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Abstract
Blocks and tectonic slices within the Mersin Mélange (southern Turkey), which are of Northern Neo-

tethyan origin (Izmir–Ankara–Erzincan Ocean (IAE)), were studied in detail by using radiolarian, cono-

dont, and foraminiferal assemblages on six different stratigraphic sections with well-preserved

Permian succesions. The basal part of the Permian sequence, composed of alternating chert and mud-

stone with basic volcanics, is assigned to the late Asselian (Early Permian) based on radiolarians. The

next basaltic interval in the sequence is dated as Kungurian. The highly alkaline basic volcanics in the

sequence are extremely enriched, similar to kimberlitic/lamprophyric magmas generated at continental

intraplate settings. Trace element systematics suggest that these lavas were generated in a continental

margin involving a metasomatized subcontinental lithospheric mantle source (SCLM). The middle part

of the Permian sequences, dated by benthic foraminifera and conodont assemblages, includes detrital

limestones with chert interlayers and neptunian dykes of middle Wordian to earliest Wuchiapingian

age. Higher in the sequence, detrital limestones are overlain by alternating chert and mudstone with

intermittent microbrecciated beds of early Wuchiapingian to middle Changhsingian (Late Permian) age

based on the radiolarians. A large negative shift at the base of the Lopingian at the upper part of

section is correlated to negative shifts at the Guadalupian/Lopingian boundary associated with the

end-Guadalupian mass extinction event. All these findings indicate that a continental rift system

associated with a possible mantle plume existed during the late Early to Late Permian period. This

event was responsible for the rupturing of the northern Gondwanan margin related to the opening

of the IAE Ocean. When the deep basinal features of the Early Permian volcano-sedimentary

sequence are considered, the proto IAE oceanic crust formed possibly before the end of the Perm-

ian. This, in turn, suggests that the opening of the IAE Ocean dates back to as early as the Permian.
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1 | INTRODUCTION

The ‘Tethys’ is one of the ancient oceanic realms believed to occupy

the space between Laurasia and Gondwana during the Middle–Late

Paleozoic to Early Tertiary time interval (e.g. Robertson & Dixon,

1984; Sengör, 1979; Sengör, Altiner, Cin, Ustaomer, & Hsu, 1988;

Stampfli & Borel, 2002). It is a collective term that has been used for a

number of distinct oceanic domains that opened and closed within
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this time interval (e.g. Sengör, Yilmaz, & Sungurlu, 1984; Stampfli &

Borel, 2002). Although there is now no doubt that the beginning of

the Tethyan evolution goes far back to the Middle–Late Paleozoic

(e.g. Sengör et al., 1988), it still remains controversial how many

Tethyan oceans came into existence and what their opening ages are.

In the Tethyan context, it is common to regard the Palaeotethys as

the older ocean, while the Neotethys is the younger one believed to

have existed during the Late Paleozoic–Cenozoic (e.g. Sengör et al.,

1984; Stampfli & Borel, 2002).

The Anatolian region is a complex tectonic entity, which has been

mainly shaped by the Tethyan geodynamics (e.g. Sengör & Yilmaz,

1981). It includes a number of terranes that became welded during

the Alpine orogeny, following the destruction of Neotethyan litho-

sphere (e.g. Göncüoglu, Dirik, & Kozlu, 1997; Göncüoglu et al., 2000).

In the Anatolian region, the Neotethys is represented by two main

branches; (i) a northern branch named the Izmir–Ankara–Erzincan

(IAE) Ocean whose remnants are preserved within the IAE Suture

Belt; and (ii) a southern branch whose remnants are found within the

Bitlis-Zagros Suture Belt (Sengör & Yilmaz, 1981; Figure 1a). Of the

two branches, the evolution of the northern domain is especially enig-

matic, mostly regarding its opening history. For a long time, the IAE

Ocean was believed to have opened during the Early Jurassic, follow-

ing the closure of the Palaeotethys (Görür, Sengör, Akkök, & Yilmaz,

1983; Sengör & Yilmaz, 1981). This long-lived idea was contested by

the finding of Carnian (Late Triassic) cherts within the IAE Suture Belt

in the Sakarya region (northern Turkey), which suggests that the rift-

ing of the northern Gondwanan margin possibly occurred earlier than

commonly assumed (Tekin, Göncüoglu, & Turhan, 2002). This and

many Triassic occurrences from the IAE Ocean showed that the Trias-

sic ages are in fact not uncommon (e.g. Bragin & Tekin, 1996; Göncüo-

glu, Tekin, & Turhan, 2001; Tekin & Göncüoglu, 2002, 2007). While

the age of rifting and oceanization of the IAE domain moved back into

the Late Triassic (Göncüoglu, Sayit, & Tekin, 2010; Tekin et al., 2002),

the recent discovery of subduction-related basalts intercalated with

Carnian cherts (Lycian nappes, southwest Turkey; Sayit, Göncüoglu, &

Tekin, 2015; Tekin & Göncüoglu, 2002) has added another dimension

to this issue.

To understand the evolution of the Tethyan Oceans, studies on

mélanges would be very useful. According to Raymond (1984), a mél-

ange is defined as ‘the physical mixtures including diverse fragments

assembled by tectonic and sedimentary processes’. Such mélanges were

frequently formed during the Alpine closure of the Neotethyan branches

in Anatolia. One of the best examples for such a case is related to the

closure of the IAE Ocean of Neotethys, where mélanges, including oce-

anic material, together with blocks of marginal sedimentary successions,

were emplaced onto the Tauride–Anatolide Platform (TAP) as huge grav-

ity flows (e.g. Göncüoglu et al., 2000; Göncüoglu, Turhan, & Tekin, 2003;

Robertson & Ustaömer, 2009; Figure 1a). By this process, a series of

‘flysch’ basins developed and then migrated for hundreds of kilometers

on the TAP from north to south. In these basins, several kilometer-thick

FIGURE 1 The geological map showing the distribution of the Mersin ophiolite complex in southern Turkey (revised after Alan et al., 2007; Senel,

2002). (a) The main ophiolite/mélange units associated to suture zones in Turkey. (b) The location of the study area around Sorgun and Hacialani towns
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mélange complexes were formed (Andrew & Robertson, 2002; Özcan

et al., 1988; Özgül, 1976, 1984, 1997; Tekin & Göncüoglu, 2007).

The Mersin Ophiolitic Complex (Moix et al., 2011; Moix, Kozur,

Stampfli, & Mostler, 2007; Pampal, 1984; Parlak & Robertson, 2004)

comprises two units; the Mersin Mélange (MM) and the Mersin

Ophiolite with its sub-ophiolitic metamorphic sole in southern Turkey

(Figure 1b). According to Tekin, Bedi, Okuyucu, Göncüoglu, and Sayit

(2016), Tekin, Bedi, Okuyucu, Göncüoglu, and Sayit et al. (2016), and

Sayit, Bedi, Tekin, Göncüoglu, and Okuyucu (2017), the Mersin Mél-

ange is of sedimentary origin and contains mainly remnants of the

Beysehir–Hoyran nappes sensu Brunn et al. (1970, 1971) that origi-

nated from the IAE Ocean of the Neotethys (equals ‘Bozkir Unit’ by

Özgül, 1976, 1984, 1997). Previously detailed studies performed on

the Mersin Mélange revealed that it includes blocks/tectonic slices of

Early Carboniferous to early Late Cretaceous ages (Moix et al., 2007,

2011; Tekin, Bedi, Okuyucu, Göncüoglu, Sayit, et al., 2016). Tekin,

Bedi, Okuyucu, Göncüoglu and Sayit (2016) report the presence of

blocks and tectonic slices of thick basaltic pillow and massive lava

sequences of pre-late Anisian age and overlying pelagic-clastic sedi-

ment and radiolarian chert of middle to late Late Anisian age. A

detailed geochemical study of the underlying pillow and massive lava

sequences suggests that they were generated at an intra-oceanic

back-arc basin (Sayit et al., 2017).

These findings suggest the possibility that a mature northern Neo-

tethyan ocean already existed by the Middle Triassic; thus, the rifting of

Gondwanan continental lithosphere may have occurred during the Early

Triassic or earlier. This, in turn, implies that the opening of the northern

and southern domains took place at almost the same time, since the

opening of the southern branch of Neotethys is believed to have

occurred during the Middle–Late Permian (e.g. Stampfli & Borel, 2002).

In this regard, the Middle Permian basalts from Oman were interpreted

to represent rifting of the Arabian continental margin leading to opening

of Southern Neotethys (Lapierre et al., 2004). Therefore, an important

problem that remains to be solved is whether any trace of continental

magmatism exists in the northern realm (i.e. IAE domain), which would

have occurred before Anisian (Middle Triassic).

The foremost aim of our study is to reconstruct the Permian geo-

logical evolution of the northern margin of the Tauride–Anatolide

Platform, which is assumed to be the source area of the Permian

blocks in the Mersin Mélange. For this, we studied the stratigraphy of

the measured Permian sequences by using a multi-disciplinary

approach (radiolarian, conodont, and foraminiferal biostratigraphy),

and correlated our data with other Neotethyan successions world-

wide, especially in China and Japan. In addition to these, we studied in

detail the geochemistry and petrology of basic lavas from the basal

part and organic-C δ13C values of pelagic sediments from the upper

part of these blocks/tectonic slices.

2 | GEOLOGICAL FRAMEWORK

The Mersin Ophiolitic Complex is an allochthonous body, tectonically

overlying the Tauride Platform (Figure 1b). This complex includes two

tectonic units; an ophiolitic series and a mélange (Pampal, 1984). Our

study area is located in the latter entity, the mélange. The Mersin

Mélange (Parlak & Robertson, 2004) stretches for about 60 km in

northeast–southwest direction and comprises blocks of diverse origin

and ages. These blocks are embedded in a sandy-clayey clastic matrix

whose composition remains mostly homogenous throughout the mél-

ange (Tekin, Bedi, Okuyucu, Göncüoglu, Sayit et al., 2016). In previous

studies this mélange was referred to as the Tepeköy Mélange

(Pampal, 1984) or the Findikpinari Mélange (Özer, Koc, & Özsayar,

2004) and is tectonically overlain by the ophiolitic unit (Figure 1).

The Mersin Mélange displays essentially a block-in-matrix char-

acter, with the size of blocks varying from tens of meters to kilome-

ters in size. The block-in-matrix character is especially apparent on

small-sized blocks, where elongated bodies of slide blocks with pri-

mary depositional relationships are observed (e.g. Moix et al., 2011)

in an olistostromal matrix. By this evidence, Tekin, Bedi, Okuyucu,

Göncüoglu, and Sayit (2016), Tekin, Bedi, Okuyucu, Göncüoglu, Sayit

et al. (2016) and Sayit et al. (2017) ascribed the formation to a sedi-

mentary mélange. The present relationship between the larger

blocks and the matrix, on the other hand, appears to be sheared.

However, this shearing is attributed to Tertiary (post-Lutetian) com-

pression. The blocks within the mélange are characterized by diverse

lithologies, including mudstone, sandstone, chert, limestone, quartz-

ite, schist, and mafic volcanics. The Mersin Mélange was further sub-

divided into two units; Middle–Late Triassic Hacialani Mélange and

Late Cretaceous Sorgun Ophiolitic Mélange (Moix et al., 2011).

Recent studies by Tekin, Bedi, Okuyucu, Göncüoglu, and Sayit

(2016) and Tekin, Bedi, Okuyucu, Göncüoglu, Sayit et al. (2016),

however, showed that no such distinction occurs within the Mersin

Mélange, and they regarded the mélange as a single mass-flow entity

of Late Cretaceous age.

Previously, some researchers (e.g. Forel et al., in press; H. W.

Kozur, Moix, & Ozsvart, 2007a, 2007b, 2007c, 2009; Moix et al.,

2007, 2011; Ozsvart, Dumitrica, Hungerbühler, & Moix, 2017; Ozs-

vart, Dumitrica, & Moix, 2017; Ozsvart, Moix, & Kozur, 2015; Tekin,

Bedi, Okuyucu, Göncüoglu, & Sayit, 2016; Tekin, Bedi, Okuyucu, Gön-

cüoglu, Sayit et al., 2016) have carried out detailed paleontological

studies on blocks/tectonic slices in the Mersin Mélange to clarify the

radiolarian, foraminiferal and ostracod assemblages. Among these

studies, Moix et al. (2011) investigated the limestone and chert blocks

within the Mersin Mélange and report a chert-detrital limestone asso-

ciation (‘Karinkali Block’) near the Karincali-Southwest section in this

study (Figure 2). A single sample (K5) taken from the middle part of

the chert sequence was dated as Kungurian based on an unfigured

radiolarian assemblage. This age assignment was applied to the com-

plete succession (Moix et al., 2011, p. 76) in the block. Additionally,

some isolated samples derived from different blocks in the mélange

yielded Early Permian (Kungurian) to Middle Permian (Roadian to

Capitanian) radiolarian assemblages. So far, those findings are the first

indications for the presence of deep-marine Permian rocks and sug-

gest a possibility that they originated from a basinal setting,

yet almost completely destroyed. Recently, Tekin, Bedi, Okuyucu,

Göncüoglu, Sayit et al. (2016) re-mapped the central part of the Mer-

sin Mélange and discovered a number of Permian blocks among other

Paleozoic and Mesozoic ones.

To resolve the stratigraphic properties of Permian sequences in the

Mersin Mélange, in this study samples for different purposes
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(micropaleontology, petrography, geochemistry, and isotope study) have

been collected along six different stratigraphic sections (Cikrik, Sahanca-

nak, Hodul, Karincali-Southwest, Karincali-East, and Aliclipinar-West;

Figure 2).

3 | THE STUDIED STRATIGRAPHIC
SECTIONS

The general features and lithological characteristics of the studied

stratigraphic sections (Cikrik, Sahancanak, Hodul, Karincali-Southwest,

Karincali-East and Aliclipinar-West) are described as follows;

3.1 | The Cikrik section

This section occurs in the northern part of the study area, situated on

the northern bank of the Keven Creek (at Silifke O32a2 quadrangle

sheet, between 40.83.850N/6.03.903E and 40.83.790N/06.03.942E

UTM coordinates; Figure 2), and named after Cikrik Hill. The succes-

sion in this section is overturned and its total measured thickness is

25.6 m (Figure 3).

The basal part of the section is represented by alternation of

green and red with minor gray colored, thin-bedded chert and mud-

stone (Figure 4a, labeled C-M). The contact between the base of the

section and the underlying mélange matrix is structural (Figure 4a).

The basal part is followed by gray colored, thick-bedded, fine-grained

carbonate breccia containing coarse pebbles and rare chert nodules

(Figure 4a,b, labeled LB). Pebble size decreases towards the upper part

of the section. A total of 17 samples (Cik-8 to Cik-24) were collected

from the lower thin-bedded chert for radiolarian biostratigraphy. A

single chert band with radiolarians was encountered in the center of

the section (Figure 3). From the upper part of the section, two samples

(Cik-6 and Cik-7) for conodonts, one sample (Cik-4) for radiolarians

and four samples (Cik-1, to Cik-3, Cik-5) for benthic foraminiferal

determinations were collected (Figure 3).

3.2 | The Sahancanak section

This section is located to the south of the Sahancanak district

(at Silifke O32a2 quadrangle sheet, between 40.81.686N/6.04.836E

and 40.81.748N/6.04.860E coordinates; Figure 2). The total thickness

FIGURE 2 Detailed map showing the location of the stratigraphic sections and surrounding geology. Key: a, The Mersin Mélange: 1, Alternating

chert, mudstone and basic volcanics of late Asselian to early Wordian age; 2, detrital limestone with rare chert interlayers of middle Wordian to
earliest Wuchiapingian age; 3, alternating chert and mudstone with microbreccia breaks of Wuchiapingian to middle Changhsingian age;
4, undifferentiated mélange (mainly matrix) of Late Cretaceous age; b, Cenozoic to Quaternary units; c, stratigraphic contact; d, fault; e, thrust; f, main
roads; g, drainage system; h, section places; i, settlements; j, main peaks. Simplified after Tekin, Bedi, Okuyucu, Göncüoglu, Sayit et al. (2016)
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of the section is about 33 m, and both the upper and lower contacts

of the section are structural (Figure 3).

The Sahancanak section is mainly composed of carbonates, with the

lower part of the section being composed of gray colored, thick-bedded

detrital limestone (Figure 4c). The upper part of the section is character-

ized by gray to pink colored, medium- to thick-bedded detrital limestones.

Neptunian dykes filled mainly by red pelagic mudrocks are commonly

observed features (Figure 4d). A total of 12 samples (Sah-1 to Sah-12)

were collected along the section for benthonic foraminifera (Figure 3).

3.3 | The Hodul section

The location of this section is at the westernmost part of the study area

(at Silifke O32a3 quadrangle sheet, between 40.80.021N/6.00.410E

FIGURE 3 Correlation of stratigraphic sections in this study. Key: a, limestone; b, cherty limestone; c, clayey limestone; d, detrital limestone; e,

alternating chert and mudstone; f, basic volcanic rock; g, microbreccia; h, radiolarian occurrence; i, conodont occurrence; j, benthic foraminifera
occurrence; k, samples for geochemistry. Chan., Changhsingian. N.o-A.l., N. optima –A. lauta; A. f-a., A. flexa-A. angusta; A.tri., A. triangula
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and 40.80.045N/6.00.410E UTM coordinates; Figure 2). The section is

named after the Hodulpinari district to the east of this locality

(Figure 2). The succession in the section is overturned and its total

thickness is about 8.3 m.

The Hodul section is composed of alternating red with lesser green

colored, thin to medium-bedded chert and mudstone (Figure 4e,f). Both

the upper and lower boundaries against the clastic matrix of the mél-

ange are sheared and embedded in the matrix of the mélange. A total of

FIGURE 4 Field photographs from stratigraphic sections in this study. (a,b) the Cikrik section: (a) alternating red to gray colored chert-mudstone (C-

M) at the basal part of the section of Roadian to Wordian age limited by mélange matrix (Ma) followed by basal part of the coarse limestone breccia
(LB) of Wordian age; (b) close-up of coarse limestone breccia in the central part of the section. (c,d) The Sahancanak section: (c) general view from the
section; (d) Neptunian dyke with red-colored pelagic mudstone in the thick-bedded, gray colored detrital limestone of Capitanian age. (e,f) The Hodul
section: (e) basal part of the section composed of red-colored alternating chert and mudstone of Kungurian age; (f) close-up of the red-colored,
alternating thin to medium-bedded chert and mudstone of Kungurian–Roadian age. (g) Field photograph showing locations of Karincali-Southwest
and Karincali-E sections measured along chert (Kc) and detrital limestone (Kl) at the east and west banks of the Sorgun creek, view from southeast to
northwest. (h) The Karincali-Southwest section in a view from the basal part of section showing the basic volcanics (Bv) and alternating chert and
mudstone (C-M) of late Asselian–middle Artinskian age. (i,j) The Karincali-East section: (i) basal part of the detrital limestone in the central part of the
section of middle Wordian to Capitanian age; (j) view from the upper part of the section showing the detrital limestone (DL) of earliest Wuchiapingian
age grading into alternating chert and mudstone (C-M) with microbreccia breaks of Wuchiapingian to middle Changhsingian age limited by mélange
matrix (Ma). (k) The Aliclipinar-West section, lower part of the section represented by detrital limestone of Capitanian age
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13 samples (Hod-1 to Hod-13) were taken along the section for radio-

larian determinations, four of which (Hod-2, Hod-7, Hod-9, and Hod-

13) yielded age-significant data (Figure 3).

3.4 | The Karincali-Southwest section

This is one of the more representative sections showing the typical

features of the Permian rock sequence. It is located in the southwest

of studied region (at Silifke O32a3 quadrangle sheet, between

40.78.502N/6.03.204E and 40.78.625N/6.03.010E UTM coordi-

nates; Figure 2), and is named after Karincali hill. The total thickness

of the section is about 108 m, and it is bounded by faults at both

lower and upper contacts (Figures 2 and 3).

Based on its lithological characteristics, the Karincali-Southwest

section can be subdivided into three main parts (Figure 3). The basal

part of the section is dominated by alternating green colored, altered

basic volcanics, laminated red to pink colored mudstone, green to red-

colored, thin-bedded chert, and red to pink colored, thin-bedded lime-

stone (Figures 3 and 4g,h). The middle part of the section is made up

of alternating red to rarely green colored, thin to medium-bedded

chert and mudstone with rare green colored altered basic volcanics,

and yellow to brown-colored thin-bedded limestone intercalations

(Figure 3). Towards the upper part of the section, gray to pink colored,

thin to medium-bedded detrital limestone becomes dominant with

rare chert levels (Figure 3). A total of 30 samples (eighteen samples

from chert for radiolarian determinations, eight samples from lime-

stone for benthic foraminiferal determinations and four samples from

basic volcanics for geochemical analyses) were taken along the

section (Figure 3).

