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1 Introduction

Flavor symmetry plays essential role in classification of the hadrons. The light hadronic

states are successfully described by using SU(3) flavor symmetry. In the case this sym-

metry is exact, hadrons belonging to the same representation of SU(3) flavor group could

be degenerate. Experimentally it is known that the hadrons belonging to the same repre-

sentation have different masses, which leads to SU(3) flavor symmetry breaking. At quark

level, this symmetry is broken due to the mass difference of the light u, d and s quarks.

The breaking of the SU(3) flavor symmetry might lead to mixing of hadrons. In other

words, the definite flavor eigenstates can mix to form the physically observed states.

Long time ago, it is observed that the lowest lying hadrons Λ and Σ can be represented

as the combination of the SU(3) octet, pure isospin I = 0 (Λ), and I = 1 (Σ0) baryons in

the following form [1],

Λ = Λ0 cosα− Σ0 sinα ,

Σ = Λ0 sinα+ Σ0 cosα . (1.1)

The Σ–Λ mixing angle is estimated in the framework of different approaches such as,

quark model [1–3], chiral perturbation theory [4], QCD sum rules in vacuum [5, 6], QCD

sum rules in isospin asymmetric medium [7], and in lattice QCD [8]. The mixing angle

predicted by these models are, |α| = 1.4×10−3 [5], |α| = 7.0×10−3 [6], |α| = 1.5×10−2 [1, 2],

|α| = 1.0× 10−2 [3] and [4], |α| = 7.0× 10−3 [8] (all results for the mixing angle are given

in radians).

We see from these values that different approaches predict different values for the

mixing angle. In the present work we determine the Σ–Λ mixing within the QCD sum rules

method and compare our result with the predictions of the above-mentioned approaches.

The main difference of our approach in determination of the Σ–Λ mixing angle com-

pared to the QCD sum rules calculation existing in literature is that, in our case the mixing

angle is introduced in the interpolating current, rather than in the hadronic part. The other

novel property that our approach possesses is the hadronic part of the QCD sum rules is

zero in our case, i.e., our approach is free of uncertainties coming from the hadronic part.

In determination of the Σ–Λ mixing angle within the QCD sum rules we follow the

method suggested in [9], and for this goal we start by considering the following correla-

tion function,

Π = i

∫
d4xeipx 〈0 |T {ηH(x)η̄H(0)}| 0〉 , (1.2)
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where T is the time ordering operator, ηH is the interpolating current, carrying the same

quantum numbers as the corresponding hadron. If the bare H0
1 and H0

2 states are mixed,

the corresponding physical states with definite mass should be the linear combinations

of these bare states. In this case, the interpolating currents corresponding to the physical

states could be represented as the superposition of the interpolating currents corresponding

to the bare states, i.e.,

ηΛ = sinαηΛ0 + cosαηΣ0 ,

ηΣ = cosαηΛ0 − sinαηΣ0 , (1.3)

where α is the mixing angle between Λ0 and Σ0 states. In presence of only two physical

states, eq. (1.2) can be written as,

Π = i

∫
d4xeipx 〈0 |T {ηΛ(x)η̄Σ}| 0〉 . (1.4)

It should be remembered that the general form of the correlator function is,

Π(p) = Π1(p2) 6p+ Π2(p2)I ,

and coefficients of the 6p and I (unit operator) structures, i.e., Π1(p2) and Π2(p2) can both

be used in determining the mixing angle.

In order to construct the sum rules for the mixing angle α, the correlation function (1.4)

is calculated in terms of hadrons, quarks and gluons. Using the duality ansatz these two

representations are matched and the sum rules for the corresponding physical quantity

is obtained.

The hadronic representation of the correlation function is obtained by saturating it with

the full set of baryons having the same quantum numbers as the corresponding interpolating

current. Since ηH1 and ηH2 can create only the states H1 and H2, correspondingly, the

hadronic part of the correlation function is obviously zero if we isolate the contributions

of the ground state baryons to the correlation function. It should be noted here that the

correlation function also contains contributions coming from the higher states, and therefore

in principle the correlation function may not vanish. But contributions of the higher states

are taken into account by the quark-hadron duality, i.e., higher state contributions are equal

to perturbative contributions starting from some threshold s0. Therefore, the physical

part of the correlation function becomes zero after continuum subtraction procedure is

performed. In other words, coefficients of the structures 6p and I should independently be

equal to zero.

