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Abstract

In this paper, theproportionally fair allocation of time slots in a frame, as well as power level to
multiple receivers in an energy harvesting broadcast sysie considered. Energy harvest times in a
frame are assumed to be known at the beginning of that frafme.gbal is to solve an optimization
problem designed to maximize a throughput-based utilitycfion that provides proportional fairness
among users. An optimal solution of the problem was obtalmedising a Block Coordinate Descent
(BCD) method in earlier work (presented in Part | of this sfudHowever, finding the optimal allocation
entails a computational complexity that increases sharplgrms of the number of users or slots. In
this paper, certain structural characteristics of the nogkipower-time allocation policy are derived.
Building on those, two simple and computationally scaldidaristics, PTF and ProNTO are proposed.

Simulation results suggest that PTF and ProNTO can closstk the performance of the BCD solution.
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I. INTRODUCTION

With increasing awareness of the potential harmful efféotshe environment caused by
“greenhouse gas” emissions and the depletion of non-rdrewenergy sources, there is a
growing consensus on the need to develop more energy-affic@nmunication systems![1].
Whether the objective is to decrease the carbon footprinlviotless communications or to
make nodes of a wireless network energy-wise self-sufficiearvesting ambient energy is
a promising approach for wireless communications. Ambeangrgy sources include sunlight,
heat differentials, mechanical vibration, RF radiatiom,amy other physical source that can
produce an electrical charge through a transducer (phbéowacell , piezoelectric element,
etc.). Communication devices that can be powered by reehblg batteries which store energy
harvested through such means are already commerciallyablai However, harvested power
is typically irregular and can at times fall short providitypical power consumption levels in
wireless nodes. If it is desired for energy harvesting systéo match the performances their
regular battery or grid-powered counterparts, the needad¢oraplish this by efficiently utilizing
an unsteady power source opens up new challenges for thgndestransmission as well as

resource allocation schemes.

There has been a considerable amount of recent researdhogffmptimizing data transmission
with an energy harvesting transmitter. A single-user comigation system operating with an
energy harvesting transmitter is considered [ih [2], wherpaaket scheduling scheme that
minimizes the time by which all of the packets are deliveredite receiver is obtained. A
multi-user extension of [2] has also been considered|in[f}Jand the same time minimization
problem is solved for a two user broadcast channel. Thes@agipes are exended In [5] and [6]
to the case of a transmitter with a finite capacity battery.ekiends|[2] to propose the directional
water-filling algorithm that finds the optimal energy manmagat schemes for energy harvesting

systems operating in fading channels, with finite capactiyhargeable batteries. Inl[8], the
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authors consider the problem of energy allocation over gefimrizon for point-to-point wireless
communications and use dynamic programming and convexngatiion techniques to obtain
the throughput-optimal energy allocation.

The first part of our study on this problern! [9] differs from thbove-mentioned studies
(and others cited in_[9]) particularly in its aim to maximittee throughput in groportionally
fair way, taking into account the inherent differences of chamguality among users. I [9],
we considered allocating among users the transmission rpamck the proportion of the time
between energy harvests, to achieve a good balance betweeghput and fairness on an energy
harvesting downlink. Specifically, a proportional fairadsased utility maximization problem in
a time-sharing multi-user additive white Gaussian nois&/@WN) broadcast channel, where the
transmitter is capable of energy harvesting is considefdeé. aim is to achieve the optimum
off-line schedule, by assuming that the energy arrival profile at rédwestnitter is deterministic
and known ahead of time in an off-line manner for a time windcalled frame, i.e., the energy
harvesting times and the corresponding harvested energyrgmare known at the beginning
of each frame. The treatment in| [9] considers the genera tasvhich the interarrival times
between consequtive harvests do not have to be equal. Herlmcws on the case where energy
interarrival times are equal. Not all generality is lostcéase harvest amounts are arbitrary and
the absence of a harvest in a certain slot can be expressea \wadrvest of amount zero for the
respective slot. Periodic sampling of harvests is alsoisterg with practice as in many energy
harvesting systems, transmitters have supercapacitatscém store the harvested energy and
supply in every predetermined time window, allowing theeca$ periodic energy arrivals.

In this paper, we show that by using the periodic energy asiassumption, it is possible
to analytically derive the characteristics of the optimalusion of the Problem proposed in/[9].
In [9], we proved that the problem in hand is a biconvex probind has multiple local optima.
This allowed us to decompose the problem into two parts (p@ilecation, time allocation)

and present a Block Coordinate Descent based optimizalgmmitam, BCD [9], that converges
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to a partial optimal solution. We believe that the partiatim@ found by BCD algorithm is
very close to the local optima of the problem and thus, it ess optimal or close to optimal
utility [9]. Although BCD is guaranteed to converge to a mrbptimal solution and thus the
partial optimal utility, it is computationally expensivag@when there are tens of users and energy
arrivals, forming invertible hessian matrices (neededlieroptimization of the power variables)
may be computationally excessive. Hence in this paper, wederive the characteristics of the
optimal solution and then, build on those to develop simg@aristics, PTF and ProNTO that
closely track the performance of the BCD solution.

