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Abstract

We have performed ultrafast pump-probe experiments on a GaAs-AlAs microcavity with a res-

onance near 1300 nm in the “original” telecom band. We concentrate on ultimate-fast optical

switching of the cavity resonance that is measured as a function of pump-pulse energy. We ob-

serve that at low pump-pulse energies the switching of the cavity resonance is governed by the

instantaneous electronic Kerr effect and is achieved within 300 fs. At high pump-pulse energies

the index change induced by free carriers generated in the GaAs start to compete with the elec-

tronic Kerr effect and reduce the resonance frequency shift. We have developed an analytic model

which predicts this competition in agreement with the experimental data. To this end we derive

the nondegenerate two- and three-photon absorption coefficients for GaAs. Our model includes a

new term in the intensity-dependent refractive index that considers the effect of the probe pulse

intensity, which is resonantly enhanced by the cavity. We calculate the effect of the resonantly en-

hanced probe light on the refractive index change induced by the electronic Kerr effect for cavities

with different quality factors. By exploiting the linear regime where only the electronic Kerr effect

is observed, we manage to retrieve the nondegenerate third order nonlinear susceptibility χ(3) for

GaAs from the cavity resonance shift as a function of pump-pulse energy.
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INTRODUCTION

Semiconductor cavities have attracted considerable attention in recent years due to their

ability to store light for a given amount of time in a small volume [1]. This key issue of

cavities stimulated a large amount of experiments for increasing the nonlinear interaction

of photons and to understand and exploit cavity quantum electrodynamics (cQED) effects

[2–6]. The dynamic manipulation of these systems, especially of combined cavity emitter

systems is thereby of major interest [7–9]. All-optical switching of cavities gains momentum

since it enables the dynamic control of the capture and release of photons on sub-picosecond

timescales [10]. Moreover, ultrafast change of the optical properties of a cavity prevails to

frequency conversion through adiabatic [11] and not-adiabatic processes [12].

The optical properties of cavities can be altered by changing the refractive index of the

constituent material. The refractive index of a semiconductor cavity can be switched via

the excitation of free-carriers in the semiconductor [13–18]. However, the switching speed

in such schemes is material dependent and limited by the recombination dynamics of the

excited carriers. On the other hand, the refractive index of a semiconductor cavity can

also be changed with the electronic Kerr effect. The electronic Kerr effect is, in terms

of speed, the ultimate way for ultrafast switching due to its material independent and

instantaneous response nature [10]. Yet, the excitation of relatively slow free carriers has to

be avoided to accomplish a positive refractive index change with the electronic Kerr effect,

since free carriers lead to an opposite change of refractive index [19–21]. The main challenge

is therefore to find a range of parameters where solely the Kerr effect controls the optical

properties of the cavity.

In this work we employ the instantaneous electronic Kerr effect to switch the resonance

frequency of a semiconductor planar microcavity in the original telecom band within 300 fs

as a function of pump-pulse energy. Using two light sources that provide pump and probe

pulses we observe and analyse the competition of free carrier induced index changes and the

electronic Kerr effect in a switched cavity. We have developed an analytical model which

predicts this competition in agreement with our experimental data. Our model is developed

for nondegenerate light sources and thereby can explain the effect of the cavity enhancement

and the intensity of each source in the switching of a cavity resonance.
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SAMPLE AND EXPERIMENTAL SETUP

Our experiments are performed on a planar microcavity grown by means of molecular-

beam epitaxy. The cavity resonance is designed to occur at λ0 = 1280±5 nm in the Original

(O) telecom band. Fig. 1 (a) shows a scanning electron micrograph of the sample. The

sample consists of a GaAs λ-layer (d = 376 nm) sandwiched between two Bragg stacks made

of 7 and 19 pairs of λ/4-thick layers of nominally pure GaAs (dGaAs = 94 nm) and AlAs

(dAlAs = 110 nm), respectively and positioned on a GaAs wafer. The storage time of the

probe photons in the cavity is deliberately reduced by decreasing the reflectivity of the top

mirror of the cavity. This leads to faster switching rates while at the same time reducing

free carrier excitation due to a reduced field enhancement in the cavity.

Figure 1 (b) shows the measured and the calculated reflectivity spectrum of the micro-

cavity. The reflectivity spectrum of the cavity is measured with a setup consisting of a

supercontinuum broad-band white-light source and a Fourier-transform interferometer with

a resolution of 0.5 cm−1 (BioRad FTS6000). It can be seen that the stopband of the Bragg

stack extends from 7072 cm−1 to 8498 cm−1 (1414 nm to 1177 nm). On both sides of

the stopband Fabry-Pérot fringes are visible due to interference of the light reflected from

the front and the back surfaces of the sample. Inside the stopband, a narrow trough in-

dicates the cavity resonance at ωres = 7794.2 cm−1 (λres = 1283.01 nm). The resonance

frequency of the switched cavity is determined by fitting a Lorentz function to the resonance

trough over a limited frequency range. The relatively high reflectivity of the resonance min-

imum (Rtrough = 80 %) is a result of the asymmetric cavity design. From the linewidth

(∆ω = 20±3 cm−1, full width at half maximum) of the cavity resonance we derive a quality

factor Q = 390± 60 corresponding to a cavity storage time of τcav = 0.3± 0.045 ps.

A versatile setup described in Ref. [22] is used to Kerr-switch our microcavity. The setup

is shown in Fig. 2(a) and consists of two independently tunable optical parametric amplifiers

(OPA, Light Conversion Topas pumped by a 1 kHz oscillator) that are the sources of the

pump and probe beams. The pulse duration of both OPAs is τP = 140 ± 10 fs. The time

delay ∆t between the pump and the probe pulse is set by a delay stage with a resolution

of 15 fs. The reflected signal from the cavity is detected with a nitrogen cooled InGaAs

line array detector spectrometer. The measured transient reflectivity contains information

on the cavity resonance during the cavity storage time and it should thus not be confused
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with the instantaneous reflectivity at the delay ∆t. The measured transient reflectivity is a

result of the probe light that impinges at delay ∆t which circulates in the cavity during the

storage time and then detected which is integrated due to the relatively slow response time

of the detector [22].

The cavity is switched with the electronic Kerr effect by judicious tuning of the pump and

the probe frequencies relative to the semiconductor bandgap [21, 23]. The probe frequency

(ωpr = 7812 cm−1) is set by the cavity resonance in the telecom range while the pump

frequency is centered at ωpu = 4165 cm−1 (λpu = 2400nm) to suppress nondegenerate two-

photon absorption (Epr +Epu ≤ Egap) see Fig. 2(b2). Furthermore, the energy of the pump

photons is chosen to lie below half of the semiconductor band gap energy (Epu <
1
2
Egap),

see Fig. 2(b1), to avoid two pump-photon absorption. The excitation of free carriers is

also suppressed by choosing a low probe pulse energy (Ipr = 0.18± 0.02 pJ/µm2) while the

average pump pulse energy is varied between Ipu = 13 and 275 ± 20 pJ/µm2. The pulse

energies are determined from the average laser power at the sample position and converted

to peak power assuming a Gaussian pulse shape. The pulse energies are given per square

micron since the switching of a cavity resonance has interesting prospects for miniature

cavities with footprints in the micron range [24, 25]. The pump beam has a larger Gaussian

focus (�pu = 70 µm) than the probe beam (�pr = 30 µm) to ensure that only the central

flat part of the pump focus is probed and that the probed region is spatially homogeneously

pumped. The judicious selection of the pump-probe powers and frequencies enabled the

instantaneous Kerr switching at elevated frequencies including the telecom band.