Using eq. (1.3) in eq. (1.4), one can easily obtain the expression for the mixing angle

for both structures,

tan 2α =
2Π0

ΣΛ

Π0
ΣΣ −Π0

ΛΛ

, (1.5)

where Π0
ij are the correlation functions corresponding to the unmixed states, i.e.,

Π0
ij = i

∫
d4xeipx

〈
0
∣∣T{η0

i (x)η0
j

}∣∣ 0〉 , (1.6)
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where (i, j = Λ0 or Σ0). So the problem of determination of the mixing angle requires the

calculation of the theoretical part of the correlation function, for which the expressions of

the interpolating currents are needed.

According to the SU(3)f classification the interpolating currents for the unmixed Λ0

and Σ0 are chosen as [10, 11],

ηΛ0 = 2

√
1

6
εabc

{
2(uaTCdb)γ5s

c + 2β(uaTCγ5d
b)sc + (uaTCsb)γ5d

c + β(uaTCγ5s
b)dc

− (daTCsb)γ5u
c − β(daTCγ5s

b)uc
}
,

ηΣ0 =
√

2εabc
{

(uaTCsb)γ5d
c + β(uaTCγ5s

b)dc + (daTCsb)γ5u
c + β(daTCγ5s

b)uc
}
, (1.7)

where a, b, c are the color indices, C is the charge conjugation operator, and β is the

arbitrary constant with β = −1 corresponding to the so-called Ioffe current.

Using the operator product expansion at p2 � 0, one can easily obtain the expressions

for the correlation functions Π0
ΣΣ − Π0

ΛΛ, and Π0
ΣΛ from eq. (1.6) from the QCD side for

the 6 p and I structures. The expressions of these correlation functions are presented in

the appendix.

In order to proceed for the numerical calculations we need the values of the input

parameters that are given as: 〈ūu〉(1 GeV) = (−0.246+28
−19 MeV3) [12], 〈s̄s〉 = 0.8〈q̄q〉,

〈g2G2〉 = 0.47 GeV4, m2
0 = (0.8 ± 0.2) GeV2 [13]. For the masses of the light quarks

we use their MS values given as: mu(1 GeV) = 2.3+0.7
−0.5 MeV, md(1 GeV) = 4.8+0.5

−0.3 MeV,

ms(1 GeV) = 95+5
−5 MeV [14]. In our numerical calculations we also take into account isospin

symmetry breaking effects in the quark condensates, i.e., 〈d̄d〉/〈ūu〉 ' (1.0−9.0×10−3) [15].

It should be noted here that the isospin breaking has two different sources: i) The elec-

tromagnetic effect due to the electric charge difference between up and down quarks; ii)

the mass difference between up and down quarks. It is shown in [16] that in analysis of

the Σ–Λ mixing angle, the contributions coming from electromagnetic effects are smaller

compared to the ones coming from quark mass differences. For this reason we neglect the

electromagnetic effects in our calculations.

It follows from the expressions of the invariant functions that in order to determine

the Σ–Λ mixing angle three arbitrary parameters are involved, namely, the continuum

threshold s0, the Borel mass parameter M2, and the parameter β (see the expressions of

the interpolating currents); and of course the mixing angle should be independent of them

all. As is well known, the continuum threshold is related to the energy of the first excited

state. The difference
√
s0−mground, where mground is the mass of the ground state, is equal

to the energy needed to excite the particle to its first energy state. This difference usually

changes in the range between 0.3–0.8 GeV. It follows from the analysis of the mass sum rules

that in order to reproduce the experimental values of the masses of the Σ and Λ baryons,

the continuum threshold s0 should lie in the range 2.5 GeV2 ≤ s0 ≤ 3.2 GeV2 [10, 11].