We start by describing the system model in the next sectiaxt,Nve make the problem
statement precise in Sectibnl Ill. Section IV discusses thetsire and properties of the optimal
solution. Depending on these properties, PTF and ProNT@dties are proposed in Sectidn V.
In Section[VIl, we present our numerical and simulation lssiWe conclude in Section_VIII

with an outline of future directions.

[l. SYSTEM MODEL

Consider a time-slotted system where each frame, of leAgtts divided into K slots. There
is a single transmitter that transmits 6 users by time sharing. Channel conditions remain
constant duringF; (¢,, the gain of user, is chosen to be constant throughout the frame). The
transmitter is equipped with a rechargeable battery sughstbme energy;;, is harvested from
the environment at the beginning of each time glaff framei. The length of the'" slot of
framei may be represented d%;. However, as we are interested in a specific frame, we drop
the frame indicatoi and define the harvested energy in slats E;, and, the length of slat as
T;. Note that, we use the same system model as_in [9]. Howevkkeu®], in this paper we
assume periodic energy arrivals and hence equal slot ler{@gth= T for all t = 1,..., K), as
shown in Figuré 1, to reveal the characteristics of the agitisolution of Probleni]1.

Similar to the setting in[[9], for a given frame, the trandsertchooses a power leve] and

DRAFT



a time allocation vector; = (1, ..., Tn¢), for each time slot of the frame, where,, = p,
is the selected transmission power for useduring slott and, 7,,; is the time allocated for

transmission to uset during slott.

IIl. PROBLEM STATEMENT

The total achievable number of bits sent to usewithin one frame (proportional to the
throughputobtained by that user in the frame),Is}fi1 Tt W log, (1 + %) [9]. We aim to
maximize a utility function, the log-sum throughput oveethserstL1 logs(R,), which is
known to achieve proportional fairness [10], in the preseoicenergy harvesting. We start with
the problem of interest, Probleim 1 defined fin [9]. This is astm@ined optimization problem

that aims to maximize the utility function with respect tettime and energy constraints.

Problem 1:

N K
Maximize: U(7,p) = Zlog2 <Z Tt W log, (1 4 ;ﬁ;))

n=1 t=1

subject to:7,; >0, p, >0 (1)
N
> ru=T )
n=1
K
> Tz 3)
t=1

¢ ¢
> pTi<) E (4)
i—1 i—1

wheret = 1,..., K andn = 1,..., N. W is the bandwidth for a single link channel, ang
is the power spectral density of the background noise. Hef#ég represents th& N R of user
n in slot . Equations in[(ll) represent the nonnegativity constraifite time-limit constraints,
the set of equations in(2), ensure that the total time alémt#@o users does not exceed the

slot length. The set of equations id (3), on the other haral technical constraints and ensure
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that every user gets some time ¢ wheree is an infinitely small number) during the frame.
The set of equations il(4) are called energy causality caings as these ensure no energy is
transmitted before becoming available.

One might hope that this problem has a unique solution andca bptima except for one
global optimum. Unfortunately| {1) is a nonlinear non-cexiyproblem with potentially multiple
local optima. Indeed, in_[9], analysis of structural ch&eastics of the problem revealed that
it can be formulated as a biconvex optimization problem, drat it has multiple optima. In
the next section, we decompose Probleém 1 into two parts (pail@cation, time allocation) to

investigate and derive the characteristics of these optima

IV. STRUCTURE AND PROPERTIES OF THEOPTIMAL SOLUTION

In this section, we analyze the structure and propertiehefhybrid power-time allocation

policy. Remember that the utility function of Problém 1 is

N K
U= 1ogs(>  TutRu) (5)
n=1 t=1

where R,,; represents the rate of link in t** slot:

R, = Wlogy (1 + L,p;) where L, = NgOTIL/V (6)

Let R, = [Ru1 Ruo ... Rux)T and7, = [7.1 T2 ... Tux|T. Then, utility can be rewritten as

N
U=> log(=' Ry) 7
n=1

whereU,,, the utility of usern, is
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U, = loga(7n ' R,,) 9)

In order to reveal characteristics related to the optim&litsmm that will help us develop
computationally efficient and close-to-optimal heuristizve decompose the problem into two

parts (similarly as in[[9]): power allocation and time akdion.

A. Structure of an Optimal Power Allocation Policy

In this section, we analyze the structure and propertiee@bptimal power allocation policy.
In order to do this, we assume that the time allocation isrdeteed, and try to characterize the
structure of the optimal solution of the power allocationlgem for this time allocation. Clearly,
when the only variables are power variables, Problém 1 exitc the following constrained

optimization problem:

Problem 2:

N
Maximize: U (p) = Z Uy (D)

n=1

subject to:p; > 0 (10)

¢ ¢
ZpiTi < ZEi (11)
i=1 i=1

wheret = 1, ..., K and,U, is a function of the power variables (as defined in E§. (9))oun
previous work|[9], we proved the strict conveﬂttyf Problen12. Similarly, the general problem,
Problem[1, is shown to be a biconvex optimization problent ttes many local minima_[9].