PUMP PULSE ENERGY DEPENDENT ULTIMATE-FAST SWITCHING

Figure 3 shows the transient reflectivity spectra for three different pump-probe time

delays ∆t. At ∆t = −2 ps the probe pulse arrives earlier than the pump pulse. Hence, the

measured spectra shows the unswitched transient reflectivity of the cavity with a resonance

at ωres = 7805.6 cm−1. At temporal overlap of pump and probe pulses (∆t = 0 ps) the cavity

resonance frequency has red-shifted to 7800.7 cm−1 indicating an increase of the refractive

index. At positive delays (∆t = +5 ps), where the pump pulse arrives earlier than the probe

pulse, the cavity resonance is measured at 7805.2 cm−1. Thus the resonance frequency at

positive delays has returned to the same frequency as the unswitched resonance frequency
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at negative delays. The simultaneous observation of a red-shift of the cavity resonance only

at pump-probe overlap and of the identical cavity resonances at positive and negative delays

confirms that the cavity resonance is mainly switched by the electronic Kerr effect, and not

by the free carriers.

Figure 4 shows the resonance frequency versus time delay at three different pump-pulse

energies. Figure 4 is obtained from spectra similar to those shown in Fig. 3. When the

sample is pumped at 42±5 pJ/µm2 the resonance frequency red shifts by 1 cm−1 at ∆t = 0.

We observe the dynamic red-shift of the cavity resonance only at pump-probe coincidence

within 300 fs, confirming the instantaneous switching of the cavity resonance frequency [10].

The red-shift of the resonance frequency induced by the electronic Kerr effect increases to

4 cm−1 when the cavity is pumped at 84 ± 10 pJ/µm2. At these power levels the cavity

resonance frequency at positive time delays returns to the same value as the unswitched

cavity resonance. Further increasing the pump pulse energy to 238± 20 pJ/µm2 results in

an instantaneous shift of only 4.3 cm−1 although the sample is pumped with a three times

higher pulse energy. At high pump energies we also observe that the resonance frequency is

blue shifted at positive time delays. At positive delays the refractive index decreases as a

result of free carriers that remain excited for a much longer time (about 50 ps) as has been

observed before [14, 26, 27]. The carriers are excited by two- and three-photon processes

as depicted in Fig. 2 (b) and (c). Moreover, at high pump energies the cavity resonance

frequency at ∆t < 0 ps is already blue shifted compared to the cold cavity resonance at

low pump pulse energies, likely since the light is stored in the cavity up to ∆t = −2 ps

which results in free carrier excitation by nondegenerate two- and three-photon absorption.

We conclude from Fig. 4 that the reversible and ultrafast cavity switching as a result of

the electronic Kerr effect occurs mainly at low pump pulse energies (13 − 50 ± 5 pJ/µm2).

In this regime, the switching speed is only limited by the cavity storage time and not by

material relaxation properties. The switching of the cavity can be achieved within 300 fs,

which is only limited by the storage time of light in the cavity and not by extrinsic material

properties.

Figure 5 shows the transient reflectivity spectra for three different pump-pulse energies

at temporal (∆t = 0 ps) and spatial overlap of the pump and the probe beams. The

cavity resonance frequency (ωres = 7805.4 cm−1), shifts to a lower frequency (7804.2 cm−1)

if the sample is pumped at a low pump-pulse energy 13 ± 1 pJ/µm2. When the pump-
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pulse energy is increased to 65 ± 7 pJ/µm2 we observe that the instantaneously switched

resonance frequency further red-shifts to 7800.9 cm−1. However, when the pump-pulse

energy is increased to 275± 20 pJ/µm2 the resonance frequency shifts to only 7801.3 cm−1

showing less shift than the previous step. We conclude that at high pump-pulse energies a

competition takes place between the electronic Kerr effect that increases the refractive index

and red-shifts the cavity resonance with the excited free carriers that decrease the refractive

index and blue-shift the cavity resonance.

Figure 6 shows the shift of the instantaneously switched resonance frequency versus pump-

pulse energy. We observe that at low pump pulse energies the resonance frequency shift

increases linearly with pump-pulse energy due to the positive refractive index change of

the electronic Kerr effect [28]. The linear increase of both the cavity resonance and the

refractive index is physically reasonable since the nonlinear index change with the Kerr

effect is a product of the nonlinear susceptibility with the pump field squared (see section

modeling & Ref [28]). Beyond 50±5 pJ/µm2 we observe a saturation and even a turn over of

the resonance frequency shift versus pump-pulse energy. At high pump pulse energies, free

carriers are excited that reduce the refractive index, opposite to the Kerr effect. Since the

carriers with our settings of light frequencies can only be excited by two- and three-photon

processes, the dependence of the refractive index (and hence resonance frequency) becomes

nonlinear versus pump-pulse energy as is apparent from Fig. 6. We see in Fig. 6 that there is

an apparent saturation in our experimental results. Our model does not show this saturation

but a maximum. Since the pulse energies are limited in our experiments we cannot observe

a possible decrease of the refractive index at high pulse energies. Moreover, in our model we

do not consider the plasma screening effect and the Stark effect. From the linear slope at

low pump energies where free carriers are negligible, we derive a nondegenerate third-order

nonlinear susceptibility χ(3) = 0.48 × 10−11 esu for GaAs at the strongly nondegenerate

conditions ωpr = 7812 cm−1 and ωpu = 4165 cm−1 (dashed line in Fig. 6). The value that

we find for χ(3) agrees within an order of magnitude with degenerate values reported at

ω = 9434 cm−1 [28]. The qualitative agreement between these different measurements is

gratifying in view of the differences in the frequencies of the light sources [29].
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MODELLING

In order to interpret the competition between the electronic Kerr effect and free carrier

effects at elevated pump-pulse energies, we have developed a model of the optical properties

of the semiconductor cavity. Here, we notably develop a model to include the nondegenerate

three photon absorption. Since only the two-photon absorption coefficient has been reported

previously for the nondegenerate case [30], we chose to develop a model for nondegenerate

case that can predict both two- and three-photon absorption cross sections. In our experi-

ment, as a result of the cavity field enhancement the effect of the probe intensity becomes

comparable to the pump intensity. For this reason, we chose to develop a new model instead

of using the existing degenerate three-photon absorption models [31] to calculate the free

carrier density as a function of both pump and probe intensities independently. Our model

describes the refractive index change of a cavity resulting from both the electronic Kerr

effect and the free carriers in a nondegenerate pump-probe experiment. In order to model

the refractive index change induced by the electronic Kerr effect we use the χ(3) value de-

termined from our experiments to limit the number of free parameters. For free carriers the

relevant χ(3) has been theoretically described using the independent particle approximation

[32, 33]. The index change induced by free carriers that are excited by two (Fig. 2(b))

and three (Fig. 2(c)) photon absorption is calculated using the well-known Drude model

[34, 35]. We can safely neglect the contribution of free carriers generated by one-photon

absorption since both the pump and the probe photons are much less energetic than the

band-gap energy of GaAs. We combine both the electronic Kerr effect and the index change

resulting from excited free carriers in Eq. 1, which gives the refractive index change ∆n for

a semiconductor optically switched in a general nondegenerate pump-probe experiment.