Moreover, the working region of the Borel mass parameter should be such that, the results

for the Σ–Λ mixing angle should exhibit good stability with respect to the variation of

M2 at fixed values of s0. The upper bound of M2 is obtained by demanding that the

higher states and continuum contributions should be less than 30% of the total result. The
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lower bound of M2 is determined from the condition that the sum of the contributions

of the condensate terms should be less than 40% of the contributions coming from the

perturbative part. From these conditions the working region of M2 is determined to be

1.4 GeV2 ≤M2 ≤ 2.2 GeV2.

In figures 1 and 2, we present the dependence of the mixing angle α on M2 at the

value of the continuum threshold s0 = 3.2 GeV2 and, at several fixed values of the auxiliary

parameter β, for the coefficients of the structures 6p and I, respectively. We observe from

figure 1 that in the range 1.4 GeV2 ≤ M2 ≤ 2.2 GeV2 of the Borel parameter, the mixing

angle α exhibits good stability for the values of the auxiliary parameter β = −3; ± 1 for

the structure 6 p. As can be traced from figure 2, the mixing angle α seems to be rather

stable at all considered values of the auxiliary parameter β for the structure I at the fixed

value of the continuum threshold s0 = 3.2 GeV2.

Our final attempt for determination of the mixing angle is to find the region of β

where the mixing angle exhibits insensitivity to its variation. For this aim we study the

dependence of the mixing angle α on cos θ where β = tan θ, at several fixed values of M2

and at s0 = 3.2 GeV2, and presented them in figures 3 and 4 for the coefficients of the

structures 6 p and I, respectively. In this respect, the results of our numerical analysis

depicted in figures 3 and 4 can be summarized as follows:

• For the structure 6p, in the above-determined working regions of M2 and s0, the best

stability for the mixing angle is achieved when −1 ≤ cos θ ≤ −0.5, and the mixing

angle is found to have the value α = (1.15± 0.05)0 ' 2.0× 10−2.

• For the structure I not only there is no stability region for the mixing angle, but also

the mixing angle changes its sign. Therefore prediction for the value of the mixing

angle from the structure I is not reliable.

Therefore we conclude that, the final result for the mixing angle is α = (1.15±0.05)0 '
2.0× 10−2 (in radians) which is obtained from the 6p structure. The error in determination

of the mixing angle can be attributed to the uncertainties in the value of the continuum

threshold s0, the quark condensates, and the scale parameter Λ. The results presented in

this work can further be improved by taking O(αs) corrections in to account.

Finally, we compare our result on the Σ–Λ mixing with the predictions of the other

approaches, as the result of which we observe that our result is very close to the result

predicted by the quark model, while it is larger than the predictions of the QCD sum

rules method existing in literature [6], and lattice QCD methods. The observed difference

between our result and that of the QCD sum rules can mainly be attributed to the input

parameters used in the numerical calculations. In our analysis we use the latest and more

refined values of the input parameters. The second reason for this difference is that, we use

the most general form of the interpolating currents. Finally, we note that our sum rules

do not contain phenomenological part, which brings its own uncertainty into sum rules.

As has already been noted, our result is also larger compared to the prediction of the

lattice QCD method. A more reliable determination of the Σ–Λ mixing angle requires an

– 4 –
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β = 1

β = −1

β = −3

M 2 (GeV 2)

structure 6p

s0 = 3.2 GeV 2

α
(Σ

0
Λ

0
)

2.22.01.81.61.4

2.0

1.5

1.0

0.5

0.0

Figure 1. Dependence of the Λ–Σ mixing angle (in degrees) on the Borel mass parameter M2

at the fixed value of the continuum threshold s0 = 3.2 GeV2, and at several fixed values of the

auxiliary parameter β, for the structure 6p.

β = 1

β = −1

β = −3

M 2 (GeV 2)

structure I

s0 = 3.2 GeV 2

α
(Σ

0
Λ

0
)

2.22.01.81.61.4

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

Figure 2. The same as in figure 1, but for the structure I.
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M2
= 2.2 GeV 2

M2
= 2.0 GeV 2

M2
= 1.8 GeV 2

cos(θ)

structure 6p

s0 = 3.2 GeV 2

α
(Σ

0
Λ

0
)

-0.4-0.6-0.8-1.0

1.25

1.20

1.15

1.10

1.05

1.00

Figure 3. Dependence of the Λ–Σ mixing angle (in degrees) on cos θ at the fixed value of the

continuum threshold s0 = 3.2 GeV2, and at several fixed values of the Borel mass parameter M2,

for the structure 6p.

M2
= 2.2 GeV 2

M
2
= 2.0 GeV

2

M2
= 1.8 GeV 2

cos(θ)

structure I

s0 = 3.2 GeV 2

α
(Σ

0
Λ

0
)

0.500.250.00-0.25-0.50-0.75-1.00

10.0

5.0

0.0

-5.0

-10.0

Figure 4. The same as in figure 1, but for the structure I.
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equally highly accurate reproduction of the octet baryon mass differences, which has not

yet been established.