As Problem[2 has a unique optimum, the optimal power allooathanges for every given

Maximizing U (p) is equivalent to minimizing-U (7) which is a convex objective function.
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time allocation. In Theorer 1, we claim that one of the optimschedules of Probled 1 has a
nondecreasing power schedule. Lenima 1 not only helps usot@ mur claim but also reveals
that Problenil has multiple optima. From the proof Lenitha &,attentive reader can observe
that any feasible permutatanmf the optimal schedulér*,p*), described in Theorefd 1, is also
optimal.

Theorem 1:When all slots have equal lengtli;(= 7', for Vj € {1, ..., K'}), there exists an
optimal schedulé7*, 7*) such thatp* is nondecreasing, (e.gi; = (p, ..., px) Wherep; < py <
.. < pK).

Proof: The proof is provided in Appendix]A, and rests on Lemima 1 below [ |

We shall need the following definition of a permutation of @tee sorted in nondecreasing order
of elements, for stating Lemna 1.

Definition 1: Given avectol?, = [R,; R ... Rux]’, we defineR,, = [Rurt) Run(@) - -+ Run(io)]”

whereR,' is a permutation (sorted in increasing order)idf, such that

Lemma 1:When all slots have equal lengtlfj(= 7', for Vj € {1,..., K}), for any given
schedule(7, P¢), we can find such? & (where &, = R,) that (7)TR, = 7R, for all
n=1,...,N;i.e., the utility,U, does not change. Hence, ¢, R, ) is optimal, then{’ ", R"")
is also optimal.

Proof: The proof is provided in AppendixIB. [ |

B. Structure of an Optimal Time Allocation Policy

In this section, we assume that the power allocation thrahghslots is determined. Then,

given that the power variables are known constants, we rdéterthe structure and properties

2A feasible permutation is any permutation of a given scheduht does not violate the constraints described in EqpgZjj1
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of the optimal time allocation policy. Since, the only vénies are time variables, Probldm 1

reduces to Proble 3:

Problem 3:

N
Maximize: U (T Z U, (T
n=1

subject to:r,,; > 0 (13)
N
> =T (14)
n=1
K
> T > e (15)
t=1

wheret = 1,..., K, n=1,..., N and,U, is a function of the time variables (as defined in Eq.
@)). In [9], ProblemB is shown to be convex. Thus, the anslgan rely on KKT (Karush-
Kuhn-Tucker) optimality conditions, which must be satidfiey the global optimum. We start

by forming the Lagrangian function as follows:

B K N NK+N K N
L(i )\aﬁ) :_U<?>+ZZM(N(] D+i)Tij + Z NJ ZT(J NK)t ZAZ‘(ZTM _Ti)
=1 i=1 j=NK+1 i=1 n=1

(16)

wherey’s are the Lagrange multipliers, and, the total number ofstmint iSN(K+1)+K.
After defining the Lagrangian as in E@. (16), one can consthecKKT conditions for the optimal
solution. Due to space limitations, we do not list the capndi here but refer the interested
reader to the associated technical report [11] for the detRiease note that the optimal time
allocation should jointly satisfy the set of equations these from KKT conditions. Clearly,

as the number of usersy, and, the number of slotdy, increase, the number of equations

*There areK equality constraints and K + N inequality constraints.

DRAFT



10

increases dramatically making it cumbersome to write diwallysolutions. Therefore, for the

sake of conciseness, we continue the analysis with the apsage of two users and two slots

which allows us to construct the characteristics of therngtitime allocation policy.

Consider two consequtive slots with different power levekt us call the one with the least

power the weak slgtand the one with the highest powttre strong slat When the slots have

equal length [} = T, = T'), the optimal policy has the properties described in Lerhina 2

Lemma 2:1n an optimal schedule, time allocation over the two slofse@ual length) has the

following properties:

1)

2)

3)

In

The weak slot is assigned to only one of the users. The gtstot, however, is shared
between users. When both power levels are equal; if one slassigned to user 1 (user

2), the other slot is assigned to user 2 (user 1).

To whom the the weak slot will be assigned depends on twerii first,I",, = ﬁzj, which

is the ratio of user’s rate in the second slot to that in the first, and second, henehe
strong slot is before or after the weak slot. When the weaksleceeds the strong slot,
it is assigned to the user with the smaller Otherwise (implying the decrease in power
level), it is assigned to the user with the higher

In a strong slot, the user that did not (or will not) receasgy data in the weak slot is

favored, i.e., more than half of the slot is assigned to teat.un order to preserve fairness,

this favoring operation is done by considerifigandI',.