3.5 | The Karincali-East section

This section is located in the southern part of the study area

(at Silifke O32a3 quadrangle sheet, between 40.78.847N/6.03.759E

and 40.78.920N/6.03.650E UTM coordinates; Figure 2) and very

close to Karincali hill (Figure 2 and 4g). Both the upper and lower

contacts are bounded by faults and the total thickness is about 89 m

(Figure 3).

The lowermost part of the section is represented by alternating

red-colored, thin to medium-bedded chert and mudstone (Figure 3).

This part is overlain by medium to thick-bedded, gray colored detrital

limestone with occasional red-colored chert bands (Figures 3 and 4i).

Clasts in this detrital limestone are variable in size; most of them are

2–5 cm in diameters. Towards the upper part, alternating yellow to

gray colored, thin-bedded chert and gray colored, thin to medium-

bedded limestone are the dominant lithologies (Figures 3, and 4j). This

part is overlain by alternating green to black-colored, thin-bedded

chert and mudstone (Figures 3, and 4j). The sequence also contains

medium-bedded, pink colored conglomerates towards the base of the

limestone (Figure 3). Conglomerates include thin to coarse-grained

materials originating from limestone, chert and basic volcanics

(Figure 3).

A total of 57 samples were collected along the section for a vari-

ety of paleontological analyses (Figure 3). From the basal and

uppermost parts of the section, 27 samples (Kar-E-1 to Kar-E-10,

Kar-E-34, Kar-E-40 to Kar-E-44, Kar-E-46 to Kar-E-57) were taken

from chert for radiolarian analysis (Figure 3). Moreover, to check for

benthic foraminifera and conodont contents in the detrital limestone

and conglomerate, 30 samples were collected from the central part

of the section (Figure 3).

3.6 | The Aliclipinar-West section

This is a very short section with 10.3 m total thickness, which is situ-

ated in west part of the study area (at Silifke O32a3 quadrangle sheet,

between 40.80.171N/6.01.459E and 40.80.180N/6.01.465E UTM

coordinates; Figure 2). The name of the section was derived from the

Aliclipinar district (Figure 3).

The basal and central part of the section includes gray to beige-

colored, medium-bedded detrital limestone with rare chert interbeds

(Figure 4k). This part is overlain by red-colored chert and mudstone

alternation at the top. This part is separated from the lower part by a

structural contact (Figure 3). A total of five samples were collected

along the section and only two of them (Alic-W-2 and Alic-W-5) col-

lected from chert beds contains identifiable radiolarians (Figure 3).

4 | DATING OF PERMIAN SEQUENCES

Permian sequences within the Mersin Mélange have been dated by

using radiolarians, benthonic foraminifera and conodonts. We used radi-

olarians to date the cherty parts of the sequences, chiefly in the basal

and upper parts of the stratigraphic sequence. All chert samples from

the stratigraphic sections have been processed with diluted hydrofluoric

acid (5–10 % HF) following Dumitrica's (1970) and Pessagno and New-

port’s (1972) methods to obtain radiolarian assemblages.

The central part of the sequence was dated by benthonic

foraminifera and conodonts which were recovered from detrital

limestone with clasts of platform carbonate. Limestone materials

were processed with diluted Acetic Acid (5–10 % CH3COOH) or

diluted Formic Acid (5–10 % HCOOH) to obtain Conodont assem-

blages. Subsequently, all residues underwent heavy liquid separa-

tion using SPT (Sodium Polytungstate) to concentrate conodonts.

To study the benthic foraminifera and algae from the limestone

materials, both oriented and random thin-sections were prepared.

The composite radiolarian biostratigraphic scheme employed is

a synthesis based on data from southwest Japan (Ishiga, 1986,

1990; Kuwahara, Yao, & Yamakita, 1998; Shimakawa & Yao, 2006;

A. Yao & Kuwahara, 2004), South China (Y. J. Wang, Cheng, & Yang,

1994; Y. J. Wang, Luo, & Yang, 2012; Y. J. Wang & Yang, 2011; Y. J.

Wang, Yang, Cheng, & Li, 2006; N. Zhang, Henderson, Xia, Wang, &

Shang, 2010; L. Zhang, Ito, Feng, Caridroit, & Danelian, 2014),

Russia (e.g. Nazarov & Ormiston, 1985, 1993), Thailand, Malaysia

(e.g. Jasin & Harun, 2011; Jasin, Said, & Rahman, 1995) and includes

the most up to date chronostratigraphic correlation. In this study,

we adopt the zonation presented in Aitchison, Suzuki, Caridroit,

Danelian, and Noble (2017) with reference to some zones in
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southwest Japan (i.e. A. sinuata zone; Figure 5) and follow the

generic taxonomy of Noble et al. (2017).

4.1 | Radiolarian biostratigraphy

4.1.1 | Radiolarian biostratigraphy of lower and middle
Permian sequences

The basal part of the Permian sequences is dominated by radiolarian

chert containing moderately diverse but characteristic radiolarian

assemblages that we are able to assign to existing radiolarian biozones

established in the Paleotethyan realm of southeast Asia. The basal

part of the Permian sequences within the Mersin Mélange contains

rich and moderately diverse radiolarians of late Asselian (Early Perm-

ian) to early Wordian (Middle Permian) age (Figure 3). Radiolarian

assemblages obtained in this study are illustrated in Figures 6–10.

Details of these assemblages are summarized as follows:

The Parafollicucullus lomentaria–Parafollicucullus sakmarensis

Assemblage Zone of Y. J. Wang and Yang (2011)

The Parafollicucullus lomentaria zone was first recognized in Japan (Ishiga,

1986, 1990; Ishiga & Imoto, 1980; Ishiga, Kito, & Imoto, 1982). It was

characterized by an assemblage containing the nominal taxon along with

P. sakmarensis, P. longicornis, P. scalprata and P. ornata and the top was

defined by the first appearance of P. scalprata m. rhombothoracata (Ishiga

et al., 1982). The assemblage is widely recognized in Asia, including South

China (A. Yao & Kuwahara, 2004), Malaysia (Jasin & Harun, 2011),

Thailand (Sashida & Salyapongse, 2002), North America (Blome & Reed,

1992; Cordey, 1998), and the southern Urals (H. Kozur & Mostler, 1989).

Work in South China by Wang and others (Y. J. Wang et al., 1994; Y. J.

Wang & Yang, 2011) recognize the P. lomentaria–P. sakmarensis Zone,

which they indicate as correlative to the P. lomentaria Zone of Japan, but

their stratigraphic range chart indicates an overlap between much of the

range of P. lomentaria and P. scalprata m. rhombothoracata within the

zone. Based on the ranges shown in Y. J. Wang and Yang (2011), the top

of the P. lomentaria – P. sakmarensis Assemblage Zone is marked by the

last appearance of the two nominal taxa of the zone (Figure 5).

Radiolarian assemblages belonging to this zone have been recog-

nized in the Karincali-Southwest and Karincali-East sections

(Figure 3). The basal part of the Karincali-Southwest section including

basic volcanics, limestone, and chert and the basalmost part of the

Karincali-East characterized by alternating chert and mudstone con-

tain radiolarian assemblages most comparable to the P. lomentaria–P.

sakmarensis Assemblage Zone described by Y. J. Wang and Yang

(2011) (Figures 3, and 5; Tables 1 and 2).

The basal part of the Karincali-Southwest section (sample Kar-SW-

7) contains Parafollicucullus lomentaria (Figure 7(16)), Parafollicucullus

longicornis (Figure 7(19)), Parafollicucullus triangularis and Latentifistularia

species (e.g. Latentifistula hetroextrema (Figure 8(29,30)) andQuadricaulis

flata) that are characteristic of this zone and its correlatives (e.g. Ishiga,

1986, 1990; Jasin & Harun, 2011; Jasin, Harun, Said, & Saad, 2005; Y. J.

Wang & Yang, 2011, Figure 5). This sample lacks P. u-forma and P. ele-

gans, which are characteristic of the preceding zone (the Parafollicucullus

u-forma Zone) and rule out an older age assignment (Figure 5). A similar

assemblage has also been identified in the overlying sample Kar-SW-8.

Kar-SW-10 (Table 1) has a similar assemblage as Kar-SW-8, with the

exception that P. scalprata m. rhombothoracata makes its first appear-

ance. P. sakmarensis makes its first appearance in Kar-SW-13 (Figure 7

(23–25)), above the first appearance of Parafollicucullus scalprata

m. rhombothoracata, and suggests that P. sakmarensis possibly has a

higher first occurrence than it does in Japan, China, Malaysia, and the

Urals where P. lomentaria and P. sakmarensis commonly overlap

throughout most of the zone (Ishiga, 1990; Jasin & Harun, 2011; Y. J.

Wang & Yang, 2011). Absence of P. sakmarensis in the older samples in

the Karincali-Southwest section can also be a function of preservation

and relative abundance of this taxon.

We assign these samples to the P. lomentaria–P. sakmarensis zone

(Y. J. Wang & Yang, 2011) because the taxon occurrences are consis-

tent with the Chinese succession with P. scalprata m. rhombothoracata

co-occurring with both P. sakmarensis and P. lomentaria. This is in con-

trast to the P. lomentaria Zone by Ishiga (1990), whose top is defined

by the first appearance of P. scalprata m. rhombothoracata.

The Parafollicucullus scalprata m. rhombothoracata Interval Zone

of Y. J. Wang and Yang (2011)

The zone described in Y. J. Wang and Yang (2011) is a variant of the Par-

afollicucullus rhombothoracata Zone recognized in Japan (Ishiga, 1986,

1990; Ishiga & Imoto, 1980; Ishiga et al., 1982), and is recognized widely

throughout Asia and North America (Caridroit in De Wever, Dumitrica,

Caulet, Nigrini, & Caridroit, 2001). Whereas Ishiga studies (e.g. Ishiga,

1986, 1990; Ishiga & Imoto, 1980; Ishiga et al., 1982) defined the base

as the first occurrence of the nominal taxon, Y. J. Wang and Yang (2011)

defined an interval zone representing the partial range of the nominal

taxon. Based on the range chart in Y. J. Wang and Yang (2011), the base

is recognized by the last appearance of P. sakmarensis and the top as the

first appearance of Albaillella xiaodongensis. We follow the definition in

Y. J. Wang and Yang (2011), as it fits best with our occurrence data

(Tables 1 and 2), and we assign samples Kar-SW-14 in the Karincali-

Southwest section and Kar-E-2 to Kar-E-4 in the Karincali-East

section (Tables 1 and 2) to this zone (Figures 3 and 5).

The chronostratigraphic calibration of the Cisuralian Tethyan

radiolarian assemblages of southeast Asia is weak, and leaves a

certain amount of uncertainty in the age of the assemblages we

assign to the P. lomentaria–P. sakmarensis and P. scalprata

m. rhombothoracata Zones. The age of the P. lomentaria and the

correlative P. lomentaria–P. sakmarensis Zone is reported in differ-

ent articles as follows: middle Wolfcampian (=Asselian) by Ishiga

and others (Ishiga, 1986, 1990; Ishiga & Imoto, 1980; Jasin et al.,

2005); middle–late Wolfcampian (Asselian–Artinskian) by Wang

and others (Y. J. Wang et al., 1994, 2006; Y. J. Wang & Yang,

2011); late Asselian–middle Sakmarian (Caridroit in De Wever

et al., 2001; Jasin & Harun, 2011; Sashida & Salyapongse, 2002);

early to middle Sakmarian (Ito & Matsuoka, 2015); and late

Artinskian-early Kungurian (H. Kozur & Mostler, 1989). Meanwhile,

the age of the P. scalprata m. rhombothoracata Zone and its correl-

atives has been assigned to latest Wolfcampian (late Sakmarian to

late Artinskian) in the body of work from from southeast Asia

(e.g. Ishiga, 1986, 1990; Jasin & Harun, 2011; Spiller, 2002; Y. J.

Wang et al., 1994, 2006, 2012; Y. J. Wang & Yang, 2011).
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FIGURE 5 Radiolarian zones for the Permian period and their chronostratigraphic correlation as presented by various authors in the Tethyan

realm. Solid zonal boundary lines are constrained by conodont datums (on right). Global chronostratigraphic units are from Ogg, Ogg, and
Gradstein (2016), West Texas stages (Gradstein, Ogg, Schmitz, & Ogg, 2012), Chinese stages (Jin, Shang, & Wang, 2003), and conodont zones are
those currently recognized by the International Subcomission on Permian Stratigraphy (Shen et al., 2013). The composite Peri-Tethyan zonation,
modified from Aitchison et al. (2017), also appears in Figure 3. Southwest Japan (Mino-Tamba belt) zonation (A. Yao, Kuwahara, Ezaki, Liu, & Hao,
2004) is based on Ishiga (1986, 1990), with modifications made by Kuwahara et al. (1998) and J. Yao, Yao, and Kuwahara (2001). The South China
(Guangxi, Yunan, Guihzou regions) zonation in Y. J. Wang and Yang (2011) is adopted from Y. J. Wang et al. (1994, 2006), and the Peninsular
Malaysia zonation is from Jasin and Harun (2011), with the addition of the A. sinuata Zone from Spiller (2002). Numbered references correspond
to suprascripts in radiolarian datums. Zone types: Ab, abundance or acme zone; As., assemblage zone; FA, first appearance zone (type of interval
zone where base is defined by FA of nominal taxon and top by overlying zone); I, interval zone; TR, taxon range zone. Genus: A, Albaillella; F,
Follicucullus; N, Neoalbaillella; P, Parafollicucullus. The following are abundance zones from Xia, Zhang, Wang, and Kakuwa (2004): A. yaoi, A.tri
(A. triangula), A. f-a (A. flexa-A. angusta), N.o-A.l. (N. optima-A. lauta)
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Based on their review of the radiolarian literature and updated

calibration to the conodont biostratigraphy, Aitchison et al. (2017)

consider the age of the P. lomentaria assemblage (minus P. scalprata

and P. scalprata m. rhombothoracata) to be Sakmarian, but they fur-

ther state that the first appearance of P. scalprata and P. scalprata

m. rhombothoracata does not appear to predate the late Artinskian.

If the first appearance of P. scalprata m. rhombothoracata is taken to

be the most reliable datum then the age of these two zones can be

considered to be late Artinskian–middle Kungurian. This implies that

age of the basal part of the Karincali-Southwest section dominated

by basic volcanics can be of late Asselian–middle Artinskian age

(Figure 3, Table 1).

The Albaillella sinuata Zone of Shimakawa and Yao (2006), or

lower Albaillella foremanae Zone of N. Zhang et al. (2010)

The basal part of the Hodul section, central parts of the Karincali-

Southwest and basal part of the Karincali-East sections, mainly

FIGURE 6 Permian radiolarians from the Mersin Mélange. (1,2) Albaillella asymmetrica Ishiga & Imoto: (1) Kar-SW-16; (2) Hod-7, scale

bar = 80 μm. (3) Albaillella excelsa Ishiga, Kito & Imoto, Kar-E-56, scale bar = 85 μm. (4,5) Albaillella flexa Kuwahara: (4) Kar-E-56; (5) Kar-E-57,
scale bar = 85 μm. (6–8) Albaillella lauta Kuwahara: (6) Kar-E-52; (7) Kar-E-54; (8) Kar-E-57, scale bar = 100 μm. (9–11) Albaillella levis Ishiga,
Kito & Imoto: (9) Kar-E-50; (10) Kar-E-51; (11) Kar-E-53, scale bar = 90 μm. (12–14) Albaillella protolevis Kuwahara: (12) Kar-E-49; (13) Kar-E-52;
(14) Kar-E-54, scale bar = 80 μm. (15–17) Albaillella sinuata Ishiga & Watase: (15) Kar-SW-17; (16) Kar-SW-18; (17) Hod-13, scale bar = 110 μm.
(18) Albaillella xiadongensis Wang, Kar-SW-16, scale bar = 80 μm. (19,20) Neoalbaillella gracilis Takemura & Nakaseko: (19) Kar-E-49; (20) Kar-E-
50, scale bar = 90 μm. (21) Neoalbaillella optima Ishiga, Kito & Imoto, Kar-E-50, scale bar = 100 μm. (22–24) Neoalbaillella ornithoformis
Takemura & Nakaseko: (22) Kar-E-50; (23) Kar-E-54; (24) Kar-E-56, scale bar = 100 μm. (25) Follicucullus charveti charveti Caridroit & De Wever,
Kar-E-41, scale bar = 110 μm. (26) Follicucullus charveti falx Caridroit & De Wever, Kar-E-41, scale bar = 150. (27,28) Follicucullus charveti
orthogonus Caridroit & De Wever: (27) Kar-E-40; (28) Kar-E-41, scale bar = 130 and 160, respectively. (29) Follicucullus dilatatus Rudenko, Kar-E-
47, scale bar = 120 μm. (30) Follicucullus lagenarius Rudenko, Cik-9, scale bar = 90 μm. (31–33) Follicucullus monacanthus Ishiga & Imoto: (31) Cik-
9; (32) Kar-SW-24; (33) Kar-SW-25, scale bar = 120 μm. (34,35) Follicucullus porrectus Rudenko: (34) Kar-E-40; (35) Kar-E-46, scale bar = 120 and
150 μm, respectively
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composed of alternating chert and mudstone, include characteristic

assemblages of this zone (Figure 3). Sample Kar-SW-16 in the

Karincali-Southwest section includes Albaillella xiaodongensis (Figure 6

(18)), Albaillella asymmetrica (Figure 6(1)) and Parafollicucullus scalprata

scalprata, and sample Kar-SW-17 includes the first appearance of

Albaillella sinuata (Figure 6(15)). This part of section appears to be cor-

relative to the the Albaillella sinuata Zone of Ishiga (1990) in Japan,

either the Albaillella xiaodongensis Zone or the Albaillella sinuata Zone

of Y. J. Wang et al. (1994, 2006, 2012), Y. J. Wang and Yang (2011)

(Figure 5) in China, and the A. sinuata Zone in Malaysia (Spiller, 2002).

In China, alternative zonations for this interval have also been pro-

posed. The Albaillella sinuata Zone is a first appearance zone proposed

from the Qinzhou area in South China by Shimakawa and Yao (2006),

and the A. foremanae Zone, a first appearance zone proposed by

FIGURE 7 Permian radiolarians from the Mersin Mélange. (1,2) Follicucullus scholasticus Ormiston & Babcock: (1) Kar-E-41; (2) Kar-E-46, scale

bar = 150 μm. (3) Follicucullus sphaericus Takemura, Kar-E-46, scale bar = 120 μm. (4–7) Parafollicucullus fusiformis Holdsworth & Jones: (4,5)
Hod-2; (6) Cik-18; (7) Cik-11, scale bar = 120 μm. (8–10) Parafollicucullus globosa (Ishiga & Imoto): (8) Cik-19; (9) Cik-14; (10) Cik-11, scale
bar = 120 μm. (11–13) Parafollicucullus internata (Wang): (11) Cik-15; (12) Cik-10; (13) Cik-10, scale bar = 120 μm. (14,15) Parafollicucullus ishigai
(Wang): (14) Kar-SW-18; (15) Kar-E-10, scale bar = 130 μm. (16–18) Parafollicucullus lomentaria (Ishiga & Imoto): (16) Kar-SW-7; (17) Kar-SW-8;
(18) Kar-SW-10, scale bar = 180 μm. (19) Parafollicucullus longicornis (Ishiga & Imoto), Kar-SW-7, scale bar = 120 μm. (20–22) Parafollicucullus
longtanensis (Sheng & Wang): (20) Hod-2; (21) Hod-2; (22) Kar-E-9, scale bar = 110 μm. (23–25) Parafollicucullus sakmarensis Kozur, all from Kar-
SW-13, scale bar = 120 μm. (26,27) Parafollicucullus scalprata rhombothoracata (Ishiga & Imoto): (26) Kar-SW-14; (27) Kar-E-3, scale
bar = 130 μm. (28,29) Parafollicucullus scalprata scalprata (Holdsworth & Jones): (28) Kar-SW-17; (29) Kar-E-5, scale bar = 140 μm. (30,31)
Parafollicucullus triangularis (Wang): (30) Kar-E-2; (31) Kar-E-4, scale bar = 160 μm. (32,33) Parafollicucullus yanaharensis (Nishimura & Ishiga):
(32) Cik-18; (33) Cik-11, scale bar = 120 μm. (34) Parafollicucullus zhengpanshanensis (Sheng & Wang), Kar-SW-8, scale bar = 150 μm. (35,36)
Cauletella manica (De Wever & Caridroit): (35) Kar-E-49; (36) Kar-E-56, scale bar: 150 μm
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N. Zhang et al. (2010) from the Dachongling section, also in South

China. According to Y. J. Wang and Yang (2011), Albaillella sinuata is

rare in its lower range and becomes abundant in the middle of its

range, causing them to establish the Albaillella sinuata Acme Zone. In

contrast, Shimakawa and Yao (2006), also working in South China,

show an overlap in the range of both A. sinuata and A. xiaodongensis

but with no notable acme, and occurring below the first appearance

of P. longtanensis, leading them to redefine the A. sinuata zone as a

first occurrence zone, more in line with that of Ishiga (1990). The

A. sinuata Zone by Shimakawa and Yao (2006), like that of Ishiga

(1990), encompasses both the A. xiaodongensis and A. sinuata zones

by Y. J. Wang and Yang (2011), and the A. foremanae Zone by

N. Zhang et al. (2010) appears to encompass both the A. sinuata and

overlying P. longtanensis zones by Ishiga (1990). Herein, we follow the

zonal definition of Shimakawa and Yao (2006) from South China, as it

best fits the faunal succession seen in our material.