In conclusion, the mixing angle between the Σ and Λ baryons is estimated within the

framework of the QCD sum rules method by using the most general form of the interpo-

lating current. A comparison of our result with the predictions of the quark model, chiral

perturbation theory, and also with the result of the QCD sum rules method existing in

literature, is presented.
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A Expressions of the invariant functions Π0
ΣΛ and Π0

ΣΣ–Π0
ΛΛ

Π0
Σ0Λ0(u, d, s) for the structure 6p

em
2
Σ0/2M2

em
2
Λ0/2M2

Π0
Σ0Λ0(u, d, s) =

− 1

3072
√

3π2M4
(1−β)

[
(3ms+4βms+mu+βmu)〈d̄d〉

+ (2+3β)(md−mu)〈s̄s〉−(md+βmd+3ms+4βms)〈ūu〉
]
〈g2G2〉m2

0

+
1

1152
√

3π2M2

{[
3(1+β+β2)md+2(1−β)

(
2+β−3(1+β)γE

)
ms

− 3(1−β2)γEmu

]
〈g2G2〉〈d̄d〉+(1−β)

[
2(2+β)−3(1+β)γE

]
〈g2G2〉(md−mu)〈s̄s〉

− 12π2(1−β)(7+5β)m2
0〈d̄d〉〈s̄s〉−

[
(1−β)

(
2(2+β)ms

− 3(1+β)γE(md+2ms)
)
〈g2G2〉+3(1+β+β2)〈g2G2〉mu

− 12π2(1−β)(7+5β)m2
0〈s̄s〉

]
〈ūu〉+3(1−β2)〈g2G2〉

[
〈d̄d〉(2ms+mu)

+ (md−mu)〈s̄s〉−(md+2ms)〈ūu〉
]

ln
M2

Λ2

}

+
1

128π2

√
3(1−β2)

(
γE−ln

M2

Λ2

)
m2

0

(
ms〈d̄d〉+md〈s̄s〉−mu〈s̄s〉−ms〈ūu〉

)
− 1

32
√

3π2
M2(2−β−β2)

(
ms〈d̄d〉+md〈s̄s〉−mu〈s̄s〉−ms〈ūu〉

)
− 1

384
√

3π2

{
3
[
2(1+β+β2)md−6ms+mu+β(ms+5βms−βmu)

]
m2

0〈d̄d〉

− 32π2(2−β−β2)
(
〈d̄d〉−〈ūu〉

)
〈s̄s〉

− 3
[
(7−β−6β2)(md−mu)〈s̄s〉+

(
(1−β)(md+βmd−6ms−5βms)

+ 2(1+β+β2)mu

)
〈ūu〉

]
m2

0

}
.
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(
Π0

Σ0Σ0 −Π0
Λ0Λ0

)
(u, d, s) for the structure 6p

em
2
Σ0/2M2

em
2
Λ0/2M2

(
Π0

Σ0Σ0−Π0
Λ0Λ0

)
(u, d, s) =

1

4608π2M4
(1−β)

{[
ms+2βms−(5+7β)mu

]
〈d̄d〉

+ (4+5β)(md+mu)〈s̄s〉−
[
(5+7β)md−(1+2β)ms

]
〈ūu〉

}
〈g2G2〉m2

0

− 1

1728π2M2

{[
(1−β)

(
2(2+β)−9(1+β)γE

)
(mu+md)+6(1+β+β2)ms

]
〈g2G2〉〈s̄s〉

−
{[

3(1+β+β2)md−(1−β)
(

2(2+β)ms−[4(2+β)−9(1+β)γE ]mu

)]
〈g2G2〉

+ 12π2(1−β)(7+5β)m2
0

(
〈s̄s〉−2〈ūu〉

)}
〈d̄d〉−

{
(1−β)

[(
4(2+β)

− 9(1+β)γE

)
md−2(2+β)ms

]
〈g2G2〉+3(1+β+β2)〈g2G2〉mu

+ 12π2(1−β)(7+5β)m2
0〈s̄s〉

}
〈ūu〉

− 9(1−β2)
[
〈d̄d〉mu−(md+mu)〈s̄s〉+md〈ūu〉

]
〈g2G2〉 ln M

2

Λ2

}

− 1

64π2
(1−β2)