Proof: The proof is provided in Appendix]C. [ |

V. PTF HEURISTIC

this section, we develop a heuristic algorithm, Powend&iFair (PTF), based on the char-

acteristics (discovered in the previous section) of annegitpower/time allocation schedule. The

PTF algorithm operates as follows:

1) For Power Allocation: Assign nondecreasing powers through the slots by usingtbeye
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harvest statistics, as follows:

a) From a slot, say, to the next one + 1: If harvested energy decreases, defeh a
amount of energy from slotto sloti + 1 to equalize the power levels. Do this until
all powers are nondecreasing, and, form a virtual nondstrgaharvest order.

b) By using the virtual harvest order, assign nondecreapowers through the slots,
i.e., in each slot, spend what you virtually harvested athbibginning of that slot.

2) For Time Allocation: For the power allocation found ih), let, B,,;, = R,,T" be the number
of bits that would be sent by userif the whole slot (of lengthl") was allocated to that
user. Assign the first slot to the user who has the maximum e in that slot. For the
other slots, apply the following: At the beginning of eacbtst € {2,..., K}, determine

the user with the maximum where,

o lgnt
Ele By

and, assign the whole slot to that user. If multiple usersestize sames, then, allocate

Bn

the slot to the user with the best channel.

Simulation results show that the performance of the PTFrdlgu is close to the performance

of the BCD algorithm.

VI. PRONTO HEURISTIC

In this section, we develop a fast and simple heuristic, FONPowers Nondecreasing - Time
Ordered), based on the optimal power allocation relatedacheristics discovered in Section IV-A
and the simulation results obtained by running BCD algarifior periodic energy arrivals. The

ProNTO algorithm operates as follows:

1) For Power Allocation: Assign nondecreasing powers through the slots by usingrbeyg

harvest statistics, as done in part (1) of PTF algorithm.
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2) For Time Allocation: Order the usersy,...,uy, according to their channel quality
and form a user priority vectont = [uf,...,u%] whereu! represents the user with
the best channel. A& > N, Allocate every useF 225 glots as follows: The first

K—mod(K,N
N

) slots are allocated te!, the nextX="ed.N)

N ) slots are allocated ta3, etc.
Add the remainingnod(K, N) slots to the most powerfuhod(K, N) users’ slots. For
example; LetK = 12 and N = 5, and the path losses of the users to be 13 dB, 17 dB,
10 dB, 12 dB, 20 dB respectively. Then, the first 3 slots arecalied to user 3, the next

3 slots are allocated to user 4, the following 2 slots arecatied to user 19** and 10**

slots are allocated to user 2, and the last 2 slots are adlddatuser 5.

Thus PTF and ProNTO differ only in time allocation part. Tivad allocation method used
in ProNTO is proposed according to the following observathen a partial optimal solution
obtained by BCD algorithm is modified as described in Lenithand iés proof, to form the
nondecreasing optimal schedule, the time allocation besoondered, e.g., as shown in Table
[Tl As time allocation method used in ProNTO is simpler tithe one used in PTF, ProNTO
can operate faster. Simulation results show that the padoce of ProNTO is close to the

performance of the BCD algorithm.

VII. NUMERICAL AND SIMULATION RESULTS

In this section, we present the numerical and simulationlteselated to PTF and ProNTO
heuristics. Throughout our simulations, we use the folovgetupV = 1kHz, N, = 10~W/H 2.
We assume that some amount of energy<( £ < oo wheree is an infinitely small value)
is harvested every 10 secondgs & 10), within a frame (period of known harvests). Note
that, throughout this section, the units used for frame tlengnergy, and power are; seconds,
Joules, and Watts respectively. Throughout our simulatiare use four different frame lengths;
20, 80, 100, 120. For the frame of 20 secs, we use three differeergy harvest models;

[0.5,50], [50,0.5], [6020]. We define different cases for the remaining three frame theng
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Regular Bursty, and, Very Bursty In Regular the harvest amounts are close to each other
and form a regular patternyz = [73,65,9, 19,40, 37, 22,84, 39,67,81,100]. In Bursty, there
are short term sudden decreases and increases in harvegshtamcausing a bursty pattern;
Ep = [20,100,1,1,1,70,100, 1, 10,40]. Finally, Very Burstyrepresents an extreme case where
the transmitter stays energy-hungry for a long timg; = [90, 2,0.5,0.1, 0.3, 0.7, 40, 60].

We start by the simplest case of two users and two sldts=(2, K = 2, frame of 20 secs)
to compare the results obtained by BCD algorithi [9], witd tptimal ones presented in Table
[l Our objective in doing such a comparison is to prove theussmxy of both theoretical and
simulation results. We refer the interested reader to Agpe@l for the details of the optimality
table, and provide the comparison in Table Il. Note that a§9in the starting point of the
algorithm is the Spend What You Get (SG) policy (proposed byl&ova et. al.[[12]) combined
with TDMA time allocation (SG+TDMA). The first column of Tadllll shows the amount of the
harvests [/;, E5). The second column represents the mean path loss (in dBjeafinto users.
As observed from the table, for a given power allocation, rdsults found by BCD algorithm
and the optimal ones (obtained by KKT optimality conditipase almost the same, verifying
the consistency and optimality of the algorithm.