∆n =
6πχ(3)

n0

[|Ecav|2 + 2|Epu|2]︸ ︷︷ ︸
Kerr

− q2

2n0ε0m∗optω
2
pr

[N
(2)
eh +N

(3)
eh ]︸ ︷︷ ︸

free carriers

, (1)

Here, χ(3) is the third order nonlinear susceptibility, ε0 the vacuum permittivity, Ecav and

Epu the electric field of the probe in the cavity and of the pump pulses, respectively, q the

electron charge, ωpr and ωpu the frequencies of the probe and the pump beams, respectively,

m∗opt the optical effective mass of the free carriers, N
(2)
eh and N

(3)
eh the free carrier densities

generated by two-photon and three-photon absorption, respectively. Eq. 1 shows that the
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refractive index increases with the electronic Kerr effect and decreases with the increasing

density of free carriers. In Eq. 1 the refractive index change induced by the electronic Kerr

effect depends on the square of the electric fields of both the pump and the probe light

(the factor 2 for Epu will become clear at Eq. 3). The electric fields in the instantaneous

(Kerr) part of Eq. 1 can be written in terms of cycle-averaged intensity using the relation

I∗ = |E|2n0c/2π. In general, when describing the intensity-dependent refractive index the

effect of the probe is neglected due to its smaller intensity compared to the pump [28].

However, this is not necessarily the case for cavities due to the resonant field enhancement

inside the cavity, which appears to be the case in our experiment. In general the cavity

enhancement is given by I∗cav/I
∗
pr = Q/2π

√
R, where Q is the quality factor of the cavity

and R the reflectivity of the cavity mirrors [36]. The probe-pulse energy in our experiments

is around I∗pr = 0.18 ± 0.02 pJ/µm2 before entering the cavity. Our cavity with Q=390

enhances the probe field by Q/2π
√

0.98 = 63 times to I∗cav = 11.3± 0.02 pJ/µm2 so that it

becomes non-negligible compared to the typical pump pulse energy (I∗pu ∼ 102 pJ/µm2) in

the cavity. The resonant enhancement of the probe pulses by the cavity becomes even more

important for high quality factor cavities [16, 37, 38], which might even bring the probe

intensity beyond the level of the pump intensity. As a result, if the effect of probe light is

neglected (see Eq. 1) the usual pump intensity-dependent refractive index change will be

incorrect especially for high quality factor cavities.

In order to calculate the intensity-dependent refractive index for the general nondegener-

ate pump-probe case we start by writing the total optical field as Ẽ(t) = Ecav(ωpr)e
−iωprt +

Epu(ωpu)e
−iωput + c.c.. The general form of the total polarization of a material is described

up to third order by

P Tot(ω) = ε0χ
(1)Ẽ(ω) + ε0χ

(2)Ẽ2(ω) + ε0χ
(3)Ẽ3(ω). (2)

Due to the centrosymmetry of the GaAs χ(2) = 0 the total polarization of the material

reduces to P Tot(ω) = ε0χ
(1)Ẽ(ω) + ε0χ

(3)Ẽ3(ω) [39]. Taking the third power of the total

optical field for nondegenerate pump-probe light and inserting it into the total polarization

leads to

P Tot(ωpr) = ε0χ
(1)Ecave

−iωprt + 3ε0χ
(3)E3

cave
−i(ωpr+ωpr−ωpr)t + 6ε0χ

(3)EcavE
2
pue
−i(ωpu−ωpu+ωpr)t,

(3)
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which is the nonlinear polarization that influences the propagation of a beam of frequency

ωpr. The two-fold degeneracy factor in front of |Epu|2 in Eq. 1 is due to the two-fold

coefficient of the last term in Eq. 3 (see Appendix A for derivation). With this correction our

model takes the cavity field enhancement into account and gives the appropriate solution for

the intensity dependent refractive index for comparable intensities of nondegenerate pump-

probe light. Having explained the Kerr term of Eq. 1 we calculate the free carrier term of

Eq. 1 by calculating the free carrier densities as follows:

N
(2)
eh = R

(2)
ngNatmτint =

Natmτint8π
3|µmgµnm|2

~2n2
0c

2

[ Fig.2(b3)︷ ︸︸ ︷
I2cavρf (ωng = 2ωpr)

+

Fig.2(b2)︷ ︸︸ ︷
IcavIpuωprωpuρf (ωng = ωpr + ωpu)

(
1

ω2
pr

+
2

ωprωpu
+

1

ω2
pu

)]
, (4)

and

N
(3)
eh = R

(3)
lg Natmτint =

Natmτint16π4|µmgµnmµln|2

~3n3
0c

3

[ Fig.2(c1)︷ ︸︸ ︷
I3puρf (ωlg = 3ωpu)

4ωpu
+

Fig.2(c4)︷ ︸︸ ︷
I3cavρf (ωlg = 3ωpr)

4ωpr

+

Fig.2(c2)︷ ︸︸ ︷
IcavI

2
puωprω

2
puρf (ωlg = ωpr + 2ωpu)

(
1

4ω4
pu

+
1

ω2
pu(ωpr + ωpu)2

+
1

ω2
pr(ωpr + ωpu)2

+

Fig.2(c2)︷ ︸︸ ︷
1

ωprω2
pu(ωpr + ωpu)

+
1

ω3
pu(ωpr + ωpu)

+
2

ωprωpu(ωpr + ωpu)2

)

+

Fig.2(c3)︷ ︸︸ ︷
I2cavIpuω

2
prωpuρf (ωlg = 2ωpr + ωpu)

(
1

4ω4
pr

+
1

ω2
pu(ωpr + ωpu)2

+
1

ω2
pr(ωpr + ωpu)2

+

Fig.2(c3)︷ ︸︸ ︷
1

ω2
prωpu(ωpr + ωpu)

+
1

ω3
pr(ωpr + ωpu)

+
2

ωprωpu(ωpr + ωpu)2

)]
. (5)

The two- and three-photon free carrier densities (N
(2)
eh and N

(3)
eh ) in Eqs. 4 and 5 are

calculated by multiplying the excitation rate Reh with the number of atoms Natm in the

unit volume and the interaction time τint (see Appendix B and C for derivations of general

case). The relatively slow response time of the free carriers and the accumulation nature of

the free carrier excitation will integrate in time and this will mask the ultrafast dynamics.
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Therefore, the intensities in Eqs. 4 and 5 are defined as I =
∫
|E|2n0c/2πdt, which differs

from the instantaneous intensity term (I∗) in the Kerr term of Eq. 1. The limits of the time

integral are given by the duration time of the excitation process, which is much longer than

the excitation time of the carriers. The pump interaction time is given by the pulse duration

τP whereas the probe interaction time is given by τcav due to the cavity which is in resonance

with the probe light only. In Eqs. 4 and 5, ρf (ωng) and ρf (ωlg) are the density of final states

and µmg, µnm, µln are the dipole transition moments associated with the resonance schemes

depicted in Fig. 2(b) and (c). The parameters used in our model are listed in table I.

TABLE I: Parameters used in our model.