(
γE−ln

M2

Λ2

)
m2

0

[
〈d̄d〉(ms−2mu)+mu〈s̄s〉+md

(
〈s̄s〉−2〈ūu〉

)
+ms〈ūu〉

]
+

1

48π2
M2(2−β−β2)

[
〈d̄d〉(ms−2mu)+mu〈s̄s〉+md

(
〈s̄s〉−2〈ūu〉

)
+ms〈ūu〉

]
− 1

576π2

{[
3
(

2(1+β+β2)md+(1−β)(8ms+7βms−13mu−11βmu)
)
m2

0

+ 32π2(2−β−β2)
(
〈s̄s〉−2〈ūu〉

)]
〈d̄d〉+32π2(2−β−β2)〈s̄s〉〈ūu〉

− 3
[
4(1+β+β2)ms〈s̄s〉−(5−β−4β2)mu〈s̄s〉−(8−β−7β2)ms〈ūu〉

− 2(1+β+β2)mu〈ūu〉−(1−β)md

(
(5+4β)〈s̄s〉−(13+11β)〈ūu〉

)]
m2

0

}
.

Π0
Σ0Λ0(u, d, s) for the structure I

em
2
Σ0/2M2

em
2
Λ0/2M2

Π0
Σ0Λ0(u, d, s) =

− 1

128
√

3π4
M6(2−β−β2)(md−mu)

+
1

32
√

3π2
M4(2−β−β2)

(
〈d̄d〉−〈ūu〉

)
− 1

512
√

3π4
M2(1−β)(1+2β)

(
γE−ln

M2

Λ2

)
(md−mu)〈g2G2〉

− 1

768
√

3π4
M2(1−β)

[
(1+5β)(md−mu)〈g2G2〉+18π2(1+β)

(
〈d̄d〉−〈ūu〉

)
m2

0

]
+

1

12288
√

3π4M2

[
(1−β)(1+2β)(md−mu)〈g2G2〉2
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+ 512π4(1+β+β2)
(
〈d̄d〉mu−md〈ūu〉

)
m2

0〈s̄s〉
]

− 1

384
√

3π2
(1−β)

{[
(1+2β)〈g2G2〉+16π2(2+β)ms〈s̄s〉

]
〈ūu〉

−
[
(1+2β)〈g2G2〉+16π2(2+β)

(
ms〈s̄s〉−(md−mu)〈ūu〉

)
〈d̄d〉

}
.(

Π0
Σ0Σ0 −Π0

Λ0Λ0

)
(u, d, s) for the structure I

em
2
Σ0/2M2

em
2
Λ0/2M2

(
Π0

Σ0Σ0−Π0
Λ0Λ0

)
(u, d, s) =

− 1

192π4
M6(2−β−β2)(md−2ms+mu)

+
1

48π2
M4(2−β−β2)

(
〈d̄d〉−2〈s̄s〉+〈ūu〉

)
− 1

768π4
M2(1−β)(1+2β)

(
γE−ln

M2

Λ2

)
(md−2ms+mu)〈g2G2〉

− 1

1152π4
M2(1−β)

[
(1+5β)(md−2ms+mu)〈g2G2〉

+ 18π2(1+β)
(
〈d̄d〉−2〈s̄s〉+〈ūu〉

)
m2

0

]
+

1

18432π4M2

{
(1−β)(1+2β)(md−2ms+mu)〈g2G2〉2

− 512π4(1+β+β2)
(
mu〈d̄d〉〈s̄s〉−2ms〈d̄d〉〈ūu〉+md〈s̄s〉〈ūu〉

)
m2

0

}
+

1

576π2
(1−β)

{
16π2(2+β)(ms−2mu)〈s̄s〉〈ūu〉−(1+2β)

(
2〈s̄s〉−〈ūu〉

)
〈g2G2〉

+
[
(1+2β)〈g2G2〉−16π2(2+β)

(
(2md−ms)〈s̄s〉−(md+mu)〈ūu〉

)]
〈d̄d〉

}
,

where M2 is the Borel parameter and Λ is the energy cut off separating perturbative and

nonperturbative regimes; and γE is the Euler constant.

Note that the scale parameter Λ is calculated in [17, 18] whose value is in the range

0.5÷ 1.0 GeV.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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