The attentive reader can observe from Tdble Il that, whenests decrease from one slot
to another, the optimal powers tend to be nondecreasingcdden that case, the algorithm
seems to be converged to the nondecreasing optimal distirsSEheoren{Il. Note that, this
nondecreasing optimal could also be obtained by using theififoation method explained in
Lemmall. By using that method, we modify the results obtalmeBCD algorithm to reveal the
optimal (nondecreasing) power and time allocation padida@ increasing number of users. For
our analysis, we use three different path loss patternied;alow, Moderate High respectively.
In Low, the strongest user in the system has 13 dB path loss, ang, s user that joins the
system deviates by 3 dB from the previous one (has 3 dB mote Ipas than the preceding

user). InModerate the strongest user has 19 dB path loss, and, every new ugatedeby 3
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dB. Finally, inHigh, the strongest user has 25 dB path loss, and, every new udatede3 dB.
Due to space limitations, we present only tBarstyModeratecase’s results in TableJIl. As
illustrated, when the number of users increase, BCD algoriends to assign increasing powers
rather than nondecreasing. One can also see from the tatjenthmatter how many users exist
in the system, ordering powers in nondecreasing orderesatie time allocation to be ordered
too. By ordered, we mean that the first slot(s) are allocaidtie user with the best channel, the
next slot(s) are allocated to the user with the second bestreh, etc. , and the last slot(s) are
allocated to the user with the worst channel. This obsematonstitutes the main motivation
for the ProNTO heuristic.

We next use the above-mentioned energy harvesting c&segilar Bursty, Very Bursty to
compare the PTF and ProNTO heuristics’ performances todh&CD’s. We start by testing
the utility and throughput improvement (over SG+TDMA) merhances of the heuristics for
increasing path losses. For this, we set the number of ueetwd, i.e., N = 2. The results
are presented in Figuid 2 and Figlile 3, respectively. In Kgtires, the Mean Path Loss, is
computed ad = % Zf\il L; where L; represents the path loss of ugeHence, the three mean
path losses seen in the figures representLitvwe, Moderateand High cases. One can observe
from Figure[2 that, the utility improvements of all algoritk tend to increase (or at least stay
constant) when path loss increases, and the utility impnare performances of the proposed
heuristics are very close to that of BCD’s. For the chosee$a8roNTO outperforms PTF. This
is more obvious for th&ery Burstycase. The corresponding throughput improvements are shown
in Figure[3. As illustrated, for the case of = 2, even with~ 5% of utility improvement, a
~ 65% of improvement in total throughput is possible. Note thatall cases, the performances
are very close to each other.

In order to determine the effect of number of users to theogperdnces of our proposed heuris-
tics, we next perform a series of simulations by considesilhgnergy harvesting caseRdgular

Bursty, Very Bursty and different number of users. By taking average over atgnharvesting
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cases, we present the average utility improvement resulsgurel 4, for theModeratecase. As
illustrated in the figure, when the number of users increttse,average utility improvements
of all schemes also increase. Note that, both heuristicselyidrack the BCD algorithm. When
there are few users in the system, PTF and ProNTO are competitowever, when there are
more users, ProNTO seems to outperform PTF in terms of agartility improvement. At all

instances, ProNTO is within the 1% neighbourhood of the B@jwrithm.

Although we aim at proportional fairness in this work, it mag interesting to analyse max-
min fairnesses of the proposed algorithms, PTF and ProN&id'sJindex is a well-known

measure of fairness [13], [14]. The indéX takes the value of 1 when there is a complete fair

allocation.
FI — (Z=7Nx) (17)
NS a?
For computingF'I, we use the no. of bits transmitted to the usersy 2V fori =1,..., N,

whereU; is as defined in EqL{9). From TakilellV, it is clear that SG+TDN4Ahe worst choice
in terms of fairness. Although low path losses embrace lavtidity improvement, they mainly
allow both PTF and ProNTO to be very efficient in terms of fass. However, as observed
from the table, when all three cases are considered, PTFsseebe more fair than ProNTO is.
Hence, ProNTO seems to trade of fairness for utility improgat. It can also be inferred from
Figurel4 and Tablg1V that, when ProNTO outperforms PTF imteof utility improvement, the
difference between two heuristics is not high. Howeves thinot the case for fairness,.i.e., when
PTF outperforms ProNTO, the difference can be considerdugis Hence, although ProNTO
seems more promising in terms of utility improvement, dejdem on system requirements, one

can still choose PTF over ProNTO for more fairness.
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VIIl. CONCLUSION

This paper presented the second part of a study whose fitstasreported in [9]. Building on
the problem formulation and the optimal solution method9p fhe optimal resource allocation
policy was further studied and certain structural charésttes of the optimal solution were
established. In particular, the existence of an optimaldesreasing power schedule and, an
ordered time allocation schedule were proved. This allowsetb propose two alternative efficient
and scalable heuristics, PTF and ProNTO. The computatieasé¢ of these algorithms were
observed in numerical examples, while the policies theultes coincide with the structural
properties we have shown the optimal to have. Simulationlt®esndicate that, despite their
simplistic design, PTF and ProNTO heuristics can closelgkrthe performance of the optimal
BCD algorithm. In our examples, which were computed for $raalmoderate problem sizes,
both PTF and ProNTO took one or two orders of magnitude sméhee to converge than
BCD, which has to compute a Hessian. Typically, ProNTO odgpes PTF in terms of utility
improvement, whereas the latter is fairer. The utility ioygment difference between BCD and
ProNTO is shown to be less than 1% at all instances.