Parameter .Value Unit Source

Natm 4.42× 1022 atoms/cm3 [40]

µ2 6.25× 10−43 Jcm3 [28]

Γn,l 6.28× 1013 rad/s [28]

τint 150.0× 10−15 s †

ωpr 7805.79 cm−1 †

1.47× 1015 Hz †

I∗pr 0.18 pJ/µm2 †

0.2 GW/cm2 †

I∗cav 11.3 pJ/µm2 †

12.0 GW/cm2 †

ωpu 4166.67 cm−1 †

7.85× 1015 Hz †

I∗pu 1.00× 102 pJ/µm2 †

93.7 GW/cm2 †

† Set by the experimental conditions.

We have derived the two-photon absorption rate R
(2)
ng using the perturbation solution

to the Schrödinger’s equation for nondegenerate applied optical fields, see Appendix B. We

calculate the two-photon absorption cross section σ
(2)
ng by taking into account that the energy

of two pump photons is less than the electronic bandgap energy of GaAs [2×Epu(0.51 eV) <
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Egap(1.43 eV), Fig. 2(b1)] so that we can safely neglect the excitation of free carriers

by two-pump photons. We consider absorption of two probe photons (Fig. 2(b3)) and

the nondegenerate two-photon absorption (Fig. 2(b2)) when we calculate the two-photon

absorption cross section. Under the circumstances listed in Table I we calculate the two-

photon absorption cross section to be equal to σ
(2)
ng (ωpr, ωpu) = 1.14× 10−50 cm4s/photons2.

The two-photon absorption coefficient (β(2)) can be calculated from β(2) = 4σ
(2)
ngNatm/~ω [41].

We obtain the two-photon absorption coefficient to be β(2) = 0.013 cm/MW. The values

for σ
(2)
ng and β(2) agree with the earlier estimated and measured values [41, 42]. In our

experiment the sum of the energies of the pump and the probe photons are chosen to suppress

two-photon absorption [Epr(0.95 eV)+Epu(0.51 eV) ' Egap(1.43 eV)] which affects the two-

photon absorption cross section. We adjust the two-photon cross section to σ
(2)∗
ng (ωpr, ωpu) =

8.6 × 10−52 cm4s/photons2 to obtain a good match of our model with our experimental

data. With the value we use for σ
(2)∗
ng we observe that the refractive index increases as in

our experiment with the applied pump pulse energy. We use the value that we calculate for

σ
(2)∗
ng (ωpr, ωpu) in our model (solid curve in Fig. 6) to calculate the two-photon generated

free carrier density. As in the experiments, we observe that the linear increase of the index

change due to the electronic Kerr effect competes with the excited free carriers whose density

increases linearly with pump-pulse energy (since Epu <
1
2
Egap). The nondegenerate two-

photon coefficient can also be estimated for GaAs using the model described by Hutchings

et al [30]. However, we calculate the nondegenerate two-photon absorption coefficient using

our model since it was a necessary step to calculate nondegenerate three-photon absorption

coefficient.

We have derived the density of free carriers (Eq. 5) generated by three-photon ab-

sorption N
(3)
eh . We calculate the three-photon absorption rate R

(3)
lg using the perturba-

tion solution to the Schrödinger’s equation for nondegenerate optical fields (see Appendix

C). The three-photon absorption cross section σ
(3)
lg is calculated by considering all exci-

tation schemes shown in Fig. 2(c), since all the permutations of pump and probe ex-

ceed the bandgap of GaAs. We find the three-photon absorption cross section to be

σ
(3)
lg (ωpr, ωpu) = 3.9× 10−84 cm6s2/photons3. The three-photon absorption coefficient (γ(3))

can then be calculated from γ(3) = 6σ
(3)
lg Natm/(~ω)2 [41]. We obtain the three-photon ab-

sorption coefficient to be γ(3) = 0.45 × 10−4 cm3/GW2. The values we calculated for σ
(3)
lg

and γ(3) agree within two [42] and one [41] order of magnitude with the reported values. We
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consider this a very good agreement in the view of the difference in frequencies, material

and the difference due to degenerate and nondegenerate conditions. The value that we ex-

perimentally determine for γ(3) is in good agreement with the measured values [43]. We set

the three-photon absorption cross section to σ
(3)∗
lg (ωpr, ωpu) = 4.7× 10−83 cm6s2/photons3 to

obtain a good match of our model with our experimental data. With the value we use for

σ
(3)∗
lg (ωpr, ωpu) the refractive index change becomes nonlinear with the applied pump-pulse

energy and the refractive index starts to decreases within the energy regime shown in Fig.

6. The model also clearly shows the desired linear increase of the index in the Kerr regime

(at low pulse energies) and the appearance of the nonlinear decrease of the free-carrier index

that starts to compete at higher pulse energies. We attribute the difference between the

model and the experiment at low pump pulse energies to our choice of not using χ(3) as a

free parameter while we consider the free carrier excitation even at low pump-pulse energies

in our model. In our analysis we do not calculate the density of states for each permuta-

tion of pump-probe frequencies although our model can describe the frequency dependency.

Instead we use the approximation that ρf (ω) ≈ (2πΓn,l)
−1 [28] where Γn,l (see Table I) is

the width of level n, l. We list all the coefficients that we calculate using our model and the

coefficients that we deduce from our experiment in Table II. We conclude here that there is

an optimum power for instantaneous Kerr switching of a cavity, namely at the onset of the

carrier effects this value optimizes.

TABLE II: Coefficients calculated and determined from measurements.

The values are calculated and measured for the experimental parameters listed in table I.

Parameter Measurement Calculated Unit

χ(3) 6.72× 10−20 m2/V2

0.48× 10−11 esu

σ
(2)
ng 8.59× 10−52 1.14× 10−50 cm4s/photons2

N
(2)
eh 3.78× 1017 5.04× 1018 1/cm3

β(2) 0.10× 10−2 0.13× 10−1 cm/MW

σ
(3)
lg 4.71× 10−83 3.93× 10−84 cm6s2/photons3

N
(3)
eh 5.92× 1016 4.93× 1015 1/cm3

γ(3) 0.53× 10−3 0.45× 10−4 cm3/GW2
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QUALITY FACTOR DEPENDENT ULTIMATE-FAST SWITCHING

As opposed to the derivation of three photon absorption coefficient (σ
(3)
lg ) that restricts

itself to the simplified case of degenerate optical fields [28, 31], we have here derived the

two- and three-photon absorption cross sections for the general case of nondegenerate optical

fields. Since only the two-photon absorption coefficient has been reported previously for the

nondegenerate case [30] we chose to derive a model for nondegenerate case that can predict

both two- and three-photon absorption cross sections. Our approach holds the additional

advantage of calculating the free carrier density as a function of both pump and probe

intensities independently. This feature allows us to extend refractive index changes for

switched cavities with different quality factors Q. We assumed cavities with resonance ωres =

7812 cm−1 pumped at ωpu = 4165 cm−1 as in our experiment. The pump pulse duration is

taken as τP = 140 ± 10 fs, whereas the probe pulse duration is set by τcav since only the

probe pulse is in resonance with the cavity and τcav is inversely proportional to the quality

factor Q. Figure 7 shows that the observed refractive index increase from the Kerr effect can

be revealed with low quality factor (Q=300) cavity up to 200 pJ/µm2 pump pulse energy,

similar to our experiment. For increasing quality factors there is only a small increase in the

refractive index due to the Kerr effect before the free carriers decrease the index (Q=600)

or even only a decreasing refractive index with increasing pump pulse energy (Q=1000).