In the Karincali-East section, the lowest samples assigned to this

zone, samples Kar-E-5 and Kar-E-6 lack Albaillella sinuata but contain

Parafollicucullus scalprata scalprata (Figure 7(29)), and A. sinuata occurs

in both Kar-E-7 and Kar-E-8. Ishiga (1990) shows a more attenuated

FIGURE 8 Permian radiolarians from the Mersin Mélange. (1–3) Ishigaum craticula Shang et al.: (1) Kar-E-50; (2) Kar-E-56; (3) Kar-E-56, scale

bar = 130 μm. (4) Ishigaum obesum De Wever & Caridroit, Kar-E-52, scale bar = 120 μm. (5,6) Ishigaum trifustis De Wever & Caridroit: (5) Kar-E-
49; (6) Kar-E-53, scale bar = 140 μm. (7,8) Ishigaum tristylum Feng: (7) Kar-E-48; (8) Alic W-5, scale bar = 150 μm. (9,10) Pseudotormentus
kamigoriensis De Wever & Caridroit: (9) Hod-2; (10) Kar-SW-24, scale bar = 330 and 290 μm, respectively. (11,12) Shangella longa Feng: (11) Kar-
E-54; (12) Kar-E-55, scale bar = 170 μm. (13–15) Triplanospongos angustus (Noble & Renne); (13) Kar-E-54; (14) Kar-E-55; (15) Alic-W-5, scale
bar = 130 μm. (16–18) Triplanospongos musashiensis Sashida & Tonishi: (16) Kar-E-55; (17,18) Alic-W-5, scale bar = 110 μm. (19–21)
Areolicaudatus semiglobosa Feng: (19) Kar-E-53; (20) Kar-E-54; (21) Alic-W-5, scale bar = 130 μm, 130 μm, 200 μm, respectively. (22–24)
Latentibifistula aspersongiosa Sashida & Tonishi: (22) Cik-4; (23) Kar-E-54; (24) Kar-E-55, scale bar = 220 μm. (25) Latentifistula banchengensis
Wang, Kar-SW-17, scale bar = 150 μm. (26–28) Latentifistula crux Nazarov & Ormiston: (26) Kar-SW-18; (27) Kar-SW-19; (28) Kar-E-1, scale
bar = 150 μm. (29,30) Latentifistula hetroextrema Nazarov, both from Kar-SW-7, scale bar = 300 μm. (31,32) Latentifistula patagilaterala
Nazarov & Ormiston: (31) Kar-SW-25; (32) Kar-E-8, scale bar = 200 μm
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stratigraphic range of P. scalprata in Japan, making its last occurrence

below the A. sinuata Zone but subsequent work in Japan and China

show that P. scalprata ranges well above the A. sinuata Zone

(Shimakawa & Yao, 2006). Based on the presence of Albaillella sinuata,

it can be suggested that at least the level above Kar-E-6 should corre-

spond to the Albaillella sinuata Zone (Table 2). Sample Hod-13 in the

Hodul section includes both Parafollicucullus scalprata scalprata and

Albaillella sinuata (Figure 6(17)), similar to China, and is also assigned

to the Albaillella sinuata Zone (Figures 3 and 5; Table 3).

In terms of age assignment, the A. sinuata assemblage in Malaysia

was assigned to the Leonardian (Spiller, 2002), revised to Kungurian–

Roadian in Metcalfe (2000). In China, the A. xiaodongensis Zone and

A. sinuata Zones in Y. J. Wang and Yang (2011) are assigned to the

the lower and middle Leonardian, respectively, which is roughly equiv-

alent to the Kungurian. The Parafollicucullus scalprata Zone in A. Yao

and Kuwahara (2004) and Shimakawa and Yao (2006) do not contain

independant biostratigraphic control from the Migong section in Qinz-

hou but instead adopt the age assignments from the zonation

FIGURE 9 Permian radiolarians from the Mersin Mélange. (1,2) Latentifistula similicutis Caridroit & De Wever: (1) Kar-E-40; (2) Kar-E-41, scale

bar = 140 μm. (3) Latentifistula texana Nazarov & Ormiston, Hod-9, scale bar = 150 μm. (4–6) Ormistonella adhaerens Feng: (4) Kar-E-48; (5) Kar-
E-54; (6) Alic-W-5, scale bar = 140 μm. (7) Ormistonella elegans (Feng), Kar-E-50, scale bar = 100 μm. (8,9) Polyfistula hexalobota Nazarov &
Ormiston, both from Hod-2, scale bar = 200 μm. (10) Polyfistula regularis Feng, Kar-E-48, scale bar = 140 μm. (11,12) Quadricaulis flata (Wang):
(11) Hod-9; (12) Kar-SW-16, scale bar = 250 μm. (13) Quadricaulis inflata (Sashida & Tonishi), Kar-SW-16, scale bar = 290 μm. (14–16)
Quadricaulis gracilis (De Wever & Caridroit): (14) Kar-E-52; (15) Kar-E-54; (16) Alic-W-5, scale bar = 200 μm. (17,18) Quadricaulis phlogides
(Wang & Li): (17) Kar-SW-14; (18) Kar-E-2, scale bar = 130 μm. (19) Quadricaulis scalae (De Wever & Caridroit), Kar-E-56, scale bar = 130 μm.
(20–22) Grandetortura nipponica Sashida & Tonishi: (20) Cik-4; (21) Kar-E-2, (22) Kar-E-6, scale bar = 220 μm. (23) Octatormentum? floriferum
Sashida & Tonishi, Kar-E-56, scale bar = 160 μm. (24) Octatormentum yaoi Wu & Feng, Kar-E-56, scale bar = 200 μm. (25–27) Ruzhencevispongus
triradiatusWang: (25) Cik-4; (26) Kar-SW-17; (27) Kar-SW-17, scale bar = 180 μm. (28–30) Ruzhencevispongus uralicus Kozur: (28) Cik-4; (29) Kar-
E-1; (30) Kar-E-2, scale bar = 180 μm. (31) Tetragregnon nitidus Nazarov & Ormiston, Kar-SW-7, scale bar = 210 μm. (32,33) Stigmosphaerostylus
parapycnoclada (Nazarov & Ormiston), both from Kar-SW-7, scale bar = 150 μm. (34) Hegleria mammilla (Sheng & Wang), Kar-E-8, scale
bar = 140 μm
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established in southwest Japan. Ishiga's zonation was calibrated with

fusulinaceans and conodonts, although age revisions to his assign-

ments have been discussed in many papers (see Aitchison et al.,

2017). The best age calibration from conodonts appears in N. Zhang

et al. (2010) for the top of the A. foremanae zone, which ends at the

Kungurian–Roadian boundary, at the base of the J. nankingensis gracilis

conodont zone, and supports an age of a middle Kungurian time inter-

val for our material (Figure 5).

FIGURE 10 Legend on next page.
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The Parafollicucullus longtanensis Zone of Ishiga (1990), or

upper Albaillella foremanae Zone of N. Zhang et al. (2010)

Similar to the assemblage of the Albaillella sinuata Zone, the radiolar-

ian assemblage of this zone has been identified in the Hodul,

Karincali-Southwest and Karincali-East sections (Figure 3). Radiolar-

ians in these sections are derived from chert levels in alternating chert

and mudstone and the Karincali-Southwest section contains a basic

volcanic interlayer within this lithology.

Ishiga (1986, 1990) proposed the Parafollicucullus longtanensis Zone,

for the upper part of the Kungurian in Japan, Malaysia (Jasin & Harun,

2011; Metcalfe, 2000), and in South China (Shimakawa & Yao, 2006),

whereas the Parafollicucullus ishigai Zone (Y. J. Wang et al., 1994) and the

upper part of the A. foremanae Zone (N. Zhang et al., 2010) covers the

same interval (Figure 5). Both P. longtanensis and P. ishigai co-occur in

sample Kar-SW-18 (Figure 7(14)) in the Karincali-Southwest

section (Table 1), sample Kar-E-9 (Figure 7(22)) in the Karincali-East

section (Table 2) and sample Hod-9 in the Hodul section (Table 3). Similar

assemblages have also been obtained from Kar-SW-19 in the Karincali-

Southwest section (Table 1), sample Kar-E-10 in the Karincali-East

section (Table 2) and sample Hod-7 in the Hodul section (Table 3) and

included into the same zone. In this study, the interval between the first

co-occurrence of Parafollicucullus ishigai (= Pseudoalbaillella sp. C in earlier

literature) and Parafollicucullus longtanensis to the first appearance of

Parafollicucullus globosa is accepted as Parafollicucullus longtanensis Zone

based on the studies of Ishiga (1990), A. Yao and Kuwahara (2004), Y. J.

Wang et al. (1994, 2006, 2012) and Y. J. Wang and Yang (2011). The age

of this zone is reported as late Kungurian by Ishiga (1990), Shimakawa

and Yao (2006), Spiller (2002), A. Yao and Kuwahara (2004), and also late

Kungurian (based on the zonal age of P. ishigai) by Y. J. Wang et al. (1994,

2006, 2012) and Y. J. Wang and Yang (2011) (Figure 5).

The Parafollicucullus globosa Zone of N. Zhang et al. (2010)

The basal part of the Cikrik section and the upper part of the Hodul

section composed of alternating chert and mudstone contain typical

assemblages of the Parafollicucullus globosa Zone (Figure 3). No sam-

ple contains characteristic fauna of this zone in the Karincali-

Southwest section, but this could be explained by the poor preserva-

tion of the radiolarian assemblage. Due to tectonic attenuation, the

interval corresponding to this zone is also absent in the Karincali-East

section (Figure 3).

According to Ishiga (1986), the base of this zone is marked by the

presence of Parafollicucullus globosa, while top of this zone marked by

the first occurrence of F. monacanthus. Parafollicucullus fusiformis,

P. internata and P. yanaharensis are also common taxa associated with

the zone (Y. J. Wang et al., 2012). These indicative taxa are present in

the sample Hod-2 in the Hodul section and samples Cik-13, Cik-14,

Cik-15, Cik-18, and Cik-19 in the Cikrik section (P. fusiformis at

Figure 7(4–6), P. globosa at Figure 7(8,9), P. internata at Figure 7

(11) and P. yanaharensis at Figure 7(32)). At the basal part of the zone

(sample Hod-2 in the Hodul section in Figure 7(21,22) and Cik-19 in

Cikrik section), P. longtananesis also appears associated to the charac-

teristic taxa of this zone (Tables 3 and 4).

The age of this zone is reported as Roadian (Middle Permian) by dif-

ferent researchers (e.g. Ishiga, 1986, 1990; Ito &Matsuoka, 2015; Jasin &

Harun, 2011; Kuwahara et al., 1998; Y. J. Wang et al., 1994, 2006, 2012;

Y. J. Wang & Yang, 2011; Xia, Ning, Kakuwa, & Lil, 2005; A. Yao &

Kuwahara, 2004; Figure 5). We applied this assignation to this study.

The Follicucullus monacanthus Zone of L. Zhang et al. (2014)

Two sections (the Cikrik and Karincali-Southwest) bear radiolarian

assemblages of this zone (Figure 3). The uppermost part of the alter-

nating chert and mudstone at the base in the Cikrik section, and lime-

stone with chert interlayers in the central part of the Karincali-

Southwest section include this assemblage (Figure 3).

According to Ishiga (1986), the interval of this zone is marked by

the presence of Follicucullus monacanthus (interval zone). The end of

this zone is marked by the absence of F. monacanthus and the pres-

ence of Follicucullus scholasticus/Follicucullus porrectus (e.g. Ishiga,

1986; Ito, Feng, & Matsuoka, 2015; Y. J. Wang & Yang, 2011; Xia

et al., 2005; Figure 5). Samples Cik-9 to Cik-12 in the Cikrik

section contain F. monacanthus (Figure 6(31)) associated with P. glo-

bosa (Figure 7(8,9)), P. fusiformis (Figure 7(7)) and P. internata

(Figure 7(12,13); Table 4). Similar to this assemblage, sample Kar-

SW-22, Kar-SW-24, and Kar-SW-25 in the Karincali-Southwest

section (Table 1) contains some Latentifistularia in addition to

F. monacanthus (Figure 6(32,33)). These assemblages are best correl-

ative to the Follicucullus monacanthus Zone indicating roughly middle

Guadalupian age (Ishiga, 1986, 1990; Ito, Feng, & Matsuoka, 2013;

Ito et al., 2015; Kuwahara et al., 1998; Y. J. Wang et al., 1994, 2006,

2012; A. Yao & Kuwahara, 2004). Recent work (Ma, Feng, Caridroit,

FIGURE 10 Permian radiolarians, conodonts, benthonic foraminifera from the Mersin Mélange. (1–9) Radiolarians. (1) Bistarkum martiali Feng,

Kar-E-54, scale bar = 170 μm. (2,3) Archaeospongoprunum chiangdaoensis (Sashida); (2) Kar-E-53; (3) Kar-E-56, scale bar = 90 μm. (4,5)
Paroertlispongus fontainei (Sashida): (4) Kar-E-49; (5) Kar-E-54, scale bar = 100 μm. (6,7) Paracopicyntra akikawaensis (Sashida & Tonishi): (6) Kar-E-
51; (7) Kar-E-54, scale bar = 110 μm. (8) Tetraspongodiscus stauracanthus Feng, Kar-E-56, scale bar = 120 μm. (9) Yujingella triacantha Feng, Alic-
W-5, scale bar = 200 μm. (10–21) Conodonts. (10–12) Mesogondolella siciliensis (Kozur), all from Cik-7, scale bar = 530 μm. (13–15) Clarkina
hongshuiensis Henderson et al., all from Kar-E-38, scale bar = 400 μm. (16,17) Jinogondolella? cf. altudaensis (Kozur), both from Kar-E-38, scale
bar = 340 μm and 220 μm, respectively. (18,19) Clarkina hongshuiensis Henderson et al., both from Kar-E-39, scale bar = 400 μm. (20,21) Clarkina
postbitteriMei & Wardlaw, both from Kar-E-39, scale bar = 320 μm. Twenty-two to forty are benthic foraminifera, scale bar for all figures is
200 μm. (22) Eotuberitina bulla Conil & Lys, Kar-SW-26, axial section. (23–25) Eotuberitina reitlingerea Miklukho-Maklay: (23) Kar-SW-28; (24) Kar-
E-26; (25) Kar-E-32, axial sections. (26,27) Eotuberitina spp.: (26) Kar-E-12; (27) Sah-5, axial sections. (28,29) Geinitzina spp.: (28) Kar-SW-29;
(29) Kar-E-11, axial sections. (30) Pachyphloia cf. ovata Lange, Kar-E-31, axial section. (31) Pachyphloia pedicula Lange, Kar-E-22, axial section.
(32,33) Pachyphloia spp.: (32) Kar-SW-28, transversal section; (33) Kar-E-12, oblique section. (34) Cryptoseptida? sp., Kar-E-36, axial section.
(35) Langella? sp., Kar-SW-26, subaxial section. (36) Nodosinelloides cf. pinardae Groves & Wahlman, Kar-E-15, axial section. (37) Nodosinelloides
sp., Kar-E-14, axial section. (38) Palaeotextularia sp., Kar-E-35, axial section. (39) Globivalvulina sp., Kar-SW-28, axial section. (40) Neoendothyra
permica (Lin), Sah-10, axial section
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Danelian, & Zhang, 2016; Xia et al., 2005; L. Zhang et al., 2014) from

southern China reports that the age of this zone is Wordian based

on the correlation of radiolarian assemblages to the conodont

assemblages (Figure 5). This age assignment is applied to this study.

Conodont materials obtained from the Cikrik section are also well-

correlated to the radiolarian ages (see chapter 4.2.1).

The Follicucullus scholasticus/Follicucullus porrectus Zone of

L. Zhang et al. (2014) and D. Sun and Xia (2006)

Based on studies of Ito et al. (2015), Xia et al. (2005), and L. Zhang

et al. (2014), the basal part of this zone is marked by the absence of

Follicucullus monacanthus and the presence of Follicucullus scholasti-

cus/Follicucullus porrectus. Sample Cik-4 in the Cikrik section consists

TABLE 2 Distribution of radiolarians at the base of the Karincali-East section

AGE

Cisuralian

Late Asselian – Kungurian

RADIOLARIAN ZONES P. l.– P. s. Parafollicucullus s. rhombothoracata Albaillella sinuata
Parafollicucullus
longtanensis

SAMPLES Kar-E-1 Kar-E-2 Kar-E-3 Kar-E-4 Kar-E-5 Kar-E-6 Kar-E-7 Kar-E-8 Kar-E-9 Kar-E-10

Parafollicucullus sakmarensis X

Ruzhencevispongus uralicus X X

Ruzhencevispongus triradiatus X X X

Parafollicucullus s. rhombothoracata X X X X

Latentifistula crux X ? ? X X

Parafollicucullus triangularis X X X

Quadricaulis inflata X ? X

Grandetortura nipponica X ? ? ? X

Quadricaulis phlogides X ? ? ? ? ? X

Parafollicucullus longicornis X

Quadricaulis flata X ? ? X ? ? ? X

Parafollicucullus s. scalprata X X X X X

Latentifistula patagilaterala X ? ? X X

Parafollicucullus ishigai X X X X X

Albaillella sinuata X X X

Hegleria mammilla X

Parafollicucullus longtanensis X X

P. l.–P. s., Parafollicucullus lomentaria–Parafollicucullus sakmariensis. X, occurrence; ?, possible occurrence.

TABLE 3 Distribution of radiolarians in the Hodul section

AGE

Cisuralian
Guadalupian

Kungurian
Roadian

RADIOLARIAN ZONES Albaillella sinuata Parafollicucullus longtanensis Parafollicucullus globosa

SAMPLES Hod-13 Hod-9 Hod-7 Hod-2

Albaillella sinuate X

Parafollicucullus scalprata scalprata X

Albaillella asymmetrica X ? X

Quadricaulis flata X X X X

Parafollicucullus ishigai X

Latentifistula crux X

Latentifistula texana X

Parafollicucullus longtanensis X X X

Parafollicucullus yanaharensis X

Ishigaum trifustis X

Latentifistula patagilaterala X

Parafollicucullus fusiformis X

Parafollicucullus globosa X

Parafollicucullus internata X

Polyfistula hexalobota X

Pseudotormentus kamigoriensis X

X, occurrence; ?, possible occurrence.
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of Follicucullus scholasticus in addition to Latentifistularia (Table 4) and

is assigned to this zone. Similar to this assemblage, sample Alic-W-2 in

the Aliclipinar-West section includes taxa (Table 5) also typically found

within this zone. These two samples (Cik-4 in the Cikrik section and

Alic-W-2 in the Aliclipinar-West section) were retrieved from chert

interlayers within the detrital limestone. The age of this zone is

reported as Capitanian based on the correlation of radiolarian assem-

blages to the conodont assemblages (Ma et al., 2016; L. Zhang et al.,

2014; Figure 5) and we follow the same age assignation.

Based on radiolarian and conodont biostratigraphy in the Cikrik

and Karincali-Southwest sections, it can be concluded that carbonate

accumulation in the basin started in the middle Wordian and termi-

nated in the earliest Wuchiapingian (Figure 3). Benthic foraminifera,

algae, and conodont assemblages obtained from these detrital lime-

stones will be discussed in later sections (see section 4.2).

4.1.2 | Radiolarian biostratigraphy of upper Permian
sequences

The upper part of the Permian sequence is of pelagic origin, composed

of alternating chert and mudstone. From this lithology, rather diverse

and abundant radiolarian assemblages have been obtained from the

Karincali-East and the Aliclipinar-West sections (Figure 3).

Radiolarian zonations for the Late Permian were initially estab-

lished in southwest Japan (Ishiga, 1986, 1990; Kuwahara, Yao, & An,

1997; Kuwahara et al., 1998) and South China (Kuwahara et al., 2007;

Y. J. Wang et al., 1994), and refinements have continued through cali-

bration with conodont biostratigraphy (Nishikane, Kaiho, Henderson,

Takahashi, & Suzuki, 2014; Nishikane et al., 2011; D. Sun & Xia, 2006;

Xia et al., 2004, 2005; J. Yao et al., 2001). A summary of these zones

and their age control is found in Aitchison et al. (2017) and is adopted

herein. Radiolarian assemblages belonging to the following radiolarian

zones of early Wuchiapingian to middle Changhsingian age are

encountered in this study (Figure 5).

