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1 Introduction

The lepton flavor violating (LFV) Z decays are clean from the theoretical point of view since

they are free from the long distance effects. On the other hand, they are rich in the sense

that they exist at least at one loop level and carry a considerable information about the free

parameters of the model used. Therefore, it is worthwhile to analyze these decays and there is

an extensive work related to them in the literature [1]-[13].

Since the lepton flavor is conserved in the SM, for the flavor violation in the lepton sector,

one needs to extend the SM. The so called νSM model, which is constructed by taking neutrinos

massive and permitting the lepton mixing mechanism [14], is one of the candidate. However,

the theoretical predictions for the branching ratios (BRs) of the LFV Z decays in this model

are extremely small in the case of internal light neutrinos [1, 2]

BR(Z → e±µ±) ∼ BR(Z → e±τ±) ∼ 10−54 ,

BR(Z → µ±τ±) < 4× 10−60. (1)

and they are far from the experimental limits obtained at LEP 1 [3]:

BR(Z → e±µ±) < 1.7× 10−6 [4] ,

BR(Z → e±τ±) < 9.8× 10−6 [4, 5] ,

BR(Z → µ±τ±) < 1.2× 10−5 [4, 6] (2)

and from the improved ones at Giga-Z [7]:

BR(Z → e±µ±) < 2× 10−9 ,

BR(Z → e±τ±) < f × 6.5× 10−8 ,

BR(Z → µ±τ±) < f × 2.2× 10−8 (3)

with f = 0.2 − 1.0. Notice that these numbers are obtained for the decays Z → l̄1l2 + l̄2l1,

namely

BR(Z → l±1 l
±
2 ) =

Γ(Z → l̄1l2 + l̄2l1)

ΓZ
. (4)

Other possible scenarios to enhance the BRs of the corresponding LFV Z decays are the

extension of νSM with one heavy ordinary Dirac neutrino [2], the extension of νSM with two

heavy right-handed singlet Majorana neutrinos [2], the Zee model [8], the model III version

of the two Higgs doublet model (2HDM), which is the minimal extension of the SM [9], the

supersymmetric models [10, 11], top-color assisted technicolor model [12].
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In this work, we study the LFV processes Z → e±µ±, Z → e±τ± and Z → µ±τ± in the

framework of the 2HDM in the split fermion scenario [15]. This scenario is based on the idea

that the hierarchy of fermion masses are coming from the overlap of the fermion Gaussian

profiles in the extra dimensions and reached great interest in the literature [15]-[25]. In [16] the

explicit positions of left and right handed components of fermions in the extra dimensions have

been predicted. [17] is devoted to the restrictions on the split fermions in the extra dimensions

using the leptonic W decays and the lepton violating processes. The CP violation in the quark

sector has been analyzed in [18] and to find stringent bounds on the size of the compactification

scale 1/R, the physics of kaon, neutron and B/D mesons has been studied in [19]. In [20] the

rare processes in the split fermion scenario and in [21] the shapes and overlaps of the fermion

wave functions in the split fermion model have been considered. In [22] the electric dipole

moments of charged leptons have been predicted, and in [23] the radiative LFV decays have

been examined, in the framework of this scenario. Recently, the Higgs localization in the split

fermion models has been analyzed in [25].

In our calculations we estimate the sensitivities of BRs of the LFV Z decays to the com-

pactification scale and the Gaussian widths of the charged leptons in the extra dimensions. We

make the analysis including a single extra dimension and observe that the enhancement in the

BRs of these decays are small. However, in the case of two extra dimensions, especially the

one that charged leptons are restricted to the fifth extra dimension, with non-zero Gaussian

profiles, there is a considerable enhancement in the BRs of the decays under consideration, even

more than one order for the compactification scale interval considered.

The paper is organized as follows: In Section 2, we present the effective vertex and the

BRs of LFV Z decays in the split fermion scenario. Section 3 is devoted to discussion and our

conclusions. In appendix section, we give the explicit expressions of the form factors appearing

in the effective vertex.

2 Z → l−1 l
+
2 decay in the split fermion scenario in the two

Higgs doublet model.