An interesting future direction could be the developmentanfonline algorithm that will
bypass the need for offline knowledge about the energy himgestatistics. This algorithm may
use energy harvesting prediction algorithms to predictehergy that will arrive in the future,

or estimate it on the fly during network operation.

APPENDIX A

PROOF OFTHEOREM[I

The proof is done by contradiction. For any given time altmra7, consider a given power
sequencePe = (p1, .-, Pa—1, Pd, ---» Pxc ), IN Which the power level decreases at some time, say
d > 1. In such a case, we can defer some eneigy,A < py_1T,_1 , from the(d — 1)"" slot to

the d** slot forming a modified schedul®,. = (p, ..., 1,7}, .-, pr), that will not violate the
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energy causality conditions (as shown in [ig. 5). Clearly,c&n continue this deferral operation
until p/,_, < p!, and still not violate the energy causality conditions. Appd the same method
for every possible decrease leads us to a nondecreasin@tﬁehlég = (P, s D15 Dl s Vi),
wherep < ph < ... < pl.

From Lemma L/ (7, Pc) = U(FF¢,PL). Thus, for time allocatiorr* = 77¢, P} is optimal.

This completes the proof.

APPENDIX B

PROOF OFLEMMA (1]

Let, R/ = R, whereR,  is as defined in Definitiof]1. Note that Ef.112) forces

loga(1+ Lpp)) < ... <loga(1+ Lpp)) < ... <loga(1+ L,pl) (18)
14+ Lypy <. <14+ Lyp, <...<1+4 Lpy (29)
py< . <p <. <P (20)

Hence, sortingR,, in increasing order, forces nondecreasing powers (ordschédulePg
mentioned previously), which indeed forces all otlier(wherei € {1,...,i —1,i+1,...,N})
to be sorted in increasing order, to forRf. Now, we have new ratesy, for all usersi =
1,..., N. Remember that the utility of a user is defined as in Ef. (QusTlkehanging the order
of R; vector does not change the value ©f if the order of7 is also changed so that the
previous element pairs are matched again. Let us explanwhih an example. LeR;» < R;1,
Ryk < Rp, and, Ry < Rz < ... < Ryx-1). Then, 7/, and, R, vectors are defined as
Rl = [Rix Rio Ry Riz ... Rix—n))" and 7! = [rix Tio 7 Tiz ... Tux—1))*. Hence, it is

straight forward to write that
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_T_
7-2.’ R; = T Rigg + TjoRyo + 1 Riyn + ... + Ti(K—l)Ri(K—l)

= TRy + TeRip + ... + Ty 1) Rk —1) + Tik Rixc

=7'R,; (21)

where7; and R; are as defined in Eq.](7). As it can be obseniéd= U/ as long ask! = ET

and?i’ = (ﬁ)ﬁ. Here,ﬁE‘T indicates the7; vector ordered according tET. Under these
circumstancesl/; = U/ for all i = 1,..., N, and, the overall utility does not changé,= U’.

This completes the proof.

APPENDIX C

PROOF OFLEMMA 2

For the proof of LemmA&l2, we use the KKT optimality conditiobet, A,, = 7%, R,,1 + 7.5 Ryo.

Then, for the special casey(= 2, K = 2), the set of KKT conditions described in [11] reduces

to Eqns. [(22a)F(229).

e e+l = N =0 (222)
p; =0 (22Db)

Tot = 0 (22c)

To1 + Thg > € (22d)

T+ T =T (22e)

Ha(t—1)4n Tnt = 0 (22f)

i (To1 + Tpy — €) =0 (229)

fori=1,...,6,n=1,2andt =1,2. Combining the set of equations described above leads
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us to the following optimality conditions for the time alktoon:

o171y =0 (23a)

Ry Roy . o
(Alln2 - Azln2 + :u2t—1) (T 7-lt) =0 (23b)

Solving the set of equations in Ed. (23), one can obtain theretk relation between power

allocation and time allocation, as illustrated in Tdble uelto the convex nature of the problem,

the solutions presented in Tallle | represent the globahaptivhen the rate improvements of

the users]',,, are equal. By inspecting Table |, one can observe the piiepamentioned in