The Albaillella yamakitai Zone of Nishikane et al. (2011) and

L. Zhang et al. (2014)

Overlying detrital limestone beds in the Karincali-East section, alter-

nating green to black-colored, thin-bedded chert and mudstone is the

dominant lithology with medium-bedded, pink colored conglomeratic

interlayers occurring between samples Kar-E-40 to Kar-E-47

(Figure 3). Within this interval, four samples (Kar-E-40, Kar-E-41, Kar-

E-46, and Kar-E-47) are rich in species of Follicucullidae (e. g. Follicu-

cullus charveti charveti in Figure 6(25), F. charveti falx in Figure 6(26),

F. charveti orthogonus in Figure 6(27,28), F. dilatatus in Figure 6(29),

F. lagenarius, F. porrectus in Figure 6(34,35), F. scholasticus in Figure 7

(1,2) and F. sphaericus in Figure 7(3)) and also contain Latentifistularia

(e.g. Latentifistula similicutis in Figure 9(1,2); Table 6)

Based strictly on the radiolarian assemblage, these samples could

be assigned to either the latest Guadalupian (late Capitanian) Albaillella

charveti Zone as defined by L. Zhang et al. (2014), or the overlying

A. yamakitai Zone of earliest Lopingian (early Wuchiapingian) age

(Nishikane et al., 2011) because all of these taxa range through the

Guadalupian/Lopingian boundary. The zonal markers for the Albaillella

yamakitai Zone (i.e. A. yamakitai and A. cavitata) are absent in these

samples, but their absence can be a function of low diversity or pres-

ervation. Given the age control from conodonts in the underlying

limestones discussed earlier, as well as the carbon isotope results (dis-

cussed later), these samples are assigned to the A. yamakitai Zone. It is

significant to note that the A. yamakitai Zone has only recently been

broken out from the underlying zone, as earlier iterations of the upper

Permian biostratigraphy combine these zones, such as the F. charveti–

A. yamakitai Zone of Kuwahara et al. (1998), and the F. bipartitus–F.

charveti–F. orthagonus zone (Y. J. Wang et al., 2006).

The A. yamakitai Zone (Figure 5) is a taxon range zone, based on

the total range of the nominal species, but also includes the taxa

observed in the Karincali-East section. Nishikane et al. (2011, 2014)

provides critical age control showing that the first occurrence of

TABLE 4 Distribution of radiolarians in the Cikrik section

AGE

Guadalupian

Roadian Wordian
Capitanian

RADIOLARIAN ZONES Parafollicucullus globosa Follicucullus monocanthus F. scholasticus - F. porrectus

SAMPLES Cik-19 Cik-18 Cik-15 Cik-14 Cik-13 Cik-12 Cik-11 Cik-10 Cik-9 Cik-4

Parafollicucullus longtanensis X

Parafollicucullus globosa X X X X X ? X X

Parafollicucullus fusiformis X X X X X X X X X

Parafollicucullus internata X X X X X X X X

Parafollicucullus yanaharensis X ? ? ? ? X

Parafollicucullus banchengensis X

Follicucullus monacanthus X X X X

Follicucullus lagenarius X

Follicucullus scholasticus X

Latentibifistula aspersongiosa X

Latentifistula crux X

Ruzhencevispongus triradiatus X

Ruzhencevispongus uralicus X

Grandetortura nipponica X

X, occurrence; ?, possible occurrence.
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A. yamakitai is within the uppermost beds of the Guadalupian

(Capitanian) at the base of the Clarkina hongshuiensis Zone, and the

last occurrence is within the Wuchiapingian with Clarkina dukouensis

(Figure 5).

The Neoalbaillella ornithoformis Zone of Xia et al. (2004, 2005)

and Nishikane et al. (2011)

This is the second zone for Late Permian time interval according to

Kuwahara (1999) and Xia et al. (2004, 2005), and its lower limit is

defined by the first occurrence of Neoalbaillella ornithoformis (Figure 6

(22–24)), whereas the upper limit is defined by the first occurrence of

Neoalbaillella optima. Various subzones have been recognized within

the N. ornithoformis Zone, including acme zones by Kuwahara

et al. (1998), with variations adopted by Xia et al. (2004, 2005). Y. J.

Wang et al. (2006) recognized a different zonal sequence in South

China (Figure 5) and relies on assemblages or acmes in defining the

zones. It is important to note that the total range of certain key taxa

defining the acme zones of Kuwahara et al. (1998) and Xia

et al. (2004, 2005) such as A. levis and A. protolevis overlap almost

entirely spanning most of the Wuchiapingian (Nishikane et al., 2011;

Figure 5). This makes it difficult to apply these subzones to the Mersin

faunas because of sparse radiolarian recovery and only fair

preservation.

Samples Kar-E-48 and Kar-E-49 are assigned to this zone. Both

Neoalbaillella ornithoformis (Figure 6(22–24)) and Albaillella protolevis

(Figure 6(12–14)) first appear in sample Kar-E-48 in the Karincali-East

section (Table 6). Albaillella levis (Figure 6(9–11)) appears for the first

time in sample Kar-E-49 in the Karincali-East section which is slightly

after the appearance of Albaillella protolevis (Table 6).

The age of the base of the N. ornithoformis Zone was assigned to

early to middle Wuchiapingian by Xia et al. (2004, 2005). Nishikane

et al. (2011) provide further refinement from southwest Japan, show-

ing that the first occurrence of N. ornithoformis occurs with Clarkina

guangyuanensis in the middle Lopingian. The top of the

N. ornithoformis Zone is dated as earliest Changhsingian (Aitchison

et al., 2017).

The Neoalbaillella optima Zone

Based on the zonal scheme of Xia et al. (2004), it is a total range zone

of the nominal taxon corresponding to late Wuchipingian to early

Changhsingian time interval, but as discussed in Aitchison

et al. (2017), the age is adjusted to be entirely in the Changhsingian

(Figure 5). Four subzones have been proposed within the N. optima

Zone, and assemblages of the basal two subzones appear to be pre-

sent in the Karincali-East and Aliclipinar-West sections (Figures 3 and

5; Tables 5 and 6).

The Neoalbaillella optima–Albaillella lauta Subzone of Xia

et al. (2004)

The base of this subzone is recognized by the co-occurrence of Neoal-

baillella optima and Albaillella lauta and the top by the first appearance

datum of Albaillella flexa–Albaillella angusta according to Xia

et al. (2004). In the Karincali-East section, Neoalbaillella optima is rare

and only present in sample Kar-E-50 (Figure 6(21); Table 6). Very close

to this interval, Albaillella lauta first appears in sample Kar-E-51 and

persists until the top of the section (Figure 6(6–8)) together with

Albaillella levis (Figure 6(9–11)), Neoalbaillella ornithoformis (Figure 6

(22–24)), and abundant Latentifistularia and Spumellaria mainly

defined by Feng (1992), Feng and Liu (1993), Feng, Meng, He, and Gu

(2006), and Shang, Caridroit, and Wang (2001) (Figures 8–10;

Table 6). Radiolarian assemblages in samples Kar-E-50 to Kar-E-55 are

typical for this zone (Table 6). Similarly sample Alic-W-5 in the

Aliclipinar-West section includes Albaillella lauta, Albaillella levis, Neoal-

baillella ornithoformis and taxa belonging to Latentifistularia and Spu-

mellaria (Table 5). Age of this zone is assigned to the Changhsingian

based on the discussion provided in Aitchison et al. (2017) (Figures 3

and 5).

The Albaillella flexa–Albaillella angusta subzone of Xia

et al. (2004)

Based on the definition of Xia et al. (2004), the base is defined by the

co-occurrence of Albaillella flexa–Albaillella angusta and the top by the

presence of Albaillella triangularis. In the top of the Karincali-East sec-

tion, substantial changes in the radiolarian assemblage occur begin-

ning in sample Kar-E-56, and a very different fauna including

Albaillella excelsa (Figure 6(3)), Albaillella flexa (Figure 6(4,5)), Octator-

mentum ? floriferum (Figure 9(23)) and Octatormentum yaoi (Figure 9

(24)) appears for the first time. Although Albaillella angusta was not

recognized in samples Kar-E-56 and Kar-E-57, there are sufficient

taxa reported from the Albaillella flexa–Albaillella angusta subzone to

warrent its assignment to this subzone (Table 6). The age of this zone

is reported as early Changhsingian by Xia et al. (2004), adjusted

slightly upwards to the middle Changhsingian (Aitchison et al., 2017)

TABLE 5 Distribution of radiolarians in the Aliclipinar-West section

AGE
Guadalupian Lopingian
Capitanian Changhsingian

RADIOLARIAN ZONES
F. scholasticus–F.
porrectus Neoalbaillella optima

RADIOLARIAN SUBZONES N. optima–A. lauta

SAMPLES Alic-W-2 Alic-W-5

Follicucullus porrectus X

Follicucullus scholasticus X

Albaillella lauta X

Neoalbaillella gracilis X

Neoalbaillella ornithoformis X

Ishigaum trifustis X

Ishigaum tristylum X

Shangella longa X

Triplanospongos angustus X

Triplanospongos musashiensis X

Areolicaudatus semiglobosa X

Latentibifistula aspersongiosa X

Ormistonella adhaerens X

Quadricaulis gracilis X

Quadricaulis inflata X

Ruzhencevispongus triradiatus X

Yujingella triacantha X

X, occurrence.
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and this latter age assignment is applied to this study (Figures 3,

and 5).

4.2 | Benthic foraminifera, algae and conodont
datings of the middle Middle to basalmost upper
Permian detrital carbonates in the central part of the
Permian sequences

To understand the detailed characteristics of benthic foraminifera,

algae and conodont assemblages of middle Guadalupian to earliest

Lopingian detrital carbonates, samples from three stratigraphic sec-

tions (Sahancanak, Karincali-Southwest, and Karincali-East) were ana-

lyzed (Figure 3). Conodont, foraminiferal, and algal assemblages from

these sections are illustrated at Figures 10 and 11. Details of these

assemblages are as follows.

4.2.1 | Conodont assemblages from the Cikrik section

Conodont assemblage (Mesogondolella siciliensis (Kozur) in Figure 10

(10–12) and Mesogondolella sp.) obtained from stratigraphically youn-

ger strata (sample Cik-7) in the Cikrik section reveals the Roadian to

Wordian age (H. W. Kozur & Wardlaw, 2010). Conodont data sup-

ports the age obtained from radiolarian assemblages of older strata

where samples Cik-8 to Cik-12 were collected (Figure 3).

4.3 | Benthic foraminifera and algae assemblages
from the Sahancanak section

Twelve samples were collected from carbonate-rich levels in the

section for determination of foraminiferal/algal assemblages. They are

mainly detrital limestone and are very similar to those of late Middle

Capitanian carbonates observed in the Mersin Mélange. Foraminiferal

fauna in detrital limestone are transported and reworked material. Evi-

dence of this process is the presence of broken and abraded forami-

niferal shells (e.g. Figures 10(27) and 11(6,24,27)). Because of the

reworking and redeposition, Middle Permian (middle Wordian–Capita-

nian) carbonate strata include older clasts of fusulinids of Early Perm-

ian (mainly Asselian) age.

Although many samples from the Sahancanak section include dif-

ferent algal and foraminiferal assemblages, they are not highly diverse.

The lowest sample (Sah-1) from the basal part of the section yielded

Tubiphytes sp. and an undetermined endothyroid specimen (Figure 3;

Table 7). The genus Tubiphytes is cosmopolitan and known from Mos-

covian to Cretaceous strata and it is not a good tool for precise age

determination. Above the barren sample Sah-2, a transverse

section of Yangchienia sp. with very typical wall and septa features

was encountered in sample Sah-3. The first appearance datum (FAD)

of Yangchienia in Tethyan sections is in the Roadian and it persists

until the end of the Capitanian (e.g. Leven, 2001, 2003; Leven &

Bogoslovskaya, 2006; Leven & Gorgij, 2011). The overlying sample

(Sah-4) includes similar taxa compared to the underlying one (Table 7).

A relatively rich foraminiferal assemblage (Hemigordius ? sp. at

Figure 11(27), Nankinella sp., Yangchienia ? sp. and Eotuberitina sp. at

Figure 10(27)) has been identified in sample Sah-5 (Table 7). The

genus Nankinella ranges from Pennsylvanian to Permian, and thus it is

not possible to provide a more precise age constraint for this sample.T
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FIGURE 11 Permian benthonic foraminifera and algae from the Mersin Mélange. Scale bar is 200 μm except 22, 24, 25 (1 mm). (1) Neoendothyra

ex gr. reicheli Reitlinger, Kar-SW-30, oblique section. (2) Tetrataxis sp., Kar-SW-30, subaxial section. (3–6) Pseudokahlerina spp.: (3) Kar-SW-26;
(4) Kar-E-11; (5) Kar-E-12, axial sections; (6) Sah-9, equatorial section. (7) Pseudodoliolina ? sp., Kar-E-13, subequatorial section. (8–10) Dunbarula
spp.: (8) Kar-SW-23; (9) Kar-SW-26; (10) Kar-SW-27, axial sections. (11) Nankinella sp., Kar-E-36, axial section. (12–15) Neoschwagerina spp.:
(12) Kar-SW-30, oblique section with Tubiphytes; (13) Kar-E-15; (14) Kar-E-31; (15) Kar-E-35, oblique sections. (16) Profusulinella ? sp., Kar-E-37,
axial section. (17–20) Reichelina cf. minuta Erk: (17) Kar-E-26; (18) Kar-E-28; (19) Kar-E-28; (20) Kar-E-31, axial sections. (21) Reichelina sp., Kar-E-
21, subaxial section. (22) Ruzhenzevites subcylindricus (Bensh), Sah-7, subaxial section. (23–26) Yangchienia spp.: (23) Kar-E-15, tangential section;
(24) Sah-4, tangential section; (25) Sah-8, subequatorial section; (26) Sah-9, central oblique section. (27) Hemigordius ? sp., Sah-5, axial section.
(28) Tubiphytes sp., Kar-E-11
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Sample Sah-7 includes an assemblage composed of two tentatively

identified foraminiferal taxa (Yangchienia ? sp. and Globivalvulina ? sp.),

plus a specimen of Ruzhenzevites subcylindricus (Figure 11(22)) of Early

Permian (mainly Asselian) age. The Ruzhenzevites subcylindricus speci-

men is very typical with its subcyclindrical test, septal fluting and type

of coiling (Table 7). This association was determined for the first time

by Bensh (1972) in Fergana (Uzbekistan) from the Lower Permian

strata and subsequently has been determined in Asselian strata of Iran

and other regions (e.g. Leven & Gorgij, 2006, 2011; Leven &

Taheri, 2003).

The upper part of the Sahancanak section (samples Sah-8 to Sah-

12) yielded mainly Middle to Upper Permian foraminiferal assem-

blages including Neoendothyra permica (Figure 10(40)), Yangchienia

sp. (Figure 11(25,26)), Pseudokahlerina sp. (Figure 11(6)), Eotuberitina

sp. and Geinitzina sp. (Table 7). One age diagnostic taxon from this

interval is Pseudokahlerina sp. which is a characteristic taxon of the

Capitanian (Middle Permian) time interval (Angiolini et al., 2008;

Leven & Gorgij, 2011; Leven & Okay, 1996; Turhan, Okuyucu, &

Göncüoglu, 2004). On the other hand, the other taxon, Neoendothyra

permica, was described from the Upper Permian strata of China, but

is known also from Middle to Upper Permian (Capitanian to Changh-

singian) strata of Japan (Kobayashi, 1997; Kobayashi, Shiino, & Suzuki,

2009). Based on the evaluation of the foraminiferal assemblage in the

Sahancanak section, it can be suggested that the unit is Roadian to

Capitanian in age, and in particular, the youngest assemblage is Capi-

tanian in age (Figure 3; Table 7).

4.4 | Benthic foraminifera and algae assemblages
from the the Karincali-Southwest section

A total of eight samples (Kar-SW-23 to Kar-SW-30) were collected

from this section (Figure 3) for foraminiferal and algal determinations.

Similar to those recovered from the Sahancanak section, these assem-

blages occur in detrital limestones and the foraminiferal specimens are

largely abraded or broken (Figures 10(28,32,35,39), and 11(1–

3,6,8,9,12). The lower part of the section (samples Kar-SW-23 to Kar-

SW-27) yielded an assemblage including Eotuberitina bulla (Figure 10

(22)), Geinitzina sp., Langella ? sp. (Figure 10(35)), Neoschwagerina? sp.,

Pseudokahlerina sp. (Figure 11(3)), Dunbarula sp. (Figure 11(8–10)) and

Tubiphytes sp. (Table 8). Although, the genus Dunbarula first appears

in upper Roadian-lower Wordian strata in Japan (Kobayashi, 2006a,

2006b) and upper Wordian strata in Iran (Leven & Gorgij, 2011), its

age is reported to be as young as Capitanian (e.g. Angiolini et al.,

2008; Kobayashi, 2006c; Kobayashi & Altiner, 2011; Leven & Gorgij,

2011). The co-occurrence of Neoschwagerina? sp. and Pseudokahlerina

sp. further indicates that the age of the upper part of this section is

Capitanian based on previous studies (e.g. Angiolini et al., 2008;

Leven & Gorgij, 2011; Leven & Okay, 1996; Turhan et al., 2004;

Figure 3; Table 8).

The uppermost part of this section (Kar-SW-28 to Kar-SW-30)

includes Eotuberitina reitlingerea (Figure 10(23)), Geinitzina sp. (Figure 10

(28)), Pachyphloia sp. (Figure 10(32)), Globivalvulina sp. (Figure 10(39)),

Neoendothyra ex gr. reicheli (Figure 11(1)), Tetrataxis sp. (Figure 11(2)),

Neoschwagerina sp. (Figure 11(12)), and Tubiphytes sp. These are mainly

long-ranging taxa except for Neoschwagerina sp. which is very common

in Wordian to Capitanian strata based on previous studies (e.g. Leven,

1981; Leven & Gorgij, 2011; Leven & Okay, 1996; Turhan et al., 2004).

Neoendothyra ex gr. reicheli is reported from Wordian to Changhsingian

strata in Turkey, Iran (Elburz, Zagros), Afghanistan and Transcaucasia

(Gaillot & Vachard, 2007; Ghasemi-Nejad, 2002; Mohtat-Aghai &

Vachard, 2005; Turhan et al., 2004; Vaziri, Yao, & Kuwahara, 2005).

According to the previous studies (Table 8) the age of this assemblage is

Middle Permian (Wordian to Capitanian). Based on foraminiferal deter-

minations, the age of samples in the Karincali-Southwest section is

Capitanian (Figure 3; Table 8).

4.5 | Benthic foraminifera, algae and conodont
assemblages from the the Karincali-East section

A total of 27 samples (Kar-E-11 to Kar-E-37) were collected along the

Karıncali-East section for foraminiferal and algal determinations

(Figure 3; Table 9). Like both the Sahancanak and the Karincali-

TABLE 7 Distribution of benthic foraminifera in the Sahancanak section

AGE

Guadalupian

Capitanian

SAMPLES Sah-1 Sah-2 Sah-3 Sah-4 Sah-5 Sah-6 Sah-7 Sah-8 Sah-9 Sah-10 Sah-11 Sah-12

Tubiphytes sp. X ? ? X ? X ? X ? X ? X

Yangchienia sp. X X ? ? ? X X X

Yangchienia ? sp. X X X ? X ? ? X

Nankinella sp. X

Hemigordius ? sp. X

Eotuberitina sp. X ? X ? ? X ? X

Globivalvulina ? sp. X

Pachyphloia ? sp. X

Ruzhenzevites subcyclindricus X

Geinitzina sp. X ? X X

Pseudokahlerina sp. X

Neoendothyra permica X

X, occurrence; ?, possible occurrence.
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Southwest sections, the foraminiferal assemblages are largely cor-

roded or broken related to extensive reworking (Figures 10(30,36),

and 11(13–16,23)).