The extremely small theoretical values of the BRs of the LFV Z boson decays forces one to go

beyond and search a new mechanism to enhance these numerical values near to the experimental

limits. From the theoretical point of view, the existence of the flavor changing neutral currents

(FCNCs) is essential to create the LFV processes and, the multi Higgs doublet models, which

are constructed by extending the Higgs sector of the SM, are among the possible models which
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permits the FCNC currents at tree level. The 2HDM is one of the candidate for the multi Higgs

doublet model and, in general, it permits the FCNC at tree level. The LFV Z decay Z → l−1 l
+
2

can be induced at least in the one loop level in the framework of the 2HDM and new Higgs

scalars play the main role for the large BRs of these decays. Furthermore, the inclusion of the

spatial extra dimensions brings additional contributions to the physical quantities of the decays

under consideration. Here, we respect the idea that the hierarchy of lepton masses are coming

from the lepton Gaussian profiles in the extra dimensions, so called split fermion scenario.

The LFV Z decay Z → l−1 l
+
2 exist with the help of the Yukawa interactions and, in a single

extra dimension, respecting the split fermion scenario, it reads

LY = ξE5 ij
¯̂
liLφ2ÊjR + h.c. , (5)

where L and R denote chiral projections L(R) = 1/2(1 ∓ γ5), φ2 is the new scalar doublet

and ξE5 ij are the flavor violating Yukawa couplings in five dimensions and they are complex in

general. The lepton fields l̂iL (ÊjR) are the zero mode 1 lepton doublets (singlets) with Gaussian

profiles in the extra dimension which is represented by the coordinate y and they can be defined

as

l̂iL = N e−(y−yiL)
2/2σ2

liL,

ÊjR = N e−(y−yjR)2/2σ2

EjR . (6)

where liL (EjR) are the lepton doublets (singlets) in four dimensions with family indices i and

j, σ, satisfying the property σ << R, is the parameter representing the Gaussian width of the

leptons in five dimensions and N is the normalization factor, N = 1
π1/4 σ1/2 . Here the coordinates

yiL and yiR represent the positions of the peaks of left and right handed parts of ith lepton in

the fifth dimension and they are obtained by assuming that the mass hierarchy of leptons

are coming from the relative positions of the Gaussian peaks of the wave functions located in

the extra dimension [15, 16]. The observed lepton masses are the sources to calculate these

coordinates and in [16] one possible set of locations of the lepton fields in the fifth dimension

has been estimated as

Pli =
√
2 σ







11.075
1.0
0.0





 , Pei =
√
2σ







5.9475
4.9475
−3.1498





 . (7)

Now, we would like the present the Higgs sector of the model under consideration. The

1Notice that we take only the zero mode lepton fields in our calculations.
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Higgs doublets φ1 and φ2 are chosen as

φ1 =
1√
2

[(

0
v +H0

)

+

( √
2χ+

iχ0

)]

;φ2 =
1√
2

( √
2H+

H1 + iH2

)

, (8)

and the vacuum expectation values are,

< φ1 >=
1√
2

(

0
v

)

;< φ2 >= 0 . (9)

This choice brings the possibility that the SM (new) particles are collected in the first (second)

doublet and the Higgs fields H1 and H2 become the mass eigenstates h0 and A0 respectively

since no mixing occurs between two CP-even neutral bosons H0 and h0 at tree level in this

case. As it is seen in eq. (5), the new Higgs field φ2 is responsible for the LFV interaction at

tree level. With the addition of extra dimensions, after the compactification on the orbifold

S1/Z2, the new Higgs field φ2 can be expanded as

φ2(x, y) =
1√
2πR

{

φ
(0)
2 (x) +

√
2

∞
∑

n=1

φ
(n)
2 (x) cos(ny/R)

}

, (10)

where φ
(0)
2 (x) (φ

(n)
2 (x)) is the Higgs doublet in the four dimensions (the KK modes) including

the charged Higgs boson H+ (H(n)+), the neutral CP even-odd Higgs bosons h0- A0 (h0(n)-

A0(n)). The non-zero nth KK mode of the charged Higgs mass is
√

m2
H± +m2

n, and the neutral

CP even (odd) Higgs mass is
√

m2
h0 +m2

n, (
√

m2
A0 +m2

n ), with the n’th level KK particle mass

mn = n/R.

