intermediate value sin θe =

0.5. Here the solid-dashed line (curve) represents the EDM for ξ̄EN,τe = 0.001 − 0.01GeV

without (with) lepton KK mode contribution in the case that the new Higgs doublet is located

around the origin in the sixth dimension. The electron EDM is at the order of magnitude of

10−28 (e − cm) for the coupling ξ̄EN,τe = 0.01GeV and enhances at the order of 25% for the

compactification scale 1/R ∼ 500GeV . We study the effect of the different location of the

Gaussian profile of the new Higgs doublet on de by plotting this quantity with respect to the

α for 1/R = 1000GeV and ξ̄EN,τe = 0.001GeV (see Fig. 3). Here the solid-dashed line (curve)

represents the EDM without-with lepton KK mode contribution in the case that the new Higgs

scalars are located around the origin (zH = ασ) in the sixth dimension. We observe that the

EDM is suppressed almost one order of magnitude even in the case that the Gaussian profiles

are located one σ farther from the origin. This shows that the EDM is strongly sensitive to the

location of the Gaussian profiles of new Higgs scalars in the sixth dimension.

Fig. 4 is devoted to EDM dµ with respect to the scale 1/R for the intermediate value

sin θµ = 0.5. Here the solid-dashed line (curve) represents the EDM for ξ̄EN,τµ = 1 − 10GeV

without (with) lepton KK mode contribution in the case that the new Higgs doublet is located

around the origin in the sixth dimension. The muon EDM is at the order of magnitude of

10−22 (e−cm) for the coupling ξ̄EN,τµ = 10GeV and enhances nearly 30% for the compactification

scale 1/R ∼ 500GeV . For the small values of the compactification scale the enhancement

is almost one order of magnitude. We represent the effect of the different location of the

Gaussian profile of the new Higgs doublet on dµ in Fig. 5, by taking 1/R = 1000GeV and
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ξ̄EN,τµ = 10GeV . Here the solid-dashed line (curve) represents the EDM without-with lepton

KK mode contribution in the case that the new Higgs scalars are located around the origin

(zH = ασ) in the sixth dimension. We observe that the EDM is strongly sensitive to the

location of the Gaussian profiles of new Higgs scalars in the sixth dimension and its magnitude

decreases almost one order of magnitude for the case that the Gaussian profiles are located at

most σ farther from the origin.

Finally, we make the same analysis for τ lepton EDM dτ . In Fig. 6 we present dτ with respect

to the scale 1/R for the intermediate value sin θµ = 0.5. Here the solid-dashed line (curve)

represents the EDM for ξ̄EN,ττ = 20 − 50GeV without (with) lepton KK mode contribution in

the case that the new Higgs doublet is located around the origin in the sixth dimension. dτ

is at the order of magnitude of 10−20 (e − cm) for the coupling ξ̄EN,ττ = 50GeV and enhances

more than 20% for the compactification scale 1/R ∼ 500GeV . For the small values of the

compactification scale the enhancement is almost one order of magnitude. The effect of the

different locations of the Gaussian profile of the new Higgs doublet on dτ is represented in Fig.

7. In this figure we take 1/R = 1000GeV and ξ̄EN,ττ = 50GeV . Here the solid-dashed line

(curve) represents the EDM without-with lepton KK mode contribution in the case that the

new Higgs doublet is located around the origin (zH = ασ) in the sixth dimension. We observe

that the EDM is strongly sensitive to the location of new Higgs doublet Gaussian profiles in the

sixth dimension and its magnitude is suppressed up to values less than one order of magnitude

for the case that the Gaussian profile is located at most one σ farther from the origin.

Now we continue our analysis for the BRs of the LFV decays l1 → l2γ. First, we consider

that the new Higgs is localized around the origin in the extra dimension. Furthermore, we

choose the localization point is near to the origin and study its effect on the BRs.