A rich benthic foraminiferal and algal association (Eotuberitina

sp. at Figure 10(26), Geinitzina aff. postcarbonica, Geinitzina sp. at

Figure 10(29), Pachyploia sp. at Figure 10(33), Nodosinelloides cf. pinar-

dae at Figure 10(36), Nodosinelloides sp. at Figure 10(37), Pseudokahler-

ina sp. at Figure 11(4,5), Pseudodoliolina ? sp. at Figure 11(7),

Neoschwagerina sp. at Figure 11(13), Yangchienia sp. at Figure 11

(23) and Tubiphytes sp. at Figure 11(28)) has been identified from the

central part of the Karincali-East section (Table 9). Pseudokahlerina sp.,

Pseudodoliolina ? sp. and Neoschwagerina sp. are characteristic taxa of

the Middle Permian (Roadian to Capitanian) strata in Tethyan locali-

ties, whereas Pseudokahlerina sp. is the diagnostic taxon for the Capi-

tanian stage (Angiolini et al., 2008; Leven, 1981, 1993, 2003; Leven &

Gorgij, 2011; Leven & Okay, 1996; Turhan et al., 2004). Geinitzina aff.

postcarbonica is one of the long-ranging taxa in the studied material

and is known to range throughout the entire Permian (central America

by Spandel, 1901; Groves & Boardman, 1999; Iran by Bozorgnia,

1973; southern China by E. Wang, 1982; Japan by Ueno, 1989; Mex-

ico by Vachard et al., 1993; Bolivia by Mamet, 1996). Nodosinelloides

cf. pinardae is another taxon identified from the central part of the

section and has a range from latest Gzhelian (latest Carboniferous) to

Artinskian (Early Permian) in the Russian Platform (Baryshnikov, Zolo-

tova, & Koscheleva, 1982; Gerke & Sosipatrova, 1975), Serbia

(Filipovic, 1995), Japan (Adachi, 1985), America and Canada (Groves &

Wahlman, 1997; Pinard & Mamet, 1998). This part of the section also

yielded a foraminiferal assemblage containing Pachyphloia pedicula

(Figure 10(31)), and Reichelina cf. minuta (Figure 11(17–20)) and Reich-

elina sp. (Figure 11(21)). This association is characteristic and well-

known from Middle–Upper Permian (e.g. Erk, 1942; Filimonova, 2010;

Gaillot & Vachard, 2007; Kotlyar, Nestell, Zakharov, & Nestell, 1999)

strata, and Reichelina cf. minuta was determined for the first time from

the Parafusulina–Polydiexodina zone (probably the base of the Capita-

nian) in the Bursa region, western Turkey by Erk (1942).

A rich fusulinid and algal association (Pachyphloia cf. ovata

(Figure 10(30)), Cryptoseptida ? sp. (Figure 10(34)), Palaeotextularia

sp. (Figure 10(38)), Nankinella sp. (Figure 11(11)), Neoschwagerina

sp. (Figure 11(14,15)), Profusulinella ? sp. (Figure 11(16)), Reichelina

cf. minuta (Figure 11(20)) and Tubiphytes sp.) was obtained from the

upper part of detrital limestone of Karıncali-East section. Except for

the presence of Profusulinella ? sp., this association indicates a Middle

to Late Permian age. Profusulinella ? sp. is represented only by one and

a half specimens in the studied material and due to its wall structure,

septa and shape of the test, it was only tentatively included in the

genus Profusulinella, which is characteristic taxon of the lower

Bashkirian-lower Moscovian (Middle Carboniferous) strata in southern

Urals, Russian Platform, Donbass in Russia and North America (see

details in Groves, Kulagine, & Villa, 2007). The recovered assemblage

indicates that age of the upper part of the detrital limestone in

Karincali-East section is Capitanian and many taxa found in the assem-

blage are reworked material of Middle Carboniferous and Early Perm-

ian age (Figure 3; Table 9).

Two samples (Kar-E-38 and Kar-E-39) collected from close to the

uppermost part of the limestone unit of the Karincali-East

section contain diverse conodont assemblages (Figure 3). While Clar-

kina hongshuiensis (Figure 10(13–15)) and Jinogondolella ? cf. altudaen-

sis (Figure 10(16,17)) have been obtained from sample Kar-E-38,

sample Kar-E-39 yielded Clarkina hongshuiensis (Figure 10(18,19)),

Clarkina postbitteri (Figure 10(20,21)), Gondolellid indet. and Sweetog-

nathus sp. The conodont assemblage from Kar-E-38 indicates a late

Guadalupian age when compared to occurrences in Texas (Lambert,

Wardlaw, Nestell, & Nestell, 2002) and China (Jin et al., 2006).

This age is in good agreement with the appearance of Clarkina

postbitteri in the next higher sample Kar-E-39 which is the zonal index

of the first conodont zone of the Wuchiapingian GSSP section in

China (Jin et al., 2006). Following Jin et al. (2006) the co-occurrence

of C. hongshuiensis and C. postbitteri in the basal Wuchiapingian is

unexpected. In the sense of those authors it could only be explained

by either reworking or condensation due to a low sedimentation rate.

TABLE 8 Distribution of benthic foraminifera in the Karincali-Southwest section

AGE

Guadalupian

Capitanian

SAMPLES Kar-SW-23 Kar-SW-26 Kar-SW-27 Kar-SW-28 Kar-SW-29 Kar-SW-30

Neoschwagerina ? sp. X

Dunbarula sp. X X X

Geinitzina sp. X X ? ? X

Tubiphytes sp. X ? ? X ? X

Eotuberitina bulla X

Pseudokahlerina sp. X

Langella ? sp. X

Eotuberitina reitlingerea X

Pachyphloia sp. X

Globivalvulina sp. X

Neoendothyra ex gr. reicheli X

Tetrataxis sp. X

Neoschwagerina sp. X

X, occurrence; ?, possible occurrence.
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But conversely it may simply be the result of a longer range of

C. hongshuiensis as documented by Xia et al. (2005) in the Dachonling

section in South China, a record not discussed by Jin et al. (2006).

Collectively taking into consideration the radiolarian ages from

the interbedded chert and mudstone to the base of detrital limestone,

the benthic foraminiferal and algal ages from detrital limestone and

the conodont ages from the top of this limestone, a middle Wordian

(middle Guadalupian) to earliest Wuchiapingian (earliest Lopingian)

age is assigned to the detrital limestone part of the Permian sequence

(Figure 3).

5 | ORGANIC-C δ13C VALUES FROM THE
UPPER PART OF THE KARINCALI-EAST
SECTION

5.1 | Laboratory methods

Although carbon isotope stratigraphy was not an initial objective of

this study, a limited number of analyses were conducted when the ini-

tial age results indicated that the Karincali-East section encompassed

the Guadalupian–Lopingian boundary, an interval from which a nega-

tive δ13C excursion is widely reported (Bond, Hilton, Wignall, Ali, &

Stevens, 2010). As funds were limited, and given that the top of the

section is siliceous mudstone and chert, the choice was made to run

only δ13Corg. Samples were powdered and fumigated in an HCl

chamber for a period of three weeks to remove the carbonate phase

following the method of Yamamuro and Kayanne (1995). Residues

were dried at 50 �C, homogenized, and run for δ13Corg using a Micro-

mass IsoPrime stable isotope ratio mass spectrometer following the

method described in Werner, Bruch, and Brand (1999). All stable iso-

tope values are reported in units of ‰ relative to the standard Vienna

Pee Dee Belemnite (VPDB), with an uncertainty of 0.1 ‰.

5.2 | Results

The values of the bulk δ13Corg from the samples retrieved from upper

part of the Karincali-East section are depleted, ranging from −22.5 ‰

to −39.8 ‰ (Figure 12; Table S1). Two samples run from the detrital

limestone yielded the least depleted values (−22.5 ‰ and −27.4 ‰)

and fall within the range of marine organic matter (MOM), with a least

depleted terestrial organic matter (TOM) component. Paleozoic MOM

typically ranges between −25 ‰ and −30.5 ‰ (Simoneit et al., 1993),

whereas TOM values reported from the Guadalupian range from

−20 ‰ to −26 ‰ (Peters-Kottig, Strauss, & Kerp, 2006). A large neg-

ative shift of 8.8 ‰ occurs at the top of the limestone, in sample Kar-

E-38A, at approximately the Guadalupian–Lopingian boundary (GLB),

and highly depleted values persist in the Lopingian above the lime-

stone for the remainder of the section. All Lopingian values are sub-

stantially more depleted than the Guadalupian values, and, in fact,

exceed the values for typical Paleozoic MOM (above) and Lopingian

TOM (−21 ‰ to −31 ‰) as reported in Peters-Kottig et al. (2006).

FIGURE 12 Detailed log of the upper part of the Karincali-East section with a plot of δ 13Corg (‰ vs VPDB) values. Mean Lopingian value of

36 ‰ is plotted as gray reference line. Neo. orn., Neoalbaillella ornithoformis Zone, A.f.-A.a, Albaillella flexa- Albaillella angusta. For a key to the
lithological symbols, see Figure 3
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The mean for all 14 Lopingian samples is 36.1 ‰ with a variance of

4.2 (Figure 12; Table S1). Since the negative shift occurs below a

lithology change within the limestone, it is unlikely to reflect local

facies controls, and an additional source or mechanism is required to

explain the large negative excursion at the GLB aside from simply

varying TOM and MOM source material.

Previous works on the GLB, largely on 13Ccarb, interpreted iso-

topic excursions to be caused by perturbations in the carbon cycle

in association with the end-Guadalupian extinction event, with

causes ranging from eustatic regression (e.g. W. Wang, Cao, &

Wang, 2004), ocean cooling and widespread anoxia (Isozaki, Kawa-

hata, & Minoshima, 2007; Isozaki, Kawahata, & Ota, 2007), to vol-

canism (Wei, Chen, Yu, & Wang, 2012; Wignall, Kershaw, Collin, &

Crasquin-Soleau, 2009) that may have been accompanied by meth-

ane gas release (Retallack & Jahren, 2008). Although many sections

report a negative excursion, a positive excursion is also reported

(Wei, Baima, Qiu, & Dai, 2018). The exact position, duration and

magnitude of these excursions vary between localities (Jost et al.,

2014; Shen et al., 2013), and in some cases the 13Ccarb is best

attributed to diagenesis, or post-depositional alteration rather than

an indication of a global biotic crisis (Jost et al., 2014; Wei

et al., 2018).

Like 13Ccarb, negative excursions in δ13Corg are reported from

some marine GLB sections (Kaiho et al., 2005; Nishikane et al.,

2014) as well as from terrestrial sections from around the world

(Retallack et al., 2006). Highly depleted values (−28 ‰) comparable

to some of the Karincali-East section, as well as a modest 1 ‰ nega-

tive excursion at the GLB, are reported from the Gujo-hachiman sec-

tion, Gifu Prefecture, Japan (Nishikane et al., 2014) an oceanic

radiolarite. Isotopic values more negative than −31 ‰ occur in a

few GLB sections, most notably the nonmarine Permian–Triassic

section at Graphite Peak, Australia where values as depleted as

−46 ‰ (Krull & Retallack, 2000; Retallack et al., 2006) and were pre-

viously explained by the release of methane (Krull, Retallack, Camp-

bell, & Lyon, 2000; Retallack & Jahren, 2008).

Organic matter degradation during burial and early diagenesis

provides an additional mechanism for attaining highly depleted

δ13Corg values. The process of anaerobic degradation by bacteria, a

process taking place during deposition and early burial or organic

matter, tends to favor the metabolizable carbohydrates and proteins

which are isotopically heavier (Tyson, 1995). This selective degrada-

tion can deplete the isotopic values by as much as 6 ‰ (Spiker &

Hatcher, 1984; Walsh, 1983). Based on the data we have collected,

we cannot rule out organic matter (OM) degradation as a contribut-

ing factor to the depleted values in the Lopingian, but given that the

first depleted value occurs in limestone, below the more organic rich

shales, it is not purely a function of OM content and facies, but a

result of environmental conditions prevailing in the Lopingian. It is

reasonable to conclude that the observed negative shift in Lopingian

values is linked to end-Guadalupian negative excursions reported

elsewhere, yet at this point, a specific cause cannot be attributed.

Either more extensive OM degradation or introduction of depleted

carbon from methane release or through anoxia can be contributory

factors.

6 | PETROGRAPHY, GEOCHEMISTRY, AND
PETROGENESIS OF THE MAFIC VOLCANIC
ROCKS FROM THE BASAL PART OF THE
KARINCALI-SOUTHWEST SECTION

6.1 | Petrography of the mafic volcanics

Lavas from the basal part of the Karincali-Southwest

section petrographically display lamprophyric features, though the

presence of low-grade alteration makes it difficult to give a proper

name to these mafic igneous rocks. These lavas are characterized by

aphanitic and porphyritic textures, with phenocrysts set in a fine-

grained groundmass. The groundmass is altered to chlorite, sericite

and zeolite. The primary phenocryst phases that survive alteration are

mostly clinopyroxene, apatite and to a lesser extent biotite. Clinopyr-

oxene is Ti-rich augite. Apatite generally occurs as needle-like crystals,

though hexagonal basal sections are also encountered. Biotite is gen-

erally found replacing clinopyroxene and in some cases it is being

replaced by green amphibole. In addition to these mineral phases, oliv-

ine also occurs, but as pseudomorphs of calcite and chlorite.

6.1.1 | Analytical method and alteration

A total of seven samples were analyzed for major and trace elements in

the ACME Labs (Canada) to assess the petrogenesis of the Early Perm-

ian (late Asselian–Kungurian) lavas from the basal part of the Karincali-

Southwest section (Table S2). The analyses of major elements and Sc

were analyzed by fusion inductively coupled plasma–emission spec-

trometry (ICP–ES), whereas the remaining trace elements were mea-

sured by fusion inductively coupled plasma–mass spectrometry ICP–

MS, except Ni and Pb on which aqua regia digestion was applied. The

precision was better than 5 % for most of the major and trace elements

based on replicate sample runs and standards.

All samples display signs of low-grade alteration as revealed by

petrography. Although the loss on ignition (LOI) values would be

increased due to volatile-rich mineralogy of such rocks, the observed

LOI values are too high to entirely result from original mineralogy, and

consistent with the alteration. Therefore, mobilization of elements

with low ionic potential (e.g. Ba, Rb, and K) is expected to occur under

such conditions (e.g. Humphris & Thompson, 1978). The highly

depleted K and Rb contents of some samples can indicate leaching of

these elements due to post-magmatic effects. The high-field strength

elements (HFSE) and rare-earth elements (REE), however, are known

to be largely immobile during low-grade alteration (e.g. Staudigel,

Plank, White, & Schmincke, 1996), and their abundances can be

regarded to reflect the pristine, unaltered geochemistry. We therefore

use mainly HFSE and REE to make our petrogenetic interpretations.

6.1.2 | Results

Lava samples from the basal part of the Karincali-Southwest

section display highly alkaline characteristics and are chemically classi-

fied as nephelinite/basanite on the basis of immobile element system-

atics (Figure 13). They have low silica contents between 40.3 wt% and

42.7 wt% (all major oxide values have been recalculated to 100 % on

a volatile-free basis). Although some silica loss is possible to occur

during the alteration, such low contents are consistent with the silica-
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undersaturated mineralogy of these rocks. MgO shows a relatively

wide range between 5.4 wt% and 14.0 wt%, indicating that not all

samples are primary and reflect evolved compositions modified by

fractional crystallization. The TiO2 contents of Karincali lavas are

noticeably high, with values between 3.5 wt% and 6.2 wt%. Likewise,

the P2O5 attains very high values between 1.2 wt% and 3.0 wt%,

which is consistent with the apatite-rich mineralogy of these lavas.

Samples from the basal part of the Karincali-Southwest

section are extremely rich in incompatible trace elements. Th, for

example, ranges between 15.6 ppm and 22.6 ppm, exhibiting values

up to ~ 200 times that of normal mid-ocean ridge basalt (N-MORB)

(Average Th value for N-MORB = 0.12; S. S. Sun & McDonough,

1989). Nb displays values between 124.4 ppm and 272.3 ppm, reach-

ing up to values ~ 117 times that of N-MORB (Average Nb value for

N-MORB = 2.33; S. S. Sun & McDonough, 1989). Immobile trace ele-

ments exhibit steeply sloping patterns characterized by decreasing

enrichment from most incompatible elements towards compatible ele-

ments (Figure 14). Some samples are slightly more depleted in Nb,

resulting in higher Th/Nb and La/Nb values than the rest of samples.

The same samples also show depletion in Zr and Hf. The REE patterns

of Karincali lavas are characterized by strong enrichment in LREE over

HREE ([La/Yb]N = 28.2–48.0; where subscript N denotes chondrite-

normalized) (Figure 14). HREE are also highly fractionated, displaying

high (Dy/Yb)N values (1.9–2.1).

6.2 | Petrogenesis

The lavas from the Karincali-Southwest section are characterized by

extreme enrichment in highly incompatible elements (e.g. Nb) with

very low ratios of Zr/Nb. Since both Zr and Nb are immobile during

low-grade alteration, the very high values for Nb and Zr/Nb are not

an artifact of post-magmatic processes, but appear to be related to

the mantle source and magmatic processes (e.g. melting). Nb behaves

more incompatibly than Zr in the upper mantle (e.g. Salters, Longhi, &

Bizimis, 2002; S. S. Sun & McDonough, 1989). During crust-forming

events, this compatibility difference has resulted in mantle domains

that are depleted in Nb relative to Zr. Therefore, while the depleted

mantle is characterized by high Zr/Nb (34.2, depleted MORB mantle

(DMM); Workman & Hart, 2005), the relatively undepleted or

enriched mantle domains would have lower Zr/Nb ratios (e.g. 16.0 for

the bulk silicate Earth (BSE); McDonough & Sun, 1995). Based on this,

the very low Zr/Nb ratios of Karincali lavas can be explained by a

strong contribution from enriched mantle domains. In addition, low

degrees of melting can also have been effective in lowering the Zr/Nb

ratio observed in these lavas.

The idea above is also supported by Zr/Yb and Nb/Yb ratios.

Since lava samples from the basal part of the Karincali-Southwest

section are mafic in composition, these ratios (also including Zr/Nb)

are not expected to have been significantly altered by the fractional

crystallization process. Therefore, such elemental ratios should reflect

the nature of mantle source and partial melting. Yb is also an immobile

element, but it is more compatible relative to Nb and Zr during upper

mantle melting (e.g. S. S. Sun & McDonough, 1989). Therefore, the

effect of derivation from a depleted source coupled with moderate/

high degrees of melting would tend to create low Zr/Yb and Nb/Yb

ratios like that of N-MORBs (which are assumed to be derived from a

DMM-type source; N-MORB Zr/Yb = 24.3, Nb/Yb = 0.76; S. S. Sun &

McDonough, 1989). In contrast, contribution from enriched sources

and/or low degrees of partial melting would lead to high values of

Zr/Yb and Nb/Yb. The ratios observed in the Karincali samples are

consistent with the latter case, in which the studied lavas display actu-

ally very high Zr/Yb and Nb/Yb ratios (168.9–205.8 and 53.4–77.0,

respectively). This suggests, therefore, that the enriched sources, pos-

sibly coupled with low degrees of melting, made a significant

FIGURE 13 Chemical classification of the Permian volcanic rocks

from Mersin Mélange (after Winchester & Floyd, 1977). Bsn/Nph,
basanite/nephelinite

FIGURE 14 Trace element and REE patterns of the Permian volcanic

rocks from the Mersin Mélange (N-MORB and chondrite
normalization values from S. S. Sun & McDonough, 1989)
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contribution to the petrogenesis of the lava samples from the basal

part of the Karincali-Southwest section.

The Th–Nb–La systematics of the lava samples from the basal

part of the Karincali- Southwest section indicates no relative signifi-

cant enrichment of Th and La over Nb. Since these elements all

behave incompatibly during the upper mantle melting, the relative

depletion of Nb relative to Th and La can be linked to the processes

operating on a subducted slab (e.g. McCulloch & Gamble, 1991). Dur-

ing dehydration and melting of the oceanic crust, Th and La display

incompatible behavior (e.g. Pearce & Peate, 1995). In contrast, Nb is

commonly believed to be retained in the slab by residual Ti phases

(like rutile) (e.g. Ayers & Watson, 1993). The net result is that Th and

La are transferred to the mantle wedge largely via sediment melt,

whereas Nb is left behind (on the slab), therefore making no contribu-

tion to the elemental budget of the mantle wedge. Since the Karincali

lavas do not display apparent negative anomalies in Nb (Figure 14), a

major role for the slab-derived fluids/melts can be excluded for the

petrogenesis of the Karincali lavas.

This idea is strengthened further by the distribution of Karincali

samples on Nb/Yb-Th/Yb plot (Pearce & Peate, 1995). In this plot

(Figure 15), Nb and Yb are subduction-immobile elements, whereas

Th is subduction-mobile. Magmas generated in non-subduction set-

tings (like MORBs) define a linear trend that is governed by the source

depletion/enrichment and partial melting. In subduction-related set-

tings, however, Th becomes decoupled from Nb and Yb due slab-

induced processes, which causes magma compositions displaced from

the MORB array. The fact that the samples plot on the MORB array,

thus suggest that the source region of these lavas has not been modi-

fied by a subduction component.

The extrusives from the basal part of the Karincali-Southwest

section display extreme enrichment in the most incompatible element

fractionation of LREE–HREE as mentioned before. The significant

enrichment of the highly incompatible elements (e.g. Th, Nb, and

LREE) can be attributed to low-degrees of partial melting. It must be

noted, however, that the enrichment levels are so high that it would

be difficult to derive such elemental compositions only via low-degree

melting (e.g. Le Roex, Bell, & Davis, 2003). A possible cause for this

anomalous enrichment can be a metasomatized source region modi-

fied by fluids and/or low-degree partial melts (e.g. McKenzie &

O'Nions, 1995). The depletion in HREE relative to LREE and fraction-

ated HREE patterns (high Dy/Yb), on the other hand, suggests the role

of residual garnet, since garnet can effectively retain HREE elements

(e.g. Johnson, 1998; McKenzie & O'Nions, 1991). The residual garnet

was possibly involved either in the mantle source or the source region

itself was already fractionated in terms of LREE/HREE due to metaso-

matism by small degree garnet-facies melts.