The less apparent Kerr effect with the increasing quality factor is caused by the decreasing

temporal overlap of pump and probe as the probe pulse becomes much longer than the

pump pulse (τcav > τP ) [10]. In fact, for high quality factor cavities during a longer fraction

of the probe pulse there is no pump light, as a result no Kerr switching occurs for this

time duration. As a consequence, high quality factor cavities invite Kerr switching with

long pump pulses, but this defies the purpose of ultrafast optical switching. Interestingly,

however, there is (Fig. 7) also already Kerr-induced refractive index increase for zero pump-

pulse energy. This effect is the result of the cavity enhanced probe light that already induces

a Kerr-shift. With increasing quality factor, the shift increases because of the increased

probe-enhancement in the cavity. However, due to the competing free carriers generated via

degenerate two- and three- probe photon absorption the Kerr induced positive shift does

not scale linearly with the quality factor. We therefore conclude that cavities with shorter

storage times can reduce the free carrier excitation which enables instantaneous switching

13



of semiconductor cavities at the telecom range.

CONCLUSION

We demonstrate switching of a semiconductor microcavity within 300 fs at telecom wave-

lengths using the electronic Kerr effect as a function of pump-pulse energy. We manage

to measure the nondegenerate third order susceptibility (χ(3)) of GaAs using pump-probe

experiment. We show that the refractive index change induced by the electronic Kerr effect

can be increased to a certain extent that is limited by the increasing density of excited free

carriers. We show that the judicious tuning of the frequency of the driving fields relative

to the band gap of the semiconductor decreases the number of free carriers and thereby

increases the positive shift of the resonance frequency resulting from the electronic Kerr

effect. Our model quantitatively describes the frequency and the intensity dependence of

nondegenerate switching with pump-probe experiment. The realization and the understand-

ing of the competition between the electronic Kerr effect and the free carriers reveals the

set of parameters using which the instantaneous electronic Kerr effect can be utilized as

the ultimate-fast way of all-optical switching. The refractive index change (0.1%) induced

by the electronic Kerr effect will result in a larger resonance frequency shift in comparison

to the cavity linewidth with high-Q cavities. However, we find that due to the larger field

enhancements in high-Q cavities the Kerr effect will be hindered by the free carriers. On the

other hand, if the incident probe pulse energy is further reduced then this competition in

high-Q cavities can be directed in favour of the electronic Kerr effect. Reducing the required

pulse energy of the pump pulses will be achieved if the pump pulses are also resonantly en-

hanced by the cavity. Moreover, we note that the pump photons are not absorbed in the

electronic Kerr effect, hence the pump pulses do not heat up the sample and thus they can

be recycled to switch the cavity resonance again.

APPENDIX A: INTENSITY DEPENDENT REFRACTIVE INDEX

In nonlinear optics the intensity dependent refractive index for pump-probe experiments

is generally described under the assumption of weak probe field [28]. In experiments in-

volving cavities however, as described in this paper, pump and probe fields may be of the
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same order due to the resonant enhancement of the probe field. In order to reveal the conse-

quences of this, we derive in this appendix the intensity-dependent refractive index involving

nondegenerate pump and probe fields.

The nonlinear refractive index can be described for large interaction times [28]

n(ωpr) = n0(ωpr) + n2(ωpr : ωpr, ωpu)〈Ẽ2〉, (6)

where n0 is the weak field refractive index, n2 the second-order index of refraction and

〈Ẽ〉 the time average of the electric field. The arguments of n2 express that the result at

frequency ωpr depends on both ωpr and ωpu, as we will see below. In order to calculate the

intensity dependent refractive index for nondegenerate pump-probe light we start with an

optical field of the form

Ẽ(t) = Epr(ωpr)e
−iωprt + Epu(ωpu)e

−iωput + c.c., (7)

so that

〈Ẽ2(ωpr, ωpu)〉 = 2Epr(ωpr)E
∗
pr(ωpr) + 2Epu(ωpu)E

∗
pu(ωpu) = 2(|Epr|2 + |Epu|2). (8)

By inserting Eq. 8 into Eq. 6 we rewrite the nonlinear index in terms of the pump and

probe fields

n(ωpr) = n0(ωpr) + 2n2(ωpr : ωpr, ωpu)(|Epr|2 + |Epu|2). (9)

The general form of the total polarization of a material is described up to third order by

[28]

P Tot(ω) = ε0χ
(1)Ẽ(ω) + ε0χ

(2)Ẽ2(ω) + ε0χ
(3)Ẽ3(ω). (10)

Due to the centrosymmetry of GaAs the total polarization reduces to P Tot(ω) = ε0χ
(1)Ẽ(ω)+

ε0χ
(3)Ẽ3(ω) [39]. Taking the total optical field to the third power (Eq. 7) and inserting it

into the total polarization leads to

P Tot(ωpr) = ε0χ
(1)Epre

−iωprt + 3ε0χ
(3)E3

pre
−i(ωpr+ωpr−ωpr)t + 6ε0χ

(3)EprE
2
pue
−i(ωpu−ωpu+ωpr)t

= ε0Epre
−iωprt (χ(1) + 3χ(3)E2

pr + 6χ(3)E2
pu)︸ ︷︷ ︸

χeff

, (11)

which is the nonlinear polarization that influences the propagation of a beam of frequency

ωpr. We introduce an effective nonlinear susceptibility in Eq. 11 given by

χeff = χ(1) + 3χ(3)|Epr|2 + 6χ(3)|Epu|2. (12)
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We note that it is generally true that [28]

n2(ωpr) = 1 + 4πχeff , (13)

and by inserting Eq. 9 and 12 into Eq. 13 we get

n0(ωpr)
2 + 4n2(ωpr : ωpr, ωpu)n0(ωpr)(|Epr|2 + |Epu|2) + (14)

4n2(ωpr : ωpr, ωpu)
2(|Epr|2 + |Epu|2)2

= 1 + 4πχ(1) + 12πχ(3)|Epr|2 + 24πχ(3)|Epu|2.

Making the reasonable assumption that n2 << n0 and by equating the terms of the same

order on each side of Eq. 15 we find the relation between the linear and nonlinear refractive

indices and the relevant susceptibilities as follows:

n0(ωpr)
2 = 1 + 4πχ(1), (15)

n2(ωpr : ωpr, ωpu) =
3πχ(3)

n0(ωpr)

(|Epr|2 + 2|Epu|2)
(|Epr|2 + |Epu|2)

. (16)

Inserting Eq. 16 into Eq. 6 results in the nonlinear index

n(ωpr) = n0(ωpr) +
6πχ(3)

n0(ωpr)
(|Epr|2 + 2|Epu|2). (17)

Equation 17 shows that the refractive index change induced by the electronic Kerr effect

depends on the square of the electric fields of both the pump and the probe light. For low

values of Epr, we get the usual expression for two degenerate beam case given in [28]. In the

text we use Ecav instead of Epr since only the probe pulse is in resonance with the cavity,

which modifies the probe pulse duration and the intensity of the probe pulse. However, in the

appendix the equations are derived for a general case where the probe pulse is non-resonant.

APPENDIX B: TWO-PHOTON ABSORPTION CROSS SECTION

Following the derivation of refractive index change induced by the electronic Kerr ef-

fect we derive the two-photon absorption rate R
(2)
eh using a perturbation approach to solve

Schrödinger’s equation for nondegenerate applied optical fields. We start with a two-level

system to calculate the two-photon absorption rate and later we introduce density of states
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in order to mimic a semiconductor. In our derivation we choose to explicitly write out all

terms instead of using the permutation operator for the probability amplitude as in [28].