The Z → l−1 l
+
2 decay exist at least at one loop level in the 2HDM with the help of the

internal neutral Higgs particles h0 and A0. In Fig. 1 the necessary 1-loop diagrams, the self

energy and vertex diagrams, are given. With the inclusion of extra dimensions, there exists the

additional contributions due to the KK modes of neutral Higgs particles. At this stage one needs

the lepton-lepton-S (S = h0, A0) interaction, which is modified in the case of the split fermion

scenario and these vertex factors V n
LR (RL) ij in the vertices

¯̂
f iL (R) S

(n)(x) cos(ny/R) f̂jR (L), with

the right (left) handed ith flavor lepton fields f̂jR (L) in five dimensions (see eq. (6)), are obtained

by the integration over the fifth dimension. Finally, the vertex factor for nth KK mode Higgs

fields S read

V n
LR (RL) ij = e−n2 σ2/4R2

e−(yiL (R)−yjR (L))
2/4σ2

cos [
n (yiL (R) + yjR (L))

2R
] . (11)

For n = 0, this factor becomes V 0
LR (RL)ij = e−(yiL (R)−yjR (L))

2/4σ2
and we define the Yukawa

couplings in four dimensions as

ξEij
(

(ξE†
ij )†

)

= V 0
LR (RL) ij ξ

E
5 ij

(

(ξE5 ij)
†
)

/
√
2πR . (12)
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Now, we would like to present the general effective vertex for the interaction of on-shell

Z-boson with a fermionic current:

Γµ = γµ(fV − fA γ5) +
i

mW
(fM + fE γ5) σµν q

ν (13)

where q is the momentum transfer, q2 = (p − p′)2, fV (fA) is vector (axial-vector) coupling,

fM (fE) magnetic (electric) transitions of unlike fermions. Here p (−p′) is the four momentum

vector of lepton (anti-lepton). The vector (axial-vector) fV (fA) couplings and the magnetic

(electric) transitions fM (fE) including the contributions coming from a single extra dimension

can be obtained as

fV =
3
∑

i=1

(

f
(0)
iV + 2

∞
∑

n=1

f
(n)
iV

)

,

fA =
3
∑

i=1

(

f
(0)
iA + 2

∞
∑

n=1

f
(n)
iA

)

,

fM =
3
∑

i=1

(

f
(0)
iM + 2

∞
∑

n=1

f
(n)
iM

)

,

fE =
3
∑

i=1

(

f
(0)
iE + 2

∞
∑

n=1

f
(n)
iE

)

, (14)

where f
(0)
i(V,A,M,E) are the couplings without scalar boson S = h0, A0 KK mode contributions and

they can be obtained by taking n = 0 in eq. (18). On the other hand the couplings f
(n)
i(V,A,M,E)

are the ones due to the KK modes of the scalar bosons S = h0, A0 (see eq. (18)). Here the

summation over the index i represents the sum due to the internal lepton flavors, namely, e, µ, τ .

We present f
(n)
i(V,A,M,E) in the appendix, by taking into account all the masses of internal leptons

and external lepton (anti-lepton). If we consider two extra dimensions where all the particles

are accessible, the couplings f
(n)
i(V,A,M,E) appearing in eq. (14) should be replaced by f

(n,s)
i(V,A,M,E)

and they read

fV =
3
∑

i=1

(

f
(0,0)
iV + 4

∞
∑

n,s

f
(n,s)
iV

)

,

fA =
3
∑

i=1

(

f
(0,0)
iA + 4

∞
∑

n,s

f
(n,s)
iA

)

,

fM =
3
∑

i=1

(

f
(0,0)
iM + 4

∞
∑

n,s

fiM
(n,s)

)

,

fE =
3
∑

i=1

(

f
(0,0)
iE + 4

∞
∑

n,s

f
(n,s)
iE

)

, (15)

where the summation would be done over n, s = 0, 1, 2... except n = s = 0. (See the appendix

for their explicit forms).
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Finally, the BR for Z → l−1 l
+
2 can be written in terms of the couplings fV , fA, fM and fE

as

BR(Z → l−1 l
+
2 ) =

1

48 π

mZ

ΓZ
{|fV |2 + |fA|2 +

1

2 cos2 θW
(|fM |2 + |fE |2)} (16)

where αW = g2

4π
and ΓZ is the total decay width of Z boson. In our numerical analysis we

consider the BR due to the production of sum of charged states, namely

BR(Z → l±1 l
±
2 ) =

Γ(Z → (l̄1 l2 + l̄2 l1)

ΓZ
. (17)