In Fig. 8, we plot BR (µ → eγ) with respect to the scale 1/R. Here the solid-dashed line

(curve) represents the BR for ξ̄EN,τe = 0.001GeV and ξ̄EN,τµ = 1GeV -ξ̄EN,τµ = 10GeV without

(with) lepton KK mode contribution in the case that the new Higgs doublet is located around

the origin in the sixth dimension. The BR(µ → eγ) is at the order of magnitude of 10−11

for the coupling ξ̄EN,τµ = 10GeV . The inclusion of internal lepton KK modes results in 50%

enhancement in the BR for the compactification scale 1/R ∼ 500GeV . This enhancement is

more than one order of magnitude for the small values of the scale 1/R. Fig. 9 is devoted to

the new Higgs doublet Gaussian profile location scale α dependence of the BR (µ → eγ) for

1/R = 1000GeV and ξ̄EN,τe = 0.001GeV , ξ̄EN,τµ = 10GeV . Here the solid-dashed line (curve)

represents the BR without-with lepton KK mode contribution in the case that the new Higgs
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is located around the origin (zH = α σ) in the sixth dimension. We observe that the BR is

strongly sensitive to the location of new Higgs scalar Gaussian profiles in the sixth dimension

and it is suppressed almost two orders of magnitude even in the case that the Gaussian profile

is located one σ farther from the origin.

Fig. 10 is devoted to the BR (τ → eγ) with respect to the scale 1/R. Here the solid-dashed

line (curve) represents the BR for ξ̄EN,ττ = 50GeV and ξ̄EN,τe = 0.001GeV -ξ̄EN,τe = 0.01GeV

without (with) lepton KK mode contribution in the case that the new Higgs is located around

the origin in the sixth dimension. The BR (τ → eγ) is at the order of magnitude of 10−13 for the

coupling ξ̄EN,τe = 0.01GeV . The additional contribution coming from the internal lepton KK

modes causes 50% enhancement in the BR for the compactification scale 1/R ∼ 500GeV and

the BR increases up to the values 10−11 for the small values of the scale 1/R. Fig. 11 represents

the scale α dependence of the BR(τ → eγ) for 1/R = 1000GeV and ξ̄EN,τe = 0.01GeV ,

ξ̄EN,ττ = 50GeV . Here the solid-dashed line (curve) represents the BR without-with lepton KK

mode contribution in the case that the new Higgs is located around the origin (zH = ασ) in

the sixth dimension. We observe that the BR is suppressed almost two orders of magnitude

for the case that the Gaussian profile is located one σ farther from the origin, similar to the

µ→ eγ decay.

In Fig. 12 we present the BR(τ → µγ) with respect to the scale 1/R. Here the solid-dashed

line (curve) represents the BR for ξ̄EN,ττ = 50GeV and ξ̄EN,τµ = 1GeV -ξ̄EN,τµ = 10GeV without

(with) lepton KK mode contribution in the case that the new Higgs doublet is located around

the origin in the sixth dimension. The BR (τ → µγ) is at the order of magnitude of 10−7 for the

coupling ξ̄EN,τµ = 10GeV . With the addition of the internal lepton KK mode contributions it

enhances more than 50% for the compactification scale 1/R ∼ 500GeV . Fig. 13 shows the scale

α dependence of the BR(τ → µγ) for 1/R = 1000GeV and ξ̄EN,τµ = 10GeV , ξ̄EN,ττ = 50GeV .

Here the solid-dashed line (curve) represents the BR without-with lepton KK mode contribu-

tion in the case that the new Higgs doublet is located around the origin (zH = ασ) in the sixth

dimension. We observe that the BR is suppressed more than one order of magnitude for the

case that the Gaussian profile is located one σ farther from the origin.

Now we would like to summarize our results:

• The inclusion of KK modes due to the fifth dimension results in enhancement in the

electron (muon, tau) EDM at the order of 25% (30%, 20%) for the compactification scale

1/R ∼ 500GeV .
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• Charged Lepton EDMs are strongly sensitive to the location of new Higgs doublet Gaus-

sian profile in the sixth dimension and their magnitudes are suppressed almost one order

of magnitude even in the case that the Gaussian profile is located one σ farther from the

origin.

• The BRs of LFV l1 → l2γ decays enhance almost 50% with the inclusion of KK modes due

to the fifth dimension for the compactification scale 1/R ∼ 500GeV . This enhancement

is the almost two orders of magnitude for the small values of scale 1/R.

• The BRs of LFV l1 → l2γ decays are strongly sensitive to the location of new Higgs

doublet Gaussian profile in the sixth dimension and their magnitudes are suppressed

almost two orders of magnitude even in the case that the Gaussian profile is located one

σ farther from the origin.