Lemmal2. All cases are summarized in Tdble I, which complitesroof.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
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Fig. 1. Problem illustration: There atE energy arivals in a frame, and, the time between consecativeals are allocated
to N users.
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TABLE |
OVERALL OPTIMALITY CONDITIONS FOR THESPECIAL CASE OF TWO USERS ANDTWO SLOTS (T1 = T»): CATEGORIZED
ACCORDING TO THE RELATION BETWEEN THE POWERS ALLOCATED IN TH FIRST AND SECOND SLOTSFOR A GIVEN
POWER ALLOCATION, THE OPTIMAL TIME ALLOCATION DIFFERS ACCORDING TO THE RELATDN BETWEEN THE RATE
IMPROVEMENTS OF THE USERS

Power Relation | Users’ Rate Improvement Slot 1 Slot 2
(Slot 1 vs. Relation User 1 User 2 User 1 User 2 Utility
Slot 2) (User 1 vs. User 2) T ™ T12 T2
T T 1 Ryz ) T
r<r, T o |(-n) |2 g) | tom (R R+ R?) + 2000, )
T 1 T 1 T
T 0 5(1 - F_l) 5(1 + F_l) ngz((Ru +Ri2)(Ryy + Rzz)) + 2log, (E)
rL=r
P1 <P2 T 1\ | T 1 T
0 T E(l + E) 5(1 - E) 10g2((R11 + R12)(Ry1 + Ry2)) + 2log, (5)
Tlae )| L2 ! (R“(R R)Z) 21 T)
L>n 0 T E( +E) E( _E) 09> Ry 21 Rp2)7 | + 092(5
N <n T 0 0 T logz(Ry11Rz2) + 21og,(T)
T 0 0 T log; (R11R33) + 2log,(T)
r=r
P1=DP2
0 T T 0 log; (R11R32) + 2log,(T)
rp>n, 0 T T 0 log,(R13R21) + 2log, (T)
Riz T
log (—(R +R )2) + 2log (—)
T T 2 21 22 2
<, Tasry | Ta-n 0 T R 2
2 2
T
lagz((Ru +Ri)(Ryy + Rzz)) + 2log, (_
Ta-m|fasmy| T 0 2
=r 2 “12 ?
P1 > P2 T
T T 0 T logs((Ry1 + R12)(Roy + Ryz)) + 2log, (E)
A+ | -Q-TY)
2 2
Ry T
log (—(R +R )2) + 2log (—)
T T 2 11 12 2
r>r Ta-m|tasn T 0 Rix 2
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TABLE Il

BCD vs. OPTIMAL RESULTS FOR THESPECIAL CASE OF TwWO USERS ANDTWO SLOTS

Harvests | Mean Path loss | Power Allocation by BCD Time Allocation by BCD Optimal Time Allocation | Utility by BCD | Optimal Utility
10 4.4129 10 4.4129
20.5 [0.0500 5.0000] [ o 5_5871] [ o 55871 29.8094 29.8094
10 4.7399 10 4.7399
[0.5 50] 26.5 [0.0500 5.0000] [ o 5.2601] [ o 52601 28.4062 28.4062
10 4.8786 10 4.8786
3255 [0.0500 5.0000] [0 5_1214] [0 1914 26.5152 26.5152
10 0.2428 10 0.2431
22993 2.7507
20.5 [ ] [ 0 97572] [ o 97569 30.9401 30.9401
10 0.4291 10 0.4295
[50 0.5] 26.5 [2.2466 2.8034] [ 0 9_5709] [ o 95708 29.4618 29.4618
10 0.7024 10 0.7047
3255 [2.2110 2.8390] [0 9_2976] [0 97954 27.2580 27.2580
10 0.0538 10 0.0544
.8238 4.1762
25 [3.8238 4.1762] [ o 9_9462] [ o 99ate 33.5272 33.5272
10 0.0786 10 0.0787
2 . . ' . .
[60 20] 8.5 [3.7879 4.2121] [0 9_9214] [0 99914 32.9577 32.9577
10 0.1216 10 0.1216
3.7379 4.2621
145 [ 1 [ 0 98784] [0 ety 32.2496 32.2496
6 T T T T T
PTF ProNTO BCD PTF PIONTO _g_ BCD PTF ProNTO > BCD
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Olf \ \ \ \ \ \
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Mean Path Loss
Fig. 2.  Utility Improvement (BCD, PTF, ProNTO) vs. Mean Patbss for N = 2: The effect of mean path loss on utility

improvement for the three energy harvesting cagegjular Bursty, Very Bursty
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TABLE 11l
OPTIMAL TIME AND POWERALLOCATION POLICIES VS. NUMBER OF USERS FOUND BY BCD ALGORITHM AND MODIFIED
ACCORDING TOLEMMAII]

23

No.of [T.A. /jUsers/) o1 | siot2 | siots | siota | siots | siote | siot7 | siots | siots | siot10
Users | P.A. | Slots