6.3 | Tectonomagmatic constraints

The trace element systematics of these lavas indicate extreme incom-

patible element enrichment and suggests no role for involvement of

subduction-related metasomatism. The magmas generated at mid-

ocean ridges are commonly of depleted nature (N-MORBs), though

enriched magma compositions also exist (E-MORB) (e.g. Hoernle et al.,

2011; Niu & Batiza, 1997; Zindler, Staudigel, & Batiza, 1984). Even

when the extreme end of E-MORBs is considered, the enrichment

levels observed in the lavas from Karincali-Southwest section remains

considerably higher (Figure 15), thus eliminating the possibility of gen-

eration of these lavas in a mid-ocean ridge setting. The enrichment

levels shown by the Karincali samples are even more enriched than

oceanic island basalts (OIBs) (Figure 15), which exclude an ocean

island origin for the genesis of these extrusives. Furthermore, since

Th–Nb–La and Th–Nb–Yb systematics indicates no (or insignificant)

involvement of the subduction component, the generation of Karincali

lavas at a subduction zone (either continental or oceanic) does not

seem likely.

The unusual enrichment level with no subduction input eliminates

mid-ocean ridge, oceanic island and subduction zone tectonic settings.

The best alternative for generation of magmas consistent with such

trace element systematics, therefore, appears to be a continental

within-plate setting. In these tectonic environments, the mantle part

of the continental lithosphere (i.e. subcontinental lithospheric mantle

(SCLM)) is an ideal place to create such enriched signatures. The

SCLM can be fluxed and metasomatized by the fluids and/or melts

derived from asthenospheric mantle, including MORB source mantle,

mantle plumes and subducted slabs (e.g. Gibson et al., 1993; McKen-

zie & O'Nions, 1995). The SCLM has been commonly suggested as a

source component involved in the petrogenesis of highly alkaline,

potassic/ultrapotassic magmas (e.g. kimberlites, lamproites, melilitites)

(e.g. Carlson, Esperanca, & Svisero, 1996; Janney et al., 2002; Le Roex

et al., 2003; Figure 15). Although SCLM contributes to the genesis of

these magmas, the role of other components, including astheno-

spheric MORB mantle, mantle plumes and subducted slabs also

deserves some discussion.

Since SCLM can store the metasomatic inputs (for several million

years), the enrichment events do not necessarily occur during the

period of magmatism or recent melting events; they can be inherited

from an ancient melt extraction (from underlying asthenospheric

FIGURE 15 Nb/Yb–Th/Yb plot of the Permian volcanic rocks from

the Mersin Mélange (after Pearce & Peate, 1995). N-MORB, E-
MORB, and OIB compositions from S. S. Sun and McDonough (1989).
Mid-Atlantic Ridge 33�–35� data from Niu, Bideau, Hékinian, and
Batiza (2001), Western Cape Melilitite Province data from Janney, Le
Roex, Carlson, and Viljoen (2002)
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mantle) or subduction events. Since the lavas from the Karincali-

Southwest section do not display a significant trace of subduction

component, this suggests either that these lavas have not been gener-

ated in a subduction zone (as explained above) or that the metasoma-

tizing agents are not slab-derived fluids/melts. Therefore, this places

the origin of metasomatic materials in the asthenospheric mantle

(MORB source mantle or a mantle plume) in the Karincali case. The

melting of metasomatized SCLM can be triggered by heat derived

from the asthenospheric mantle or melts. In the case of a mantle

plume, it can act solely as a heat source or can actively be involved by

introducing its melts.

7 | DISCUSSION

One of the debated issues in recent years regarding the evolution of

the IAE Ocean was about its opening. The greatest complexity per-

haps came from the assumption that this branch of Neotethys is a

Mesozoic ocean that opened following the destruction of the Palaeo-

tethys. In this context, the rifting of northern Gondwana occurred dur-

ing the Lower Jurassic (Sengör & Yilmaz, 1981). Thus, the idea of

Lower Jurassic rifting highly restricted the life spans of the Palaeo-

tethys and IAE Oceans. Such separation required the pre-Lower Juras-

sic remnants to be regarded as ‘Palaeotethyan’, and Lower Jurassic or

younger Mesozoic remnants to be ‘Neotethyan’. The Triassic rem-

nants along the IAE Suture Belt, thus, were excluded from the defini-

tion of Neotethys. Instead, such fragments were considered to be

tectonically intercalated Palaeotethyan pieces. The discovery of Trias-

sic chert located away from the IAE Suture Belt (Bornova Flysch Zone,

western Turkey; Tekin & Göncüoglu, 2007), however, indicates that

the age of northern Neotethyan relicts can be indeed pre-Lower

Jurassic.

The Carnian finding mentioned above was the oldest age from

the northern realm until that time. This is not the only Triassic finding

away from the IAE Suture Belt, strengthening the idea that Triassic

sequences are not uncommon within the northern branch of Neo-

tethys. One such sequence was the Carnian (Upper Triassic) pelagic

limestone from the Lycian Nappes (Southwest Turkey; Tekin & Gön-

cüoglu, 2002). Another and the most recent one, which includes Ani-

sian chert, came from the Mersin Mélange (southern Turkey; Tekin,

Bedi, Okuyucu, Göncüoglu, & Sayit, 2016). Although both localities

are situated in southern Turkey, they are shown to be of northerly ori-

gin (Collins & Robertson, 1999; Parlak & Robertson, 2004; Tekin, Bedi,

Okuyucu, Göncüoglu, & Sayit, 2016). The finding from the Mersin

Mélange was a significant one, since the Anisian age extracted from

the pelagic sediments became the oldest age acquired from the IAE

Ocean until now.

The paleontological evidence alone bears some important implica-

tions and can suggest either the existence of the IAE Ocean already in

the Middle Triassic or the existence of a deep basin that was yet to

evolve to become the IAE Ocean. Geochemical data, where they are

associated with precise ages (paleontological or radiometric), can addi-

tionally help to provide geodynamic constraints with respect to tec-

tonic setting and time. E-MORB and OIB-type signatures were found

in the ophiolitic mélanges along the IAE Suture Belt. OIB-type

signatures were interpreted by Rojay, Yaliniz, and Altiner (2001) and

Rojay et al. (2004) as seamounts formed on the IAE oceanic crust.

These authors, on the basis of this finding, defended the idea of Lower

Jurassic rifting. However, E-MORB type basalts associated with Car-

nian chert from the Sakarya region along the IAE Suture Belt indicated

the existence of a deep basin already by the Late Triassic, suggesting

that the rifting occurred well before the Lower Jurassic (Göncüoglu

et al., 2003). There are also subduction-related lithologies encoun-

tered within the northern realm. The plagiogranite dykes from the

Ankara Ophiolitic Mélange yielded supra-subduction zone (SSZ) type

signatures with U–Pb ages of 179 Ma (Dilek & Thy, 2006). Another

Early Jurassic age with SSZ-type characteristics was found in the

Refahiye region (Topuz et al., 2013). These findings suggest the exis-

tence of a mature ocean in that time period. Subduction-related char-

acteristics were also found in the Triassic, which make the picture

even more interesting. In the Lycian Nappes, arc-type basalts were

found associated with Carnian chert (Sayit et al., 2015), while oceanic

back-arc basin characteristics were found in the basalts associated

with Anisian chert (Sayit et al., 2017). Therefore, such data indicate

the existence of a mature IAE ocean even during the Middle Triassic.

Recent findings (in terms of both paleontology and geochemistry)

appear to have added new perspectives on the evolution of the IAE

Ocean. The discovery of Anisian lavas from the Mersin Mélange

immediately brings the question whether oceanic sequences older

than the Anisian do exist within the northern domain. As mentioned

above the Mersin Mélange contains the fragments transported from

the IAE Ocean (Beyşehir–Hoyran nappes sensu Brunn et al., 1970,

1971) according to Tekin et al. (Tekin, Bedi, Okuyucu, Göncüoglu, &

Sayit, 2016; Tekin, Bedi, Okuyucu, Göncüoglu, Sayit et al., 2016).

Therefore, if Anisian lavas indeed represent an oceanic back-arc basin

as suggested by Sayit et al. (2017), then some older (pre-Anisian) con-

tinental/oceanic fragments should exist within the Mersin Mélange or

any other part that preserves the remnants of the IAE Ocean.

8 | CONCLUSIONS

Some important results from this study are as follows:

1. The basal part of the sequence, represented by alternations of

basic volcanics, limestone, chert, and mudstone, ranges from late

Asselian (early Cisuralian) to Wordian (middle Guadalupian) age

based on a sequence of five radiolarian assemblages tied into

existing global biostratigraphic schemes (Figure 3). These assem-

blages provide critical age control for interpreting the provenance

and tectonic significance of this sequence.

2. Two levels of basic volcanics have been encountered and their

age has been assigned to the late Asselian and Kungurian (Early

Permian), respectively. The age obtained from these lavas makes

them the first discovery of Early Permian magmatism from this

domain. Such an age also suggests that the IAE domain followed a

similar evolutionary path as the southern Neotethys, because the

rifting event that ended up with the formation of the latter

domain is believed to have occurred during the Late Permian

(Lapierre et al., 2004).

30 of 36 TEKIN ET AL.



3. The geology and geochemistry of the Early Permian lavas suggest

that they formed in a continental within-plate setting undergoing

extension, i.e. a continental rift setting. The association of basalts

with pelagic radiolarian-rich sediments suggests that the basin

was deep, though the underlying continental lithosphere was still

thick as displayed by the ultra-alkaline, lamprophyric nature of the

lavas.

4. The existence of a continental rift setting during the Early Perm-

ian is also important in terms of the rupturing of the northern

Gondwanan margin at this time period. Considering the fact that

the Early Permian (296–270 Ma) volcano-sedimentary sequence

represents a deep basin environment, the formation of proto IAE

oceanic crust would probably have occurred before the end of

Permian. This, in turn, implies that the IAE Ocean can no longer

be considered as an ocean that began forming in the Mesozoic,

since its appereance extends back to the Permian. The existence

of an oceanic back-arc basin during the Anisian (Sayit et al., 2017)

also supports mature Neotethyan oceanic crust of pre-Anisian

age.

5. Trace element systematics of the Early Permian lavas suggests

involvement of an asthenospheric mantle source, which was

either a MORB mantle source or a mantle plume. The latter alter-

native is more likely, considering that the supercontinent Pangea

was underlain by large low-velocity regions during the Permian,

which is considered to be source of mantle plumes (Burke & Tors-

vik, 2004).

6. The central part of the sequence is well-characterized by detrital

limestone with some chert bands and neptunian dykes. The age

of this part of the sequence ranges from middle Wordian through

earliest Wuchiapingian based on radiolarian, foraminiferal, and

conodont biostratigraphy. Foraminiferal assemblages in the detri-

tal limestone were mainly transported or reworked from Lower

Permian (mainly Asselian) strata. It appears that these limestones

may have accumulated during the breaking up of unstable plat-

form that formed in the Early to Middle Permian, possibly as old

as Late Carboniferous, and material from the rim of the basin was

transported to a newly originated rift system.

7. The uppermost part of the sequence is composed of detrital lime-

stone at the base, progressing to alternating chert and mudstone

intercalated with microbreccia beds. Its age is assigned to early

Wuchiapingian-middle Changhsingsian (Late Permian) based on

radiolarian and conodont biostratigraphy.

8. A large negative shift in δ13Corg of 8.8 ‰ occurs in the highest

limestone beds at the base of the Lopingian in the upper part of

the Karincali-Southwest section, and is correlated to negative

shifts reported in other sections at the Guadalupian–Lopingian

boundary in association with the end-Guadalupian mass extinc-

tion event. The Lopingian values of δ13Corg are highly depleted

(mean −36.1 ‰) and cannot be explained through common

marine processes of changes in OM source nor increased produc-

tivity. The introduction of highly negative methanogenic OM

through methane gas release, or anoxic microbial processes can in

part explain these values, as can increased degradation of nonre-

fractory OM in the Lopingian. The microbreccia occurrence in the

chert and mudstone sequence of the Karincali-Southwest

section could be related to sudden subsidence of the basin or due

to rapid transgression during the Lopingian.
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Nappes: Genesis and emplacement of Mesozoic marginal and oceanic
units of the northern Neotethys in southern Turkey. Journal of the Geo-
logical Society, 159, 529–543.

Angiolini, L., Chaouachi, C., Soussi, M., Andrina, V., Davydov, V. I.,
Henderson, C. M., … Carabelli, L. (2008). New fossil findings and dis-
coandry of conodonts in the Guadalupian of Jebel Tebaga de Mede-
nine: Biostratigraphic implications. Permophiles, 51, 10–22.

Ayers, J. C., & Watson, B. (1993). Rutile solubility and mobility in supercrit-
ical aqueous fluids. Contributions to Mineralogy and Petrology, 114,
321–330.

Baryshnikov, V. V., Zolotova, V. P., & Koscheleva, V. F. (1982). New spe-
cies of foraminifers from the Artinskian Stage of the Perm pre-Urals.
Akademiya Nauk SSSR, Ural'skii Nauchnyi Tsentr, Institut Geologiii Geo-
khimii, Sverdlovsk, 3–54 (in Russian).

Bensh, F. R. (1972). Upper Paleozoic stratigraphy and Fusulinids of southern
Fergana. Izdatelstvo FAN, Akademiya Nauk Uzbekistan SSR (in
Russian).

Blome, C. D., & Reed, K. M. (1992). Permian and Early (?) Triassic radiolar-
ian faunas from the Grindstone terrane, Central Oregon. Journal of
Paleontology, 66, 351–383.

Bond, D. P. G., Hilton, J., Wignall, P. B., Ali, J. R., & Stevens, L. G. (2010).
The Middle Permian (Capitanian) mass extinction on land and in the
oceans. Earth Science Reviews, 102, 100–116.

Bozorgnia, F. (1973). Paleozoic foraminiferal biostratigraphy of central and
east Albroz Mountains, Iran Geological Laboratories, Publication (Vol. 4).
Tehran: National Iranian Oil Company.

Bragin, N. Y., & Tekin, U. K. (1996). Age of radiolarian-chert blocks from
the Senonian Ophiolitic Melange (Ankara, Turkey). Island Arc, 5,
114–122.

Brunn, J. H., De Graciansky, P. C., Gutnic, M., Juteau, T., Lefévre, R.,
Marcoux, J., … Poisson, A. (1970). Structures majeures et corrélations
stratigraphiques dans les Taurides occidentals. Bulletin de la Societe
Géologique de France, 12, 515–556.

Brunn, J. H., Dumont, J. F., Graciansky, P. C., Gutnic, M., Juteau, T.,
Marcoux, J., … Poisson, A. (1971). Outline of the geology of the

TEKIN ET AL. 31 of 36

https://orcid.org/0000-0001-6859-4536
https://orcid.org/0000-0001-6859-4536


western Taurids. In A. S. Campbell (Ed.), Geology and history of Turkey
(pp. 225–255). Tripoli: Petroleum Exploration Society of Libya.

Burke, K., & Torsvik, T. H. (2004). Derivation of large igneous provinces of
the past 200 million years from long-term heterogeneities in the deep
mantle. Earth and Planetary Science Letters, 227, 531–538.

Carlson, R. W., Esperanca, S., & Svisero, D. P. (1996). Chemical and Os iso-
topic study of Cretaceous potassic rocks from Southern Brazil. Contri-
butions to Mineralogy and Petrology, 125, 393–405.

Collins, A. S., & Robertson, A. H. F. (1999). Evolution of the Lycian alloch-
thon, western Turkey, as a north-facing late Palaeozoic to Mesozoic
rift and passive continental margin. Geological Journal, 34, 107–138.

Cordey, F. (1998). Radiolaires des complexes d'accrétion de la Cordillere
Canadienne (Colombie-Britannique). Commision Géologique du Canada
Bulletin, 509, 1–209.

De Wever, P., Dumitrica, P., Caulet, J. P., Nigrini, C., & Caridroit, M. (2001).
Radiolarians in the sedimentary record. London, England: Gordon and
Breach Science Publishing.

Dilek, Y., & Thy, P. (2006). Age and petrogenesis of plagiogranite intrusions
in the Ankara mélange, central Turkey. Island Arc, 15, 44–57.

Dumitrica, P. (1970). Cryptocephalic and Cryptothoracic Nasseleria in
some Mesozoic deposits of Romania. Revue Roumaine de Géologie, Géo-
physique et Géographie (Série Géologie), 14, 45–124.

Erk, A. S. (1942). Sur la présence du genre Codonofusiella Dunbar et Skin-
ner dans le Permien de Bursa (Turquie). Eclogae Geologicae Helvetiae,
34(dated 1941), 243–253.

Feng, Q. (1992). Permian and Triassic radiolarian biostratigraphy in south
and southwest China. Earth Science, Journal of China University of Geo-
science, 3, 51–62.

Feng, Q., & Liu, B. (1993). Permian radiolarians on southwestern Yunnan.
Earth Science, Journal of China University of Geoscience, 18, 553–563.

Feng, Q., Meng, Y., He, W., & Gu, S. (2006). Taxonomy of Order Latentifis-
tularia (Radiolaria) from the Latest Permian in southern Guangxi, China.
Journal of Paleontology, 80, 826–848.

Filimonova, T. V. (2010). Smaller foraminifers of the Lower Permian from
western Tethys. Stratigraphy and Geological Correlation, 18, 687–811.

Filipovic, I. (1995). The Carboniferous of northwestern Serbia. Rasprave
Geoloikog Zavoda Gemini, Belgrade, Tome,, XXV, 1–104. (in Serbian and
English).

Forel, M. B., Tekin, U. K., Okuyucu, C., Bedi, Y., Tuncer, A., & Crasquin, S.
(in press). Discovery of a long-term refuge for ostracods (Crustacea)
after the end-Permian extinction: A unique Carnian (Late Triassic)
fauna from the Mersin Mélange, southern Turkey. Journal of Systematic
Palaeontology. https://doi.org/10.1080/14772019.2017.1391342

Gaillot, J., & Vachard, D. (2007). The Khuff Formation (Middle East) and
time-equivalents in Turkey and South China: Biostratigraphy from
Capitanian to Changhsingian times (Permian), new foraminiferal taxa,
and palaeogeographical implications. Coloquios de Paleontología, 57,
37–223.

Gerke, A. A., & Sosipatrova, A. G. P. (1975). Stratigraphic significance of
Late Paleozoic foraminifersin the northeastern USSR. In V. I. Ustritskii
(Ed.), Upper Paleozoic of the northeastern USSR (pp. 26–41). Leningrad,
Russia: Nauchno-Issledovatel'skii Institut Geologii Arktiki, Ministerstva
Geologii SSSR, Sbornik Statei (in Russian).

Ghasemi-Nejad, E. (2002). Biostratigraphy and depositional history of the
Paleozoic deposits in the south of Central Alborz Basin, based on fora-
minifera. Iranian International Journal of Science, 3, 93–114.

Gibson, S. A., Thompson, R. N., Leat, P. T., Morrison, M. A., Hendry, G. L.,
Dickin, A. P., & Mitchell, J. G. (1993). Ultrapotassic Magmas along the
flanks of the Oligo-Miocene Rio Grande Rift, USA: Monitors of the
zone of lithospheric mantle extension and thinning beneath a conti-
nental rift. Journal of Petrology, 34, 187–228.

Göncüoglu, M. C., Dirik, K., & Kozlu, H. (1997). General characteristics of
pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the
terrane map of Turkey. Annales Geologique de Pays Hellenique, 37,
515–536.

Göncüoglu, M. C., Sayit, K., & Tekin, U. K. (2010). Oceanization of the
northern neotethys: Geochemical evidence from ophiolitic mélange
basalts within the Izmir-Ankara suture belt, NW Turkey. Lithos, 116,
175–187.

Göncüoglu, M. C., Tekin, U. K., & Turhan, N. (2001). Late Carnian
radiolarite-bearing basalt blocks within the Late Cretaceous Central

Sakarya Ophiolitic Melange, Ankara, NW Anatolia: Geological con-
straints. In Jeo 2000 Proceedings, pp. 54–61.

Göncüoglu, M. C., Turhan, N., Sentürk, K., Özcan, A., Uysal, S., &
Yaliniz, M. K. (2000). A geotraverse across NW Turkey: Tectonic units
of the Central Sakarya region and their tectonic evolution. In
E. Bozkurt, J. A. Winchester, & J. D. A. Piper (Eds.), Tectonics and mag-
matism in Turkey and the surrounding area Geological Society, Special
Publications (Vol. 173, pp. 139–161). London, England: Geological
Society.