In this way we can calculate the absorption rate as a function of both pump and probe

intensities as an extension beyond the textbook [28].

We start by writing the time-dependent Schrödinger equation in the presence of a time-

dependent interaction potential Ṽ (t). We then use the standard perturbation analysis as

described in Ref. [28] to get:

da
(N)
m

dt
= (i~)−1

∑
l

aN−1l Ṽlme
−iωlmt, (18)

where a
(N)
m is the probability amplitude of sate m with N interaction order and Ṽlm are the

matrix elements of interaction Hamiltonian V̂ . We first calculate the linear absorption term,

hence we set N=1. We assume that in the absence of any applied electric field the atoms

are in the ground state g (see Fig. 2 for the energy levels) so that a0g(t) = 1 and a0m(t) = 0

for m 6= g at all times t [28]. We then write Ṽmg as:

Ṽmg = −µmg[Epr(ωpr)e−iωprt + Epu(ωpu)e
−iωput + E∗pr(ωpr)e

iωprt + E∗pu(ωpu)e
iωput], (19)

where µmg is the transition dipole moment between states m and g. Inserting Eq. 19 into

Eq. 18 gives

da
(1)
m

dt
= −(i~)−1µmg[Epr(ωpr)e

i(ωmg−ωpr)t + Epu(ωpu)e
i(ωmg−ωpu)t

+E∗pr(ωpr)e
i(ωpr+ωmg)t + E∗pu(ωpu)e

i(ωpu+ωmg)t]. (20)

We drop the terms with ωpr+ωmg and ωpu+ωmg since they describe the process of stimulated

emission. The neglect of the second terms is known as the rotating wave approximation. To

get the probability amplitude for linear absorption we integrate Eq. 20

a(1)m (t) = −(i~)−1µmg

∫ t

0

dt′[Epr(ωpr)e
i(ωmg−ωpr)t′ + Epu(ωpu)e

i(ωmg−ωpu)t′ ]

=
µmgEpr

~(ωmg − ωpr)
[ei(ωmg−ωpr)t − 1] +

µmgEpu
~(ωmg − ωpu)

[ei(ωmg−ωpu)t − 1]. (21)

In order to get the probability amplitude a2n(t) for two-photon absorption (see Fig. 2(b)

for the energy levels) we describe Ṽnm as:

Ṽnm = −µnm[Epr(ωpr)e
−iωprt + Epu(ωpu)e

−iωput + E∗pr(ωpr)e
iωprt + E∗pu(ωpu)e

iωput], (22)
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We use Eqs. 21 and 22 in Eq.18 to get

da
(2)
n

dt
= −(i~)−1

∑
m

a(1)m × Ṽnme−iωmnt. (23)

In Eq. 23 we again use the rotating wave approximation and we omit the complex terms

which describe the stimulated emission as has been shown in Eq. 20. Furthermore, in Eq.

23 we assume that single level m dominates the sum so that the sum disappears. Thus we

get:

da
(2)
n

dt
= −µmgµnm

i~2

[
E2
pr

(ωmg − ωpr)
[ei(ωmg+ωnm−2ωpr)t − ei(ωnm−ωpr)t]

+
EprEpu

(ωmg − ωpu)
[ei(ωmg+ωnm−ωpr−ωpu)t − ei(ωnm−ωpr)t]

+
EprEpu

(ωmg − ωpr)
[ei(ωmg+ωnm−ωpr−ωpu)t − ei(ωnm−ωpu)t]

+
E2
pu

(ωmg − ωpu)
[ei(ωmg+ωnm−2ωpu)t − ei(ωnm−ωpu)t]

]
. (24)

In Eq. 24 we use the identity (ωng = ωnm + ωmg) and we assume that the one-photon

transition is highly non-resonant so that (ωmg − ωpr ' ωpr) and (ωmg − ωpu ' ωpu). The

terms with (ωnm − ωpr) and (ωnm − ωpu) give the transient response of the process so that

they can be dropped in the consideration of Eq. 24 [28]. Finally, we integrate Eq. 24 up to

time t and then multiply by t/t to make the denominators look similar to the exponents:

a(2)n (t) =
tµmgµnm

~2

[
E2
pr[e

i(ωng−2ωpr)t − 1]

ωpr(ωng − 2ωpr)t
+
E2
pu[e

i(ωng−2ωpu)t − 1]

ωpu(ωng − 2ωpu)t

+

(
EprEpu
ωpu

+
EprEpu
ωpr

)
ei(ωng−ωpr−ωpu)t − 1

(ωng − ωpr − ωpu)t

]
. (25)

We set (ωng− 2ωpr)t = x, (ωng−ωpr−ωpu)t = y, (ωng− 2ωpu)t = z, E2
pr/ωpr = A, EprEpu

ωpu
+

EprEpu

ωpr
= B, E2

pu/ωpu = C so that Eq. 25 simplifies to:

a(2)n (t) =
tµmgµnm

~2

[
A(eix − 1)

x
+
B(eiy − 1)

y
+
C(eiz − 1)

z

]
. (26)
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Then the probability is

p(2)n (t) = |a(2)n (t)|2 =
t2|µmgµnm|2

~4
×[

A2(1− eix − e−ix + 1)

x2
+
B2(1− eiy − e−iy + 1)

y2
+
C2(1− eiz − e−iz + 1)

z2

+
AB(ei(x−y) − eix − e−iy + 1)

xy
+
AB(e−i(x−y) − e−ix − eiy + 1)

xy

+
AC(ei(x−z) − eix − e−iz + 1)

xz
+
AC(e−i(x−z) − e−ix − eiz + 1)

xz

+
BC(ei(y−z) − eiy − e−iz + 1)

yz
+
BC(e−i(y−z) − e−iy − eiz + 1)

yz

]
. (27)

In the following we analyse the terms inside the square brackets of Eq. 27 for long interaction

times. First we introduce functions f(t) and g(t) given as:

f(t) =
t2(2− eix − e−ix)

x2
=
t22(1− cosx)

x2
(28)

g(t) = t2[
ei(x−y) − eix − e−iy + 1

xy
+
e−i(x−y) − e−ix − eiy + 1

xy
]

= t2[
2 + 2cos(x− y)− 2cosx− 2cosy

xy
]. (29)

Figure 8 (a) and (b) shows the the approximation of the functions f(t) and g(t) as Dirac

delta functions for long interaction times, respectively. The peak value of f(t) is t2 when

x→ 0 that is ωng − 2ωpr → 0. The width of the central peak is of the order of 2π/t. Thus

the area under the central peak is of the order of 2πt. The function f(t) can be expressed in

terms of a Dirac delta function for large t as [28]:

lim
t→∞

f(t) = 2πtδ(ωng − 2ωpr). (30)

Similarly we can also write g(t) in terms of Dirac delta functions for large t as:

lim
t→∞

g(t) = 4πtδ(ωng − 2ωpr)δ(ωng − ωpr − ωpu). (31)