Al ¢ 10 10 10 10 10 3.6666 0 0 0 0

2 2 0 0 0 0 0 63334 10 10 10 10

PA. 2 25750 25750 2.5750 25750 42117 44720 44720 44720 44720

1 10 10 0 71883 0 0 0 0.0128 0 0

TA. | 2 0 0 0 28117 10 10 10 9.9872 0 0

3 3 0 0 0 0 0 0 0 0 10 10

P.A. 2 24151 24151 25531 29166 3.9160 4 47272 47283 47283

1 10 10 85777 0 0 0 0 0 0 0

al 2 0 0 14223 10 10 47598 0 0 0 0

4 3 0 0 0 0 0 52401 10  8.3789 0 0

4 0 0 0 0 0 0 0 16211 10 10

P.A. 2 23132 23810 28028 28028 36343 40501 42070 50742 50742

1 10 10 33321 0 0 0 0 0 0 0

2 0 0 66678 10  5.1071 0 0 0 0 0

TA. | 3 0 0 0 0 48928 10 52864 0 0 0

3 4 0 0 0 0 0 0 47135 10 3.4256 0

5 0 0 0 0 0 0 0 0 65743 10

PA. 2 21351 24281 25792 31523 31574 3.8909 43727 51247 55592

1 10 10 05333 0 0 0 0 0 0 0

2 0 0 9.4666 10 0 0 0 0 0 0

il @ 0 0 0 0 10 7.3867 0 0 0 0

6 4 0 0 0 0 0 26132 10 3.3768 0 0

5 0 0 0 0 0 0 0 66231 7.7727 0

6 0 0 0 0 0 0 0 0 22272 10

P.A. 18639 1.8639 22338 22553 30596 3.585 3.8704 4.0829 53135 65977

1 10 89882 0 0 0 0 0 0 0 0

2 0 10117 10  6.4262 0 0 0 0 0 0

3 0 0 0 35737 10 24354 0 0 0 0

TA. | a 0 0 0 0 0 7.5645  6.7008 0 0 0

7 5 0 0 0 0 0 0 32991 10 0 0

6 0 0 0 0 0 0 0 0 10 0.6484

7 0 0 0 0 0 0 0 0 0 9.3515

PA. 16343 16707 20084 23109 26543 29765 4 40098 57614 7.3733

1 10 7.4864 0 0 0 0 0 0 0 0

2 0 25135 10 37891 0 0 0 0 0 0

3 0 0 0 6.2108  8.9349 0 0 0 0 0

al @ 0 0 0 0 1.0650 10  2.0483 0 0 0

8 5 0 0 0 0 0 0 7.9516  3.4281 0 0

6 0 0 0 0 0 0 0 65718  3.7485 0

7 0 0 0 0 0 0 0 0 6.2515  2.4839

8 0 0 0 0 0 0 0 0 0 7.5160

PA. 14847 15678 18273 21002 23413 29323 4 44137 57667 7.9655
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e .m. PTF @ .ProNTO _.‘_ BCD 0. PTF‘ -@ .ProNTO ‘BCD L > PTF _‘ } _ProNTO + BCD |
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Fig. 3. Throughput Improvement (BCD, PTF, ProNTO) vs. MeathPLoss forN = 2: The effect of mean path loss on
throughput improvement for the three energy harvestings;d®egular Bursty, Very Bursty

TABLE IV
FAIRNESSINDEX (SG+TDMA, PTF, RONTO, BCD)vs. No. OF USERS THE FAIRNESS OFPTFAND PRONTO
HEURISTICS ARE COMPARED TO THAT OFSG+TDMA'S AND BCD’S, THROUGH F'I.

R Fairness Index (Fl)
R Regular Bursty Very Bursty
SG+TDMA PTF ProNTO BCD SG+TDMA PTF ProNTO BCD SG+TDMA PTF ProNTO BCD

2 0.9989 0.9949 0.9997 0.9911 1.0000 0.9944 0.9998 0.9915 0.9079 0.9844 0.9997 0.9855
3 0.9667 0.9813 0.9931 0.9744 0.8079 0.9972 0.9501 0.9672 0.6398 0.9755 0.9633 0.9635
4 0.9333 0.9484 0.9781 0.9439 0.6520 0.9018 0.8917 0.9288 0.8035 0.8822 0.9642 0.9032
5 0.7487 0.9650 0.8568 0.9034 0.5554 0.8969 0.9360 0.8921 0.5764 0.8913 0.8308 0.8455
6 0.8425 0.8291 0.9059 0.8426 0.5594 0.7804 0.7842 0.8147 0.3123 0.9141 0.6706 0.7941
7 0.6796 0.8567 0.7783 0.7842 0.5399 0.8627 0.6613 0.7115 0.1958 0.8098 0.5695 0.7186
8 0.5800 0.8172 0.6582 0.7100 0.3554 0.7736 0.5627 0.6355 0.2456 0.6257 0.6915 0.6466
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Fig. 4. Average Utility Improvement (PTF, ProNTO, BCD) vsoNof Users: The average is taken owegular Bursty, Very

Bursty cases. The average utility improvements of the proposeadritiigns over SG+TDMA, for increasing number of users,
are compared. Utility improvment increases with incregsimmber of users.
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Fig. 5. Maintaining Energy Causality After Energy Deferral
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