With the help of the forthcoming most accurate experimental measurements, the valuable

information can be obtained about the existence of extra dimensions and the possibilities of

Gaussian profiles of the Higgs scalars.
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Figure 1: One loop diagrams contribute to l1 → l2γ decay due to the zero mode neutral Higgs
bosons h0 and A0 in the 2HDM, for a single extra dimension. These diagrams contribute to
EDM of charged lepton l1 for l1 = l2. Here l

(n)
i represents the internal KK mode charged lepton

and n=0,1, ... Wavy lines represent the electromagnetic field, dashed line the Higgs field, solid
line the charged leptons l1 (i) = e, µ, τ .

17



1/R(GeV )

10
3
0
×

d
e
(e

−
cm

)

1000900800700600500400300200100

1000

100

10

1

Figure 2: de with respect to 1/R and sin θe = 0.5. Here the solid-dashed line (curve) represents
the EDM for ξ̄EN,τe = 0.001−0.01GeV without (with) lepton KK mode contribution in the case
that the new Higgs doublet is located around the origin in the sixth dimension.
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Figure 3: de with respect to α for 1/R = 1000GeV and ξ̄EN,τe = 0.001GeV . Here the solid-
dashed line (curve) represents the EDM without-with lepton KK mode contribution in the case
that the new Higgs scalars are located around the origin (zH = ασ) in the sixth dimension.
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Figure 4: dµ with respect to 1/R for sin θµ = 0.5. Here the solid-dashed line (curve) represents
the EDM for ξ̄EN,τµ = 1− 10GeV without (with) lepton KK mode contribution in the case that
the new Higgs doublet is located around the origin in the sixth dimension.
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Figure 5: dµ with respect to α for 1/R = 1000GeV and ξ̄EN,τµ = 10GeV . Here the solid-dashed
line (curve) represents the EDM without-with lepton KK mode contribution in the case that
the new Higgs scalars are located around the origin (zH = ασ) in the sixth dimension.
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Figure 6: dτ with respect to 1/R for sin θτ = 0.5. Here the solid-dashed line (curve) represents
the EDM for ξ̄EN,ττ = 20 − 50GeV without (with) lepton KK mode contribution in the case
that the new Higgs doublet is located around the origin in the sixth dimension.
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Figure 7: dτ with respect to α for 1/R = 1000GeV and ξ̄EN,ττ = 50GeV . Here the solid-dashed
line (curve) represents the EDM without-with lepton KK mode contribution in the case that
the new Higgs scalars are located around the origin (zH = ασ) in the sixth dimension.
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Figure 8: BR(µ → eγ) with respect to 1/R. Here the solid-dashed line (curve) represents the
BR for ξ̄EN,τe = 0.001GeV and ξ̄EN,τµ = 1GeV -ξ̄EN,τµ = 10GeV without (with) lepton KK mode
contribution in the case that the new Higgs doublet is located around the origin in the sixth
dimension.
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Figure 9: BR(µ → eγ) with respect to α for 1/R = 1000GeV and ξ̄EN,τe = 0.001GeV , ξ̄EN,τµ =
10GeV . Here the solid-dashed line (curve) represents the BR without-with lepton KK mode
contribution in the case that the new Higgs doublet is located around the origin (zH = ασ) in
the sixth dimension.
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Figure 10: BR(τ → eγ) with respect to 1/R. Here the solid-dashed line (curve) represents the
BR for ξ̄EN,ττ = 50GeV and ξ̄EN,τe = 0.001GeV -ξ̄EN,τe = 0.01GeV without (with) lepton KK
mode contribution in the case that the new Higgs doublet is located around the origin in the
sixth dimension.
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Figure 11: BR(τ → eγ) with respect to α for 1/R = 1000GeV and ξ̄EN,τe = 0.01GeV , ξ̄EN,ττ =
50GeV . Here the solid-dashed line (curve) represents the BR without-with lepton KK mode
contribution in the case that the new Higgs doublet is located around the origin (zH = ασ) in
the sixth dimension.
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Figure 12: BR(τ → µγ) with respect to 1/R. Here the solid-dashed line (curve) represents the
BR for ξ̄EN,ττ = 50GeV and ξ̄EN,τµ = 1GeV -ξ̄EN,τµ = 10GeV without (with) lepton KK mode
contribution in the case that the new Higgs doublet is located around the origin in the sixth
dimension.
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Figure 13: BR(τ → µγ) with respect to α for 1/R = 1000GeV and ξ̄EN,τµ = 10GeV , ξ̄EN,ττ =
50GeV . Here the solid-dashed line (curve) represents the BR without-with lepton KK mode
contribution in the case that the new Higgs doublet is located around the origin (zH = ασ) in
the sixth dimension.
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