We can see that (Fig. 8) limt→∞ g(t) = 2, if ωng − 2ωpr = 0 and ωng − ωpr − ωpu = 0 at

the same time. Since ωpr 6= ωpu then g(t) = 0 for nondegenerate light sources. Later, we

consider that the presence of the delta function is somewhat unphysical. Instead we use the
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fact that the final state n is spread into a density of final states ρf (ωng) which is normalized

such that [28] ∫ ∞
0

ρf (ωng)dωng = 1, (32)

and thus ∫ ∞
0

ρf (ωng)2πδ(ωng − 2ωpr)dωng = ρf (ωng = 2ωpr). (33)

Considering the fact that the first three terms inside square brackets in Eq. 27 have the

same form as f(t), we can apply the same procedure (described from Eq. 28 to 33) for these

three terms. Moreover, due to the fact that g(t) = 0 for nondegenerate sources, the last six

terms inside the square brackets in Eq. 27 become also zero since they have the form of

g(t). As a result, the probability to be in the upper level n simplifies to

p(2)n (t) =
2πt|µmgµnm|2

~4
×

[ A2ρf (ωng = 2ωpr) +B2ρf (ωng = ωpr + ωpu) + C2ρf (ωng = 2ωpu)]. (34)

Since the probability for an atom to be in the upper state seems to increase linearly with

time, we can define a transition rate as [28]

R(2)
ng =

p
(2)
n (t)

t
. (35)

The two-photon cross section can then be calculated via

σ(2)
ng =

R
(2)
ng

I2
, (36)

where I is the intensity of the incident field in units of photons/cm2s. We can now calculate

the density of free carriers from the transition rate using

N
(2)
eh = R(2)

ngNatmτint, (37)

where Natm is the number of interacting atoms per unit volume and τint the interaction

time. Then we use the explicit forms of A, B, and C and we write the density of free carriers

generated by two-photon absorption:

N
(2)
eh =

Natmτint8π
3|µmgµnm|2

~2n2
0c

2

[ Fig.2(b1)︷ ︸︸ ︷
I2puρf (ωng = 2ωpu) +

Fig.2(b3)︷ ︸︸ ︷
I2prρf (ωng = 2ωpr)

+

Fig.2(b2)︷ ︸︸ ︷
IprIpuωprωpuρf (ωng = ωpr + ωpu)

(
1

ω2
pr

+
2

ωprωpu
+

1

ω2
pu

)]
. (38)
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Using Eq. 38 we can calculate the density of free carriers generated via two-photon absorp-

tion as function of pump and probe intensities and interaction times independently. In our

calculations we assume that the laser frequency is tuned to the peak of the two-photon reso-

nance, so that ρf (ω) ≈ (2πΓn)−1 [28] where Γn is the width of level n (see Table I). Eq. 38 is

calculated for the general case of two-photon absorption where all permutations of pump and

probe exceed the bandgap energy. One has to consider to leave out the non-resonant terms

(that do not excite free carriers) to calculate the specific density of free carriers generated

via two-photon absorption.

APPENDIX C: THREE-PHOTON ABSORPTION CROSS SECTION

In order to calculate the probability amplitude a3n(t) for three-photon absorption (see

Fig. 2(c) for the levels) we follow the same steps as in Appendix B but modified for the

three-photon absorption process. Here, we describe Ṽln as:

Ṽln = −µln[Epr(ωpr)e
−iωprt + Epu(ωpu)e

−iωput + E∗pr(ωpr)e
iωprt + E∗pu(ωpu)e

iωput]. (39)

We use Eq. 25 and 39 in Eq. 18 to get a
(3)
l (t)

da
(3)
l

dt
= −(i~)−1

∑
mn

a(2)n × Ṽlne−iωlnt. (40)

After we carry out the multiplications in Eq. 40 we use (ωlg = ωln + ωnm + ωmg) for

simplification and we drop the terms with (ωln − ωpr) and (ωln − ωpu) since they give the

transient response of the process and we also drop the terms describing the stimulated

emission [28]. Then we integrate Eq. 40 (see Appendix B for the similar steps). We

assume that both the one-photon and two-photon transitions are highly non-resonant so

that (ωmg − ωpr ' ωpr) , (ωmg − ωpu ' ωpu) , (ωng − 2ωpr ' 2ωpr) , (ωng − 2ωpu '

2ωpu) , and (ωng − ωpr − ωpu ' ωpr + ωpu). Finally, we get

a
(3)
l (t) =

tµlnµnmµmg
~3

[
E3
pr

2ω2
pr

(ei(ωlg−3ωpr)t − 1)

(ωlg − 3ωpr)t
+
E2
prEpu

2ω2
pr

(ei(ωlg−2ωpr−ωpu)t − 1)

(ωlg − 2ωpr − ωpu)t

+
E2
prEpu

ωpu(ωpr + ωpu)

(ei(ωlg−2ωpr−ωpu)t − 1)

(ωlg − 2ωpr − ωpu)t
+

EprE
2
pu

ωpu(ωpr + ωpu)

(ei(ωlg−ωpr−2ωpu)t − 1)

(ωlg − ωpr − 2ωpu)t

+
E2
prEpu

ωpr(ωpr + ωpu)

(ei(ωlg−2ωpr−ωpu)t − 1)

(ωlg − 2ωpr − ωpu)t
+

EprE
2
pu

ωpr(ωpr + ωpu)

(ei(ωlg−ωpr−2ωpu)t − 1)

(ωlg − ωpr − 2ωpu)t

+
E2
puEpr

2ω2
pu

(ei(ωlg−2ωpu−ωpr)t − 1)

(ωlg − 2ωpu − ωpr)t
+
E3
pu

2ω2
pu

(ei(ωlg−3ωpu)t − 1)

(ωlg − 3ωpu)t

]
. (41)
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In Eq. 41 we set

x = (ωlg − 3ωpr)t, y = (ωlg − 2ωpr − ωpu)t

z = (ωlg − 2ωpu − ωpr)t, w = (ωlg − 3ωpu)t

A =
E3

pr

2ω2
pr
, B =

E2
prEpu

2ω2
pr

+
E2

prEpu

ωpu(ωpr+ωpu)
+

E2
prEpu

ωpr(ωpr+ωpu)

C =
E2

puEpr

2ω2
pu

+
E2

puEpr

ωpu(ωpr+ωpu)
+

E2
puEpr

ωpr(ωpr+ωpu)
, D =

E3
pu

2ω2
pu

(42)

then Eq. 41 simplifies to:

a
(3)
l (t) =

tµmgµnmµln
~3

[
A(eix − 1)

x
+
B(eiy − 1)

y
+
C(eiz − 1)

z
+
D(eiw − 1)

w

]
. (43)

Then the probability is

p
(3)
l (t) = |a(3)l (t)|2 =

t2|µmgµnmµln|2

~6
×[

A2(1− eix − e−ix + 1)

x2
+
B2(1− eiy − e−iy + 1)

y2

+
C2(1− eiz − e−iz + 1)

z2
+
D2(1− eiw − e−iw + 1)

w2

+
AB(ei(x−y) − eix − e−iy + 1)

xy
+
AB(e−i(x−y) − e−ix − eiy + 1)

xy

+
AC(ei(x−z) − eix − e−iz + 1)

xz
+
AC(e−i(x−z) − e−ix − eiz + 1)

xz

+
AD(ei(x−w) − eix − e−iw + 1)

xw
+
AD(e−i(x−w) − e−ix − eiw + 1)

xw

+
BC(ei(y−z) − eiy − e−iz + 1)

yz
+
BC(e−i(y−z) − e−iy − eiz + 1)

yz

+
BD(ei(y−w) − eiy − e−iw + 1)

yw
+
BD(e−i(y−w) − e−iy − eiw + 1)

yw

+
CD(ei(z−w) − eiz − e−iw + 1)

zw
+
CD(e−i(z−w) − e−iz − eiw + 1)

zw

]
.(44)