Göncüoglu, M. C., Turhan, N., & Tekin, U. K. (2003). Evidence for the Trias-
sic rifting and opening of the Neotethyan Izmir-Ankara ocean and dis-
cussion on the presence of Cimmerian events at the northern edge of
the Tauride–Anatolide platform, Turkey. Bollettino della Societa Geolo-
gica Italiana, Special Volume, 2, 203–212.

Görür, N., Sengör, A. M. C., Akkök, R., & Yilmaz, Y. (1983). Sedimentologi-
cal evidence for the opening of the northern branch of Neo-Tethys in
the Pontides. Bulletin of the Geological Society of Turkey, 26, 11–20
(in Turkish with English abstract).

Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (Eds.). (2012). The
geological time scale 2012. Amsterdam, The Netherlands: Elsevier,
2 vols.

Groves, J. R., & Boardman, D. R. (1999). Calcareous smaller foraminifers
from the Lower Permian Council Grove Group near Hooser, Kansas.
Journal of Foraminiferal Research, 29, 243–262.

Groves, J. R., Kulagine, E. I., & Villa, E. (2007). Diachronous appearances of
the fusulinid Profusulinella in Eurasia and North America. Journal of
Paleontology, 81, 227–237.

Groves, J. R., & Wahlman, G. P. (1997). Biostratigraphy and evolution of
late Carboniferous and early Permian smaller foraminifers from the
Barents Sea (offshore Arctic Norway). Journal of Paleontology, 71,
758–779.

Hoernle, K., Hauff, F., Kokfelt, T. F., Haase, K., Garbe-Schönberg, D., &
Werner, R. (2011). On and off-axis chemical heterogeneities along the
South Atlantic Mid-Ocean-Ridge (5–11� S): Shallow or deep recycling
of ocean crust and/or intraplate volcanism? Earth and Planetary Science
Letters, 306, 86–97.

Humphris, S. E., & Thompson, G. (1978). Trace element mobility during
hydrothermal alteration of oceanic basalts. Geochimica et Cosmochimica
Acta, 42, 127–136.

Ishiga, H. (1986). Late Carboniferous and Permian radiolarian biostratigra-
phy of Southwest Japan. Journal of Geosciences, Osaka City University,
29, 89–100.

Ishiga, H. (1990). Paleozoic radiolarians. In K. Ichikawa, S. Mizutani, I. Hara,
S. Hada, & A. Yao (Eds.), Pre-cretaceous terranes of Japon (pp. 285–
295). Osaka, Japan: Nippon Insatsu, Shuppan.

Ishiga, H., & Imoto, N. (1980). Some Permian radiolarian in the Tamba Dis-
trict, southwest Japan. Earth Science (Chikyu kagaku), 34, 333–345.

Ishiga, H., Kito, T., & Imoto, N. (1982). Permian radiolarian biostratigraphy.
News of Osaka Micropaleontologists, Special Volume, 5, 17–26.

Isozaki, Y., Kawahata, H., & Minoshima, K. (2007). The Capitanian
(Permian) Kamura Cooling Event: The beginning of the Paleozoic–
Mesozoic transition. Palaeoworld, 16, 16–30.

Isozaki, Y., Kawahata, H., & Ota, A. (2007). A unique carbon isotope record
across the Guadalupian-Lopingian (Middle-Upper Permian) boundary
in mid-oceanic paleoatoll carbonates: The high-productivity “Kamura
Event” and its collapse in Panthalassa. Global and Planetary Change, 55,
21–38.

Ito, T., Feng, Q., & Matsuoka, A. (2013). Radiolarian faunal change in the
Middle Permian Gufeng Formation in the Liuhuang section, Chaohu,
South China. Science Reports of Niigata University (Geology), 28, 39–49.

Ito, T., Feng, Q., & Matsuoka, A. (2015). Taxonomic significance of short
forms of middle Permian Pseudoalbaillella Holdsworth and Jones, 1980
(Follicucullidae, Radiolaria). Revue de Micropaleontologie, 58, 3–12.

Ito, T., & Matsuoka, A. (2015). Imbricate structure of the Permian Yoshii
Group in the Otakeyama area, Okayama Prefecture, southwest Japan.
Frontiers of Earth Science, 9, 152–163.

Janney, P. E., Le Roex, A. P., Carlson, R. W., & Viljoen, K. S. (2002). A chem-
ical and multi-isotope study of the Western Cape Olivine Melilitite
Province, South Africa: Implications for the sources of Kimberlites and
the origin of the HIMU signature in Africa. Journal of Petrology, 43,
2339–2370.

32 of 36 TEKIN ET AL.

https://doi.org/10.1080/14772019.2017.1391342


Jasin, B., & Harun, Z. (2011). Radiolarian biostratigraphy of Peninsular
Malaysia-An update. Bulletin of the Geological Society of Malaysia, 57,
27–38.

Jasin, B., Harun, Z., Said, U., & Saad, S. (2005). Permian radiolarian biostra-
tigraphy of the Semanggol Formation, south Kedah, Penninsular
Malaysia. Bulletin of the Geological Society of Malaysia, 51, 19–30.

Jasin, B., Said, U., & Rahman, R. A. (1995). Late Middle Permian Radiolaria
from the Jengka area, central Pahang, Malaysia. Journal of Southeast
Asian Earth Sciences, 12, 79–83.

Jin, Y. G., Shang, Q. H., & Wang, X. D. (2003). Permian biostratigraphy of
China. In P. J. Chen, A. R. Palmer, & W. T. Zhang (Eds.), Biostratigraphy
of China (pp. 331–378). Amsterdam: Elsevier.

Jin, Y. G., Shen, S. Z., Henderson, C. M., Wang, X. D., Wang, W., Wang, Y.,
… Shang, Q. H. (2006). The Global Stratotype Section and Point (GSSP)
for the boundary between the Capitanian and Wuchiapingian stage
(Permian). Episodes, 29, 253–262.

Johnson, K. T. M. (1998). Experimental determination of partition coeffi-
cients for rare earth and high-field-strength elements between clino-
pyroxene, garnet, and basaltic melt at high pressures. Contributions to
Mineralogy and Petrology, 133, 60–68.

Jost, A. B., Mundil, R., He, B., Brown, S. T., Altiner, D., Sun, Y., …
Payne, J. L. (2014). Constraining the cause of the end-Guadalupian
extinction with coupled records of carbon and calcium isotopes. Earth
and Planetary Science Letters, 396, 201–212.

Kaiho, K., Chen, Z.-Q., Ohashi, T., Arinobu, T., Sawada, K., & Cramer, S. C.
(2005). A negative carbon isotope anomaly associated with the earliest
Lopingian (Late Permian) mass extinction. Palaeogeography, Palaeocli-
matology, Palaeoecology, 223, 172–180.

Kobayashi, F. (1997). Upper Permian foraminifers from the Iwai-Kanyo
area, west Tokyo, Japan. Journal of Foraminiferal Research, 27,
186–195.

Kobayashi, F. (2006a). Middle Permian foraminifers of the Izuru and
Nabeyama formations in the Kuzu area, Tochigi Prefecture, Japan, part
1. Schwagerinid, Neoschwagerinid and verbeekinid fusulinoideans.
Paleontological Research, 10, 37–59.

Kobayashi, F. (2006b). Middle Permian foraminifers of the Izuru and
Nabeyama formations in the Kuzu area, Tochigi Prefecture, Japan, part
2. Schubertellidae and ozawainellid fusulinoideans, and
non-fusulinoidean foraminifers. Paleontological Research, 10, 61–77.

Kobayashi, F. (2006c). Middle Permian foraminifers of Kaize, southern part
of the Saku Basin, Nagano prefecture, central Japan. Paleontological
Research, 10, 179–194.

Kobayashi, F., & Altiner, D. (2011). Discovery of the Lower Murghabian
(Middle Permian) based on neoschwagerinids and verbeekinids in the
Taurides, southern Turkey. Rivista Italiana di Paleontologia e Stratigrafia,
117, 39–50.

Kobayashi, F., Shiino, Y., & Suzuki, Y. (2009). Middle Permian (Midian) fora-
minifers of the Kamiyasse Formation in the Southern Kitakami Terrane,
NE Japan. Paleontological Research, 13, 79–99.

Kotlyar, G. V., Nestell, G. P., Zakharov, Y. D., & Nestell, M. K. (1999).
Changhsingian of the northwestern Caucasus, southern Primorye and
southeastern Pamirs. Permophiles, 35, 18–22.

Kozur, H., & Mostler, H. (1989). Radiolarien und Schwamskleren aus dem
unterperm Vorurals. Geologisch-Paläontologische Mitteilungen Innsbruck,
2, 147–275.

Kozur, H. W., Moix, P., & Ozsvart, P. (2007a). Characteristic Nassellaria of
the lower Tuvalian (Upper Triassic) Spongotortilispinus moixi Zone of
the Huglu Unit in the Mersin Mélange, southeastern Turkey. Bulletin de
la Société Vaudoise des Sciences Naturelles, 90, 151–173.

Kozur, H. W., Moix, P., & Ozsvart, P. (2007b). Stratigraphically important
Spumellaria and Entactinaria from the lower Tuvalian (Upper Triassic)
of the Huglu Unit in the Mersin Mélange, southeastern Turkey. Bulletin
de la Société Vaudoise des Sciences Naturelles, 90, 175–195.

Kozur, H. W., Moix, P., & Ozsvart, P. (2007c). Further new Nassellaria of
the lower Tuvalian (Upper Triassic) Spongotortilispinus moixi Zone of
the Huglu Unit in the Mersin Mélange. Bulletin de la Société Vaudoise
des Sciences Naturelles, 90, 197–215.

Kozur, H. W., Moix, P., & Ozsvart, P. (2009). New Spumellaria (Radiolaria)
from the early Tuvalian Spongotortilispinus moixi Zone of southeastern
Turkey, with some remarks on the age of this fauna. Jahrbuch der Geo-
logischen Bundesanstalt, 149, 29–59.

Kozur, H. W., & Wardlaw, B. R. (2010). The Guadalupian conodont fauna

of Rustaq and Wadi Wasit, Oman and a West Texas connection. Micro-

paleontology, 56(1), 213–233.
Krull, E. S., & Retallack, G. J. (2000). δ 13C depth profiles from paleosols

across the PErmian-Triassic boundary: Evidence for methane release.

Geological Society of America Bulletin, 112, 1459–1472.
Krull, E. S., Retallack, G. J., Campbell, H. J., & Lyon, G. L. (2000). 13C che-

mostratigraphy of the Permian-Triassic boundary in the Maitai Group,

New Zealand: Evidence for high-latitudinal methane release.

New Zealand Journal of Geology and Geophysics, 43, 21–32.
Kuwahara, K. (1999). Phylogenetic lineage of Late Permian Albaillella

(Albaillellaria: Radiolaria). Journal of Geosciences, Osaka City University,

42, 84–101.
Kuwahara, K., Yao, A., & An, T. (1997). Paleozoic and Mesozoic complexes

in the Yunnan area China (part 1): Preliminary report of Middle-Late

Permian radiolarian assemblages. Journal of Geosciences, Osaka City

University, 40, 37–49.
Kuwahara, K., Yao, A., & Yamakita, S. (1998). Reexamination of Upper

Permian radiolarian biostratigraphy. Earth Science (Chikyu Kagaku), 52,

391–404.
Kuwahara, K., Yao, A., Yao, J., Feng, S., Ji, Z., & Yao, H. (2007). Middle

Permian radiolarian biostratigraphy on the Gufeng Formation in

Songzi-Wufeng area, Hubei province, China. Journal of Geosciences,

Osaka City University, 50, 55–66.
Lambert, L. L., Wardlaw, B. R., Nestell, M. K., & Nestell, G. P. (2002). Latest

Guadalupian (Middle Permian) conodonts and foraminifers from the

West Texas. Micropaleontology, 48, 343–364.
Lapierre, H., Samper, A., Bosch, D., Maury, R. C., Bechennec, F., Cotten, J.,

… Marcoux, J. (2004). The Tethyan plume: Geochemical diversity of

Middle Permian basalts from the Oman rifted margin. Lithos, 74,

167–198.
Le Roex, A. P., Bell, D. R., & Davis, P. (2003). Petrogenesis of Group I kim-

berlites from Kimberley, South Africa: Evidence from Bulk-Rock Geo-

chemistry. Journal of Petrology, 44, 2261–2286.
Leven, E. J. (1993). Main events in Permian history of the Tethys and Fusu-

linids. Stratigraphy and Geological Correlation, 1, 59–75.
Leven, E. J. (1981). Permian Tethys stage scale and correlation of sections

of the Mediterranean-Alpine Folded Belt. In S. Karamata & F. P. Sassi

(Eds.), IGCP No 5, Newsletter (Vol. 3, pp. 100–112). Italy: University of

Padova.
Leven, E. J. (2001). On possibility of using the global Permian stage scale in

the Tethyan region. Stratigraphy and Geological Correlation, 9,

118–131.
Leven, E. J. (2003). The Permian stratigraphy and fusulinids of the Tethys.

Rivista Italiana di Paleontologia e Stratigrafia, 109, 267–280.
Leven, E. J., & Bogoslovskaya, M. F. (2006). The Roadian stage of the

Permian and problems of its global correlation. Stratigraphy and Geolog-

ical Correlation, 14, 67–78.
Leven, E. J., & Gorgij, M. N. (2006). Upper Carboniferous—Permian stratig-

raphy and Fusulinids from the Anarak Region, Central Iran. Russian

Journal of Earth Sciences, 8, 1–25.
Leven, E. J., & Gorgij, M. N. (2011). Fusulinids and stratigraphy of the Car-

boniferous and Permian in Iran. Stratigraphy and Geological Correlation,

19, 687–776.
Leven, E. J., & Okay, A. I. (1996). Foraminifera from the exotic

Permo-Carboniferous limestone blocks in Karakaya Complex, north-

western Turkey. Rivista Italiana di Paleontologia e Stratigrafia, 102,

139–174.
Leven, E. J., & Taheri, A. (2003). Carboniferous—Permian stratigraphy and

Fusulinids of East Iran, Gzhelian and Asselian deposits of the

Ozbak-Kuh Region. Rivista Italiana di Paleontologia e Stratigrafia, 109,

399–415.
Ma, Q., Feng, Q., Caridroit, M., Danelian, T., & Zhang, N. (2016). Integrated

radiolarian and conodont biostratigraphy of the Middle Permian

Gufeng Formation (South China). Comptes Rendus Palevol, 15,

453–459.
Mamet, B. L. (1996). Late Paleozoic small foraminifers (endothyrids) from

South America (Ecuador and Bolivia). Canadian Journal of Earth Sci-

ences, 33, 452–459.

TEKIN ET AL. 33 of 36



McCulloch, M. T., & Gamble, J. A. (1991). Geochemical and geodynamical
constraints on subduction zone magmatism. Earth and Planetary Sci-
ence Letters, 102, 358–374.

McDonough, W. F., & Sun, S.-S. (1995). The composition of the Earth.
Chemical Geology, 120, 223–253.

McKenzie, D., & O'Nions, R. K. (1991). Partial melt distributions from
inversion of rare earth element concentrations. Journal of Petrology, 32,
1021–1091.

McKenzie, D., & O'Nions, R. K. (1995). The source regions of ocean island
basalts. Journal of Petrology, 36(1), 133–159.

Metcalfe, I. (2000). The Bentong-Raub Suture Zone. Journal of Asian Earth
Sciences, 18, 691–712.

Mohtat-Aghai, P., & Vachard, D. (2005). Late Permian foraminiferal assem-
blages from the Hambast region (Central Iran) and their extinctions.
Revista Española de Micropaleontología, 37, 205–227.

Moix, P., Beccaletto, L., Masset, O., Kozur, H. W., Dumitrica, P.,
Vachard, D., … Stampfli, G. M. (2011). Geology and correlation of the
Mersin Mélanges, southern Turkey. Turkish Journal of Earth Sciences,
20, 57–98.

Moix, P., Kozur, H. W., Stampfli, G. M., & Mostler, H. (2007). New paleon-
tological, biostratigraphic and paleogeographic results from the Triassic
of the Mersin Mélange, SE Turkey. New Mexico Museum of Natural His-
tory and Science Bulletin, 41, 282–311.

Nazarov, B. B., & Ormiston, A. R. (1985). Radiolaria from the Late Paleo-
zoic of the Southern Urals, USSR and West Texas, USA. Micropaleon-
tology, 31, 1–54.

Nazarov, B. B., & Ormiston, A. R. (1993). New biostratigraphically impor-
tant Palaeozoic radiolaria of Eurasia and North America. In
J. Blueford & B. Murchey (Eds.), Radiolaria of giant and subgiant fields in
Asia, Nazarov Memoir (pp. 22–59). New York: Micropaleontology
Press, American Museum of Natural History.

Nishikane, Y., Kaiho, K., Henderson, C. M., Takahashi, S., & Suzuki, N.
(2014). Guadalupian–Lopingian conodont and carbon isotope stratigra-
phies of a deep chert sequence in Japan. Palaeogeography, Palaeoclima-
tology, Palaeoecology, 403, 16–29.

Nishikane, Y., Kaiho, K., Takahashi, S., Henderson, C. M., Suzuki, N., &
Kanno, M. (2011). The Guadalupian–Lopingian boundary (Permian) in a
pelagic sequence from Panthalassa recognized by integrated conodont
and radiolarian biostratigraphy. Marine Micropaleontology, 78, 84–95.

Niu, Y., & Batiza, R. (1997). Trace element evidence from seamounts for
recycled oceanic crust in the Eastern Pacific mantle. Earth and Plane-
tary Science Letters, 148, 471–483.

Niu, Y., Bideau, D., Hékinian, R., & Batiza, R. (2001). Mantle compositional
control on the extent of mantle melting, crust production, gravity
anomaly, ridge morphology, and ridge segmentation: A case study at
the Mid-Atlantic Ridge 33–35N. Earth and Planetary Science Letters,
186(3), 383–399.

Noble, P., Aitchison, J. C., Danelian, T., Dumitrica, P., Maletz, J., Suzuki, N.,
… O'Dogherty, L. (2017). Taxonomy of Paleozoic radiolarian genera. In
T. Danelian, M. Caridroit, P. Noble, & J. C. Aitchison (Eds.), Catalogue of
Paleozoic radiolarian genera Geodiversitas (Vol. 39, pp. 419–502). Paris:
Scientific Publications of the Muséum national d'Histoire naturelle.

Ogg, J. G., Ogg, G. M., & Gradstein, F. M. (2016). A coincise geologic time
scale. Amsterdam: Elsevier.

Özcan, A., Göncüoglu, M. C., Turan, N., Uysal, S., Sentürk, K., & Isik, A.
(1988). Late Paleozoic evolution of the Kütahya-Bolkardagi Belt. METU
Journal of Pure and Applied Sciences, 21(1-3), 211–220.

Özer, E., Koc, H., & Özsayar, T. Y. (2004). Stratigraphical evidence for the
depression of the northern margin of the Menderes-Tauride Block
(Turkey) during the Upper Cretaceous. Journal of Asian Earth Sciences,
22, 401–412.

Özgül, N. (1976). Some geological aspects of the Taurus orogenic belt
(Turkey). Bulletin of the Geological Society of Turkey, 19, 65–78
(in Turkish with English abstract).

Özgül, N. (1984). Stratigraphy and tectonic evolution of the central Taur-
ides. In O. Tekeli & M. C. Göncüoglu (Eds.), Geology of the taurus belt
(pp. 77–90). Ankara: Publication of General Directorate of Mineral
Research and Exploration.

Özgül, N. (1997). Stratigraphy of the tectono-stratigraphic units in the
region Bozkir-Hadim-Taskent (northern central Taurides). Bulletin of
the Mineral Research and Exploration, 119, 113–174 (in Turkish).

Ozsvart, P., Dumitrica, P., Hungerbühler, A., & Moix, P. (2017). Mono- and
dicyrtid Nassellaria (Radiolaria) from the Upper Carnian of the Sorgun
Ophiolitic Mélange, Southern Turkey and Kopría Mélange, Rhodes,
Greece. Revue de Micropaleontologie, 60, 137–160.

Ozsvart, P., Dumitrica, P., & Moix, P. (2017). New early Tuvalian (Carnian,
Triassic) radiolarians from the Huglu-Pindos succession in the sorgun
ophiolitic Melange, southern Turkey. Ofioliti, 42, 55–67.

Ozsvart, P., Moix, P., & Kozur, H. (2015). New Carnian (Upper Triassic)
radiolarians from the Sorgun Ophiolitic Mélange, southern Turkey.
Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 277,
337–352.

Pampal, S. (1984). Geology of the Arslanköy-Tepeköy region. Bulletin of
Science, Faculty of Sciences-Arts, University of Selcuk, 3, 247–258
(in Turkish with English Abstract).

Parlak, O., & Robertson, A. H. F. (2004). The ophiolite-related Mersin Mél-
ange, southern Turkey: Its role in the tectonic-sedimentary setting of
Tethys in the Eastern Mediterranean region. Geological Magazine, 141,
257–286.