3 Discussion

Since the LFV Z decays Z → l±1 l
±
2 , l1 6= l2, exist at least in the one loop level in the 2HDM,

the internal leptons and new scalar bosons drive the interaction and the physical quantities of

these decays are sensitive to the Yukawa couplings ξ̄EN,ij, i, j = e, µ, τ , which are among the free

parameters of the model 2 . Furthermore, respecting the split fermion scenario, which is based

on the idea that the hierarchy of fermion masses are due to the fermion Gaussian profiles in the

extra dimensions, there arise new parameters, namely, the compactification radius, the fermion

widths and their locations in the new dimesion(s). In this scenario, the Yukawa couplings in four

dimensions appear with a multiplicative exponential suppression factors after the integration

of the extra dimension (see eq. (12)). This factor is coming from the different locations of

various flavors and their left and right handed parts of lepton fields, in the Yukawa part of

the lagrangian. Here, we consider that the couplings ξ̄EN,ij, i, j = e, µ are smaller compared

to ξ̄EN,τ i i = e, µ, τ , respecting the Sher scenario [26], since latter ones contain heavy flavors.

Furthermore, we assume that, in four dimensions, the couplings ξ̄EN,ij is symmetric with respect

to the indices i and j and choose the appropriate numerical values for the Yukawa couplings,

by respecting the current experimental measurements. The upper limit of ξ̄EN,τµ is predicted

as 30GeV (see [27] and references therein) by using the experimental uncertainty, 10−9, in the

measurement of the muon anomalous magnetic moment and assuming that the new physics

effects can not exceed this uncertainty. Using this upper limit and the experimental upper

bound of BR of µ → eγ decay, BR ≤ 1.2 × 10−11 [28], the coupling ξ̄EN,τe can be restricted

in the range, 10−3 − 10−2GeV (see [29]). For the Yukawa coupling ξ̄EN,ττ , we have no explicit

restriction region and we use the numerical values which are greater than ξ̄EN,τµ.

2Here, we use the dimensionful coupling ξ̄EN,ij with the definition ξEN,ij =
√

4GF√
2

ξ̄EN,ij where N denotes the

word ”neutral”.
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Our study is devoted to the prediction of the effects of the extra dimensions on the BR of

the LFV processes Z → l±1 l
±
2 , in the split fermion scenario, in the framework of the 2HDM.

The compactification scale 1/R, which is one of the free parameter of the model, should be

restricted. In the literature, there exist numerous constraints for this scale, in the case of the

single extra dimension, in the split fermion scenario:

• 1/R > 800 GeV due to the direct limits from searching for KK gauge bosons.

• 1/R > 1.0 TeV from B → φKS, 1/R > 500 GeV from B → ψKS and 1/R > 800 GeV

from the upper limit of the BR, BR (Bs → µ+µ−) < 2.6 × 10−6 [20].

• A far more stringent limit 1/R > 3.0 TeV [30] coming from the precision electro weak

bounds on higher dimensional operators generated by KK exchange

In our numerical analysis, we choose an appropriate range for the compactification scale 1/R,

by respecting these limits in the case of a single extra dimension. For two extra dimensions we

used the same broad range for 1/R. Throughout our calculations we use the input values given

in Table (1).

Parameter Value

mµ 0.106 (GeV)
mτ 1.78 (GeV)
mW 80.26 (GeV)
mZ 91.19 (GeV)
mh0 100 (GeV)
mA0 200 (GeV)
GF 1.1663710−5(GeV −2)
ΓZ 2.490 (GeV )

sin θW
√
0.2325

Table 1: The values of the input parameters used in the numerical calculations.

In the present work, we estimate the BRs of the LFV Z decays in a single and two extra

dimensions, by considering split leptons with a possible set of locations. For a single extra

dimension (two extra dimensions) we use the estimated location of the leptons given in eq.

(7) (eq. (23)) to calculate the lepton-lepton-Higgs scalar KK mode vertices. In the case of

two extra dimensions we study two possibilities: the leptons are restricted to the fifth extra

dimension, with non-zero Gaussian profiles and the leptons have non-zero Gaussian profiles also

in the sixth dimension. In the former one, the enhancements in the BRs of the present decays
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are relatively large due to the well known KK mode abundance of Higgs fields. However, in the

latter the additional exponential factor appearing in the second summation further suppresses

the BRs.