If we analyze the terms inside the square brackets in Eq. 44 for large interaction times,

following the same steps used in Appendix B (from Eq. 28 to Eq. 33), the probability to be

in upper level l simplifies to

p
(3)
l (t) =

2πt|µmgµnmµln|2

~6
[A2ρf (ωlg = 3ωpr) +B2ρf (ωlg = 2ωpr + ωpu)

+C2ρf (ωlg = ωpr + 2ωpu) +D2ρf (ωlg = 3ωpu)]. (45)
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We can define a transition rate as [28]

R
(3)
lg =

p
(3)
l (t)

t
. (46)

The three-photon cross section can then be calculated via

σ
(3)
lg =

R
(3)
lg

I3
, (47)

where I is the intensity of the incident field in the units of photons/cm2s. We can now

calculate the density of free carriers from the transition rate using

N
(3)
eh = R

(3)
lg Natmτint, (48)

where Natm is the number of interacting atoms in the unit volume and τint the interaction

time. Then we write the density of free carriers generated by three-photon absorption by

simply inserting the functions in Eq. 42 into Eq. 45:

N
(3)
eh = R

(3)
lg Natmτint =

Natmτint16π4|µmgµnmµln|2

~3n3
0c

3

[ Fig.2(c1)︷ ︸︸ ︷
I3puρf (ωlg = 3ωpu)

4ωpu
+

Fig.2(c4)︷ ︸︸ ︷
I3prρf (ωlg = 3ωpr)

4ωpr

+

Fig.2(c2)︷ ︸︸ ︷
IprI

2
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. (49)

Using Eq. 49 we are able to explicitly calculate the density of free carriers generated via

three-photon absorption as function of pump and probe intensities and interaction times

independently. In our calculations we assume that the laser frequency is tuned to the peak

of the two-photon resonance, so that ρf (ω) ≈ (2πΓl)
−1 [28] where Γl (see Table I) is the

width of level l. Eq. 49 is calculated for the general case of three-photon absorption where
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all the permutations of pump and probe exceeds the bandgap energy. One has to consider to

leave out the non-resonant terms to calculate the specific density of free carriers generated

via three-photon absorption.
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“Strongly correlated photons on a chip,” Nature Photon. 6, 93–96 (2012).

[5] J. M. Gérard, “Solid-state cavity-quantum electrodynamics with self-assembled quantum

dots,” Top. Appl. Phys. 90, 296–314 (2003).

[6] J. P. Reithmaier, “Strong exciton-photon coupling in semiconductor quantum dot systems,”

Semicond. Sci. Tech. 23, 123001–1–18 (2008).

[7] P. M. Johnson, A. F. Koenderink, and W. L. Vos, “Ultrafast switching of photonic density of

states in photonic crystals,” Phys. Rev. B 66, 081102(R)–1–4 (2002).
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[14] C. Husko, A. D. Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast

all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94, 021111–1–3

(2009).
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(a)

(b)

FIG. 1: (color online) (a) Scanning electron micrograph of our microcavity. The GaAs λ-layer is

indicated with white arrows and is sandwiched between two GaAs-AlAs Bragg stacks. The GaAs

substrate is visible at the bottom. The GaAs layers appear dark grey, while the AlAs layers ap-

pear light grey. (b) Measured (black symbols) and calculated (red line) reflectivity spectra of the

microcavity. The stopband of the Bragg stacks extends from 7072 cm−1 to 8498 cm−1. Fabry-Pérot

fringes are visible on both sides of stop band. Within the stopband a narrow trough at 7794.2 cm−1

(1282 nm) indicates the cavity resonance. From the linewidth (∆ω = 20 ± 3 cm−1, full width at

half maximum) of the cavity resonance we derive a quality factor Q = 390± 60 corresponding to a

cavity storage time of τcav = 0.3± 0.045 ps. The calculations are performed with a transfer matrix

model.
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FIG. 2: (color online) (a) Schematic of the setup. The probe beam path is shown in blue, the pump

beam path in red. The time delay between the pump and the probe pulses is adjusted through a delay

stage. The reflected signal from the cavity is spectrally resolved and detected with a spectrometer.

The frequency of the probe beam is resonant with the cavity and the bandwidth of the probe beam is

broader than the cavity linewidth. (b)Schematic energy diagram for the two-photon carrier excita-

tion processes possible in our experiment (see Eq. 4). Two-photon absorption is largely suppressed

by the judicious tuning of the pump and the probe frequencies relative to the semiconductor bandgap

energy (c) Schematic energy diagrams for all possible three-photon processes in the experiment that

may result in free carrier generation (see Eq. 5).
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FIG. 3: (color online) Transient reflectivity spectra for three different pump probe delays. The

spectra are obtained at 84 pJ/µm2 pump pulse energy. The orange curves show the fit to the cavity

resonance from which the cavity resonance frequency (ωres) is determined as the minimum.
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FIG. 4: (color online) Resonance frequency versus time delay (∆t) between pump and probe at dif-

ferent pump pulse energies. The resonance frequency red-shifts due to the instantaneous electronic

Kerr effect only at temporal overlap (∆t = 0 ± 15 fs) of pump-probe (shaded with bright color).

The blue shift of the cavity resonance due to free carriers is observed when the pump pulse energy

is increased (shaded with dark color). The dotted horizontal line shows the unswitched resonance

frequency at ω0 = 7805.6 cm−1
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FIG. 5: (color online) Transient reflectivity versus wavenumber for three different pump pulse

energies. The spectra are obtained at pump-probe coincidence (∆t = 0±15 fs). The orange curves

show the fit to the cavity resonance from which the cavity resonance frequency (ωres) is determined

as the minimum, indicated as ticks.
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FIG. 6: (color online) Instantaneous negative shift of the resonance frequency versus pump-pulse

energy. Black circles show the measured results with a 10% error bar. At low pump-pulse energies

(bright shaded region) we only observe electronic Kerr effect since the resonance frequency decreases

linearly with the pump pulse energy (magenta dashed line). The competing blue shift of free carriers

is observed beyond 70 pJ/µm2 and the region with both Kerr and free carrier excitation is darker

shaded. The right ordinate shows the calculated refractive index change. The red solid curve indi-

cates the modelled index change as a function of the pump-pulse energy for general nondegenerate

pump-probe light beams.
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FIG. 7: (color online) Refractive index change versus pump-pulse energy calculated for three dif-

ferent quality factors. The positive index change due to the electronic Kerr effect is more pro-

nounced with low quality factor cavities with fast dynamics. We assumed cavities with resonance

ωres = 7812 cm−1 pumped at ωpu = 4165 cm−1 as in our experiment. The pump pulse duration is

taken as τP = 140± 10 fs, whereas the probe pulse duration is set by τcav.
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FIG. 8: (color online) (a) The function f(t) versus x in Eq. 28, which can be approximated as

a Dirac delta function. (b) The function g(t) in Eq. 29, which can be approximated as two-

dimensional Dirac delta function. The absorption probability is proportional to the functions f(t)

and g(t).
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