Pearce, J. A., & Peate, D. W. (1995). Tectonic implications of the composi-
tion of volcanic arc magmas. Annual Review of Earth and Planetary Sci-
ences, 23, 251–285.

Pessagno, E. A., Jr., & Newport, R. L. (1972). A new technique for extract-
ing Radiolaria from radiolarian cherts. Micropaleontology, 18, 231–234.

Peters-Kottig, W., Strauss, H., & Kerp, H. (2006). The land plant δ13C
record and plant evolution in the Late Palaeozoic. Palaeogeography,
Palaeoclimatology, Palaeoecology, 240, 237–252.

Pinard, S., & Mamet, B. L. (1998). Taxonomie des petits foraminiferes du
Carbonifere superieur-Permien inferieur du bassin de Sevrdrup, Arc-
tique Canadien. Palaeontographica Canadiana, 15, 1–253.

Raymond, L. A. (1984). Classification of mélanges. In L. A. Raymond (Ed.),
Mélanges: Their nature, origin, and significance, Geological Society of
America, Special Paper (Vol. 198, pp. 7–20). Boulder, Colorado: Geo-
logical Society of America.

Retallack, G. J., & Jahren, A. H. (2008). Methane outbursts from igneous
intrusion of coal at the Permian–Triassic boundary. Journal of Geology,
116, 1–20.

Retallack, G. J., Metzger, C. A., Greaver, T., Jahren, A. H., Smith, R. M. H., &
Sheldon, N. D. (2006). Middle–Late Permian mass extinction on land.
Bulletin of the Geological Society of America, 118, 1398–1411.

Robertson, A. H. F., & Dixon, J. E. (1984). Introduction: Aspects of the geo-
logical evolution of the Eastern Mediterranean. In J. E. Dixon &
A. H. F. Robertson (Eds.), The geological evolution of the Eastern Mediter-
ranean, Geological Society, Special Publications (Vol. 17, pp. 1–74).
London, England: Geological Society.

Robertson, A. H. F., & Ustaömer, T. (2009). Formation of the Late Palaeo-
zoic Konya Complex and comparable units in southern Turkey by
subduction–accretion processes: Implications for the tectonic develop-
ment of Tethys in the Eastern Mediterranean region. Tectonophysics,
473, 113–148.

Rojay, B., Altiner, D., Altiner, S. Ö., Önen, A. P., James, S., & Thirlwall, M. F.
(2004). Geodynamic significance of the Cretaceous pillow basalts from
North Anatolian Ophiolitic Mélange Belt (Central Anatolia, Turkey):
Geochemical and paleontological constraints. Geodinamica Acta, 17(5),
349–361.

Rojay, B., Yaliniz, K., & Altiner, D. (2001). Age and origin of some pillow
basalts from Ankara Melange and their tectonic ımplications to the
evolution of Northern Branch of Neotethys, central Anatolia. Turkish
Journal of Earth Sciences, 10, 93–102.

Salters, V. J. M., Longhi, J. E., & Bizimis, M. (2002). Near mantle solidus
trace element partitioning at pressures up to 3.4 GPa. Geochemistry,
Geophysics, Geosystems, 3, 1–23. https://doi.org/10.1029/
2001GC000148

Sashida, K., & Salyapongse, S. (2002). Permian radiolarians faunas from
Thailand and their paleogeographic significance. Journal of Asian Earth
Sciences, 20, 691–701.

Sayit, K., Bedi, Y., Tekin, U. K., Göncüoglu, M. C., & Okuyucu, C. (2017).
Middle Triassic back-arc basalts from the blocks in the Mersin Mél-
ange, southern Turkey: Implications for the geodynamic evolution of
the Northern Neotethys. Lithos, 268-271, 102–113.

Sayit, K., Göncüoglu, M. C., & Tekin, U. K. (2015). Middle Carnian arc-type
basalts from the Lycian Nappes, southwestern Anatolia: Early Late

34 of 36 TEKIN ET AL.

https://doi.org/10.1029/2001GC000148
https://doi.org/10.1029/2001GC000148


Triassic subduction in the Northern Branch of Neotethys. The Journal
of Geology, 123, 561–579.

Senel, M. (2002). 1/500.000 scale Turkish geological maps, Adana Quadran-
gle. Ankara: Publication of General Directorate of Mineral Research
and Exploration.

Sengör, A. M. C. (1979). Mid-Mesozoic closure of Permo-Triassic Tethys
and its implications. Nature, 279, 590–593.

Sengör, A. M. C., Altiner, D., Cin, A., Ustaomer, T., & Hsu, K. J. (1988). Ori-
gin and assembly of the Tethyside orogenic collage at the expence of
Gondwanaland. In M. G. Audley-Charles & A. Hallam (Eds.), Gondwana
and Tethys, Geological Society of London, Special Publications (Vol. 37,
pp. 119–181). London: Geological Society of London.

Sengör, A. M. C., & Yilmaz, Y. (1981). Tethyan evolution of Turkey: A plate
tectonics approach. Tectonophysics, 75, 181–241.

Sengör, A. M. C., Yilmaz, Y., & Sungurlu, O. (1984). Tectonics of the Medi-
terranean Cimmerides: Nature and evolution of the western termina-
tion of Palaeo-Tethys. In E. Dixon & A. H. F. Robertson (Eds.), The
geological evolution of the Eastern Mediterranean, Geological Society of
London Special Publication (Vol. 17, pp. 77–112). London: Geological
Society of London.

Shang, C., Caridroit, M., & Wang, Y. (2001). Radiolarians from the upper-
most Permian Changsingian of southern Guangxi. Acta Micropalaeonto-
logica Sinica, 18, 229–240.

Shen, S. Z., Cao, C. Q., Zhang, H., Bowring, S. A., Henderson, C. M.,
Payne, J. L., … Wang, W. (2013). High-resolution d13Ccarb chemostrati-
graphy from latest Guadalupian through earliest Triassic in south China
and Iran. Earth and Planetary Science Letters, 375, 156–165.

Shimakawa, M., & Yao, A. (2006). Lower-Middle Permian radiolarian bio-
stratigraphy in the Qinzhou area, south China. Journal of Geosciences,
Osaka City University, 49, 31–47.

Simoneit, B. R. T., Rogge, W. F., Mazurek, M. A., Standley, L. J.,
Hildemann, L. M., & Cass, G. R. (1993). Lignin pyrolysis products, lig-
nans and resin acids as specific tracers of plant classes in emissions
from biomass combustion. Environmental Science and Technology, 27,
2533–2541.

Spandel, E. (1901). Die foraminiferen des Permo-Carbon von Hooser, Kan-
sas, Nord Amerika. Festschrift, Saecular-Freier der Naturhistorischen
Gesellschaft in Nurnberg, 1801-1901, 177–194.

Spiker, E. C., & Hatcher, P. G. (1984). Carbon isotope fractionation of
sapropellic organic matter during early diagenesis. Organic Geochemis-
try, 5, 283–290.

Spiller, F. C. P. (2002). Radiolarian biostratigraphy of Peninsular Malaysia
and implications for regional paleotectonics and paleogeography.
Palaeontographica A, 266, 1–91.

Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleo-
zoic and Mesozoic constrained by dynamic plate boundaries and
restored synthetic oceanic isochrons. Earth and Planetary Science Let-
ters, 196, 17–33.

Staudigel, H., Plank, T., White, B. & Schmincke, H-U. (1996). Geochemical
fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP
sites 417 and 418. Washington DC, USA: AGU Geophysical Mono-
graphs, 96.

Sun, D., & Xia, W. (2006). Identification of the Guadalupian–Lopingian
boundary in the Permian in a bedded chert sequence, South China.
Palaeogeography, Palaeoclimatology, Palaeoecology, 236, 272–289.

Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics
of oceanic basalts: Implications for mantle composition and processes.
In A. D. Saunders & M. J. Norry (Eds.), Magmatism in the ocean basins,
Geological Society of London, Special Publications (Vol. 42,
pp. 313–345). Oxford, England: Geological Society of London.

Tekin, U. K., Bedi, Y., Okuyucu, C., Göncüoglu, M. C., & Sayit, K. (2016).
Radiolarian biochronology of upper Anisian to upper Ladinian (Middle
Triassic) blocks and tectonic slices of volcano-sedimentary successions
in the Mersin Mélange, southern Turkey: New insights for the evolu-
tion of Neotethys. Journal of African Earth Sciences, 124, 409–426.

Tekin, U. K., Bedi, Y., Okuyucu, C., Göncüoglu, M. C., Sayit K., Krystyn, L.,
…, Uzuncimen-Keceli, S. (2016). Dating of sedimentary units of the
Mersin Mélange (Central Taurides, Southern Turkey) using radiolarian
and other faunas (Conodont, Ammonite and Foraminifera) and geo-
chemistry/petrography of its volcanic/volcanosedimentary units.

Turkish Scientific Council. Project No: 112Y370 (Final Report).
645 p. (unpublished, in Turkish with English abstract).

Tekin, U. K., & Göncüoglu, M. C. (2002). Middle Carnian radiolarians from
the intra-pillow limestones of the Turunç Unit within the Gülbahar
Nappe (Lycien Nappes, Marmaris, southern Turkey): Geodynamic
implications. In First International Symposium of the Faculty of Mines
(ITU) on Earth Science and Engineering, Special Session-C: Regional Geol-
ogy and Geophysics: The Evolution of Orogenic Belts and Surroundings,
Istanbul, Abstracts, p. 84.

Tekin, U. K., & Göncüoglu, M. C. (2007). Discovery of oldest (late Ladinian
to middle Carnian) radiolarian assemblages from the Bornova Flysch
Zone in western Turkey: Implications for the evolution of the Neoteth-
yan Izmir-Ankara Ocean. Ofioliti, 32, 131–150.

Tekin, U. K., Göncüoglu, M. C., & Turhan, N. (2002). First evidence of Late
Carnian radiolarians from the Izmir-Ankara suture complex, central
Sakarya, Turkey: Implications for the opening age of the Izmir-Ankara
branch of Neo-Tethys. Geobios, 35, 127–135.

Topuz, G., Celik, Ö. F., Sengör, A. M. C., Altintas, I. E., Zack, T.,
Rolland, Y., & Barth, M. (2013). Jurassic ophiolite formation and
emplacement as backstop to a subduction-accretion complex in north-
east Turkey, the Refahiye ophiolite, and relation to the Balkan ophio-
lites. American Journal of Science, 313, 1054–1087.

Turhan, N., Okuyucu, C., & Göncüoglu, M. C. (2004). Autochthonous
Upper Permian (Midian) carbonates in the western Sakarya Composite
Terrane, Geyve Area, Turkey: Preliminary data. Turkish Journal of Earth
Sciences, 13, 215–229.

Tyson, R. V. (1995). Sedimentary organic matter: Organic facies and palyno-
facies. London, England: Chapman and Hall.

Ueno, K. (1989). Carboniferous and Lower Permian foraminiferal biostra-
tigraphy in the Akiyoshi Limestone Group-studies of the Upper Paleo-
zoic foraminifers in the Akiyoshi Limestone Group, southwest Japan,
part 1. Bulletin of the Akiyoshi-dai Museum of Natural History, 24, 1–39.
(in Japanese with English abstract).

Vachard, D., Oviedo, A., Flores, D. E., Dios, A., Malpica, R., Brunner, P., …
Buitron, B. E. (1993). Barrancad d'Olinala (Guerrero): une coupe de ref-
erence pour le Permien du Mexique central; etude preliminaire.
Annales de la Societe geologique du Nord (2eme serie), 2, 153–160.

Vaziri, S. H., Yao, A., & Kuwahara, Y. (2005). Lithofacies and microbiofacies
(foraminifers and radiolarians) of the Permian sequence in the Shalam-
zar area, Central Alborz, North Iran. Journal of Geosciences, Osaka City
University, 48, 39–69.

Walsh, J. J. (1983). Death in the sea: Enigmatic phytoplankton losses. Pro-
gress in Oceanography, 12, 1–86.

Wang, E. (1982). Carboniferous and Permian foraminifera of Xizang. In
Palaeontology of Xizang, The series of scientific expeditions to the
Qinghai-Xizang Plateau (pp. 1–32). Beijing: Nanjing Institute of Geolol-
ogy and Paleontology, Academia Sinica, Book, IV.

Wang, W., Cao, C., & Wang, Y. (2004). The carbon isotope excursion on
GSSP candidate section of Lopingian-Guadalupian boundary. Earth and
Planetary Science Letters, 220, 57–67.

Wang, Y. J., Cheng, Y., & Yang, Q. (1994). Biostratigraphy and systematics
of Permian Radiolarians in China. In J. Yugan, J. Uting, &
B. L. Worldlow (Eds.), Permian stratigraphy, environments and resources
1, paleontology and stratigraphy Paleoworld (Vol. 4, pp. 172–202). Nan-
jing: Nanjing University Press.

Wang, Y. J., Luo, H., & Yang, Q. (2012). Late Paleozoic radiolarians in the
Qinfang Area, Southeast Guangxi. Nanjing: University of Science and
Technology of China, Publishing.

Wang, Y. J., & Yang, Q. (2011). Biostratigraphy, phylogeny and paleobio-
geography of Carboniferous–Permian radiolarians in South China.
Palaeoworld, 2, 134–145.

Wang, Y. J., Yang, Q., Cheng, Y. N., & Li, J. X. (2006). Lopingian (Upper
Permian) radiolarian biostratigraphy of South China. Palaeoworld, 15,
31–53.

Wei, H., Baima, Q., Qiu, Z., & Dai, C. (2018). Carbon isotope perturbations
and faunal changeovers during the Guadalupian mass extinction in the
middle Yangtze Platform, South China. Geological Magazine, 155,
1667–1683.

Wei, H., Chen, D., Yu, H., & Wang, J. (2012). End-Guadalupian mass extinc-
tion and negative carbon isotope excursion at Xiaojiaba, Guangyuan,
Sichuan. Science China Earth Sciences, 55, 1480–1488.

TEKIN ET AL. 35 of 36



Werner, R. A., Bruch, B. A., & Brand, W. A. (1999). ConFlo III- an interface
for high precision delta C-13 and delta N-15 analysis with an extended
dynamic range. Rapid Communications in Mass Spectrometry, 13,
1237–1241.

Wignall, P. B., Kershaw, S., Collin, P.-Y., & Crasquin-Soleau, S. (2009). Ero-
sional truncation of uppermost Permian shallow marine carbonates
and implications for Permian-Triassic boundary events: Comment. Geo-
logical Society of America Bulletin, 121, 954–956.

Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of dif-
ferent magma series and their differentiation products using immobile
elements. Chemical Geology, 20, 325–343.

Workman, R. K., & Hart, S. R. (2005). Major and trace element composition
of the depleted MORB mantle (DMM). Earth and Planetary Science Let-
ters, 231, 53–72.

Xia, W. C., Ning, Z., Kakuwa, Y., & Lil, Z. (2005). Radiolarian and conodont
biozonation in the pelagic Guadalupian–Lopingian boundary interval at
Dachongling, Guangxi, South China, and mid-upper Permian global cor-
relation. Stratigraphy, 2, 217–238.

Xia, W. C., Zhang, N., Wang, G. Q., & Kakuwa, Y. (2004). Pelagic radiolarian
and conodont biozonation in the Permian–Triassic boundary interval
and correlation to the Meishan GSSP. Micropaleontology, 50, 27–44.

Yamamuro, M., & Kayanne, H. (1995). Rapid direct determination of organic
carbon and nitrogen in carbonate-bearing sediments with a Yanaco
MT-5 CHN analyzer. Limnology and Oceanography, 40, 1001–1005.

Yao, A., & Kuwahara, K. (2004). Radiolarian fossils from the
Permian-Triassic of China. News of Osaka Micropaleontologists, Special
Volume, 13, 29–45 (in Japanase with English abstract).

Yao, A., Kuwahara, K., Ezaki, Y., Liu, J., & Hao, W. (2004). Permian radiolar-
ians from the Qinfang Terrane, South China and its geological signifi-
cance. Journal of Geosciences, Osaka City University, 47, 71–83.

Yao, J., Yao, A., & Kuwahara, K. (2001). Upper Permian biostratigraphic
correlation between conodont and radiolarian zones in the

Tamba-Mino Terrane, Southwest Japan. Journal of Geosciences, Osaka
City University, 44, 97–119.

Zhang, L., Ito, T., Feng, Q., Caridroit, M., & Danelian, T. (2014). Phyloge-
netic model of Follicucullus lineages (Albaillellaria, Radiolaria) based on
high-resolution biostratigraphy of the Permian Bancheng Formation,
Guangxi, South China. Journal of Micropalaeontology, 33, 179–192.

Zhang, N., Henderson, C. M., Xia, W., Wang, G., & Shang, H. (2010). Cono-
donts and radiolarians through the Cisuralian–Guadalupian boundary
from the Pingxiang and Dachongling sections, Guangxi region, South
China. Alcheringa, 34, 135–160.

Zindler, A., Staudigel, H., & Batiza, R. (1984). Isotope and trace element
geochemistry of young Pacific seamounts: Implications for the scale of
upper mantle heterogeneity. Earth and Planetary Science Letters, 70,
175–195.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Sup-

porting Information section at the end of the article.

How to cite this article: Tekin UK, Okuyucu C, Sayit K, et al.

Integrated Radiolaria, benthic foraminifera and conodont bio-

chronology of the pelagic Permian blocks/tectonic slices and

geochemistry of associated volcanic rocks from the Mersin

Mélange, southern Turkey: Implications for the Permian evolu-

tion of the northern Neotethys. Island Arc. 2019;28:e12286.

https://doi.org/10.1111/iar.12286

36 of 36 TEKIN ET AL.

https://doi.org/10.1111/iar.12286

	 Integrated Radiolaria, benthic foraminifera and conodont biochronology of the pelagic Permian blocks/tectonic slices and g...
	1  INTRODUCTION
	2  GEOLOGICAL FRAMEWORK
	3  THE STUDIED STRATIGRAPHIC SECTIONS
	3.1  The Cikrik section
	3.2  The Sahancanak section
	3.3  The Hodul section
	3.4  The Karincali-Southwest section
	3.5  The Karincali-East section
	3.6  The Aliclipinar-West section

	4  DATING OF PERMIAN SEQUENCES
	4.1  Radiolarian biostratigraphy
	4.1.1  Radiolarian biostratigraphy of lower and middle Permian sequences
	4.1.1  The Parafollicucullus lomentaria-Parafollicucullus sakmarensis Assemblage Zone of Y. J. Wang and Yang ()
	4.1.1  The Parafollicucullus scalprata m. rhombothoracata Interval Zone of Y. J. Wang and Yang ()
	4.1.1  The Albaillella sinuata Zone of Shimakawa and Yao (), or lower Albaillella foremanae Zone of N. Zhang et al. ()
	4.1.1  The Parafollicucullus longtanensis Zone of Ishiga (), or upper Albaillella foremanae Zone of N. Zhang et al. ()
	4.1.1  The Parafollicucullus globosa Zone of N. Zhang et al. ()
	4.1.1  The Follicucullus monacanthus Zone of L. Zhang et al. ()
	4.1.1  The Follicucullus scholasticus/Follicucullus porrectus Zone of L. Zhang et al. () and D. Sun and Xia ()

	4.1.2  Radiolarian biostratigraphy of upper Permian sequences
	4.1.2  The Albaillella yamakitai Zone of Nishikane et al. () and L. Zhang et al. ()
	4.1.2  The Neoalbaillella ornithoformis Zone of Xia et al. (, ) and Nishikane et al. ()
	4.1.2  The Neoalbaillella optima Zone
	4.1.2  The Neoalbaillella optima-Albaillella lauta Subzone of Xia et al. ()
	4.1.2  The Albaillella flexa-Albaillella angusta subzone of Xia et al. ()


	4.2  Benthic foraminifera, algae and conodont datings of the middle Middle to basalmost upper Permian detrital carbonates i...
	4.2.1  Conodont assemblages from the Cikrik section

	4.3  Benthic foraminifera and algae assemblages from the Sahancanak section
	4.4  Benthic foraminifera and algae assemblages from the the Karincali-Southwest section
	4.5  Benthic foraminifera, algae and conodont assemblages from the the Karincali-East section

	5  ORGANIC-C δ13C VALUES FROM THE UPPER PART OF THE KARINCALI-EAST SECTION
	5.1  Laboratory methods
	5.2  Results

	6  PETROGRAPHY, GEOCHEMISTRY, AND PETROGENESIS OF THE MAFIC VOLCANIC ROCKS FROM THE BASAL PART OF THE KARINCALI-SOUTHWEST S...
	6.1  Petrography of the mafic volcanics
	6.1.1  Analytical method and alteration
	6.1.2  Results

	6.2  Petrogenesis
	6.3  Tectonomagmatic constraints

	7  DISCUSSION
	8  CONCLUSIONS
	8  ACKNOWLEDGEMENTS
	  REFERENCES