Fig. 2 is devoted to the compactification scale 1/R dependence of the BR (Z → µ± e±)

for ξ̄DN,τe = 0.01GeV , ξ̄DN,τµ = 1GeV and ρ = σ/R = 0.01. Here the solid (dashed, small

dashed, dotted) line represents the BR without extra dimension (with a single extra dimension,

with two extra dimensions where the leptons have non-zero Gaussian profiles in the fifth extra

dimension, with two extra dimensions where the leptons have non-zero Gaussian profiles in both

extra dimensions). It is observed that BR is at the order of the magnitude of 10−14 without

extra dimensions and it is the weakly sensitive to the parameter 1/R, for the 1/R > 500GeV ,

for a single extra dimension. In the case of two extra dimensions, the enhancement of the

BR is relatively larger, near one order of magnitude, for 1/R ∼ 0.6 TeV , due to the Higgs

scalar KK mode abundances. However, these contributions do not increase extremely due to

the suppression exponential factor appearing in the summations. The enhancement in the BR

becomes weak for 1/R > 3.0 TeV . Furthermore, the numerical values of BRs are slightly greater

in the case that the leptons have non-zero Gaussian profiles only in the fifth extra dimension.

In Fig. 3, we present the compactification scale 1/R dependence of the BR (Z → τ± e±) for

ξ̄DN,τe = 0.01GeV , ξ̄DN,ττ = 10GeV and ρ = 0.01. Here the solid (dashed, small dashed, dotted)

line represents the BR without extra dimension (with a single extra dimension, with two extra

dimensions where the leptons have non-zero Gaussian profiles in the fifth extra dimension,

with two extra dimensions where the leptons have non-zero Gaussian profiles in both extra

dimensions). This figure shows that the BR is at the order of the magnitude of 10−12 without

extra dimensions. Similar to the previous decay, the BR is weakly sensitive to the parameter

1/R, for the 1/R > 500GeV , for a single extra dimension. In the case of two extra dimensions,

the enhancement of the BR is almost one order larger than the one with a single extra dimension,

for 1/R ∼ 0.6 TeV and this enhancement becomes weak for 1/R > 3.0 TeV .

Fig. 4 represents the compactification scale 1/R dependence of the BR (Z → τ± µ±) for

ξ̄DN,τµ = 1GeV , ξ̄DN,ττ = 10GeV and ρ = 0.01. Here the solid (dashed, small dashed, dotted)

line represents the BR without extra dimension (with a single extra dimension, with two extra

dimensions where the leptons have non-zero Gaussian profiles in the fifth extra dimension,

with two extra dimensions where the leptons have non-zero Gaussian profiles in both extra

dimensions). For this decay, the BR is observed at the order of the magnitude of 10−8 without

extra dimensions. The BR is weakly sensitive to the parameter 1/R, for the 1/R > 500GeV ,
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for a single extra dimension. In the case of two extra dimensions, the enhancement of the BR

is more than one order larger than the one with a single extra dimension, for 1/R ∼ 0.6 TeV

and this enhancement becomes also weak for 1/R > 3.0 TeV .

Now we would like to estimate the sensitivity of the BRs of the Z decays under consideration

to the Gaussian widths, σ = ρR of leptons, where ρ is the free parameter which regulates the

amount of width in the extra dimension.

Fig. 5 (6 ; 7) shows the parameter ρ dependence of the BR of the decay Z → µ± e±

( (Z → τ± e±) ; (Z → τ± µ±)) for 1/R = 500GeV , and the real couplings ξ̄EN,τµ = 1GeV ,

ξ̄EN,τe = 0.01GeV (ξ̄EN,ττ = 10GeV , ξ̄EN,τe = 0.01GeV ; ξ̄EN,ττ = 10GeV , ξ̄EN,τµ = 1GeV ). Here

the solid (dashed, small dashed, dotted) line represents the BR without extra dimension (with

a single extra dimension, with two extra dimensions where the leptons have non-zero Gaussian

profiles in the fifth extra dimension, with two extra dimensions where the leptons have non-zero

Gaussian profiles in both extra dimensions). It is observed that the BR of the decay Z → µ± e±

( (Z → τ± e±) ; (Z → τ± µ±)) increases almost 50% (50% ; 50%) for ρ > 0.03 and reaches

70% (74% ; 74%) for ρ ∼ 0.001, in the case of a single extra dimension. This shows that the

sensitivities of the BRs of the present decays to the parameter ρ are not weak, especially for

its small values. For two extra dimensions, these sensitivities increases considerably. For the

decay Z → µ± e± ( (Z → τ± e±) ; (Z → τ± µ±)), the BR enhances more than one order ( more

than one order ; ∼ 2000%) for the intermediate values of the parameter ρ, in the case of two

extra dimensions where the leptons have non-zero Gaussian profiles in the fifth extra dimension.

This enhancement reaches ∼ 4000% (∼ 4000% ; ∼ 4000%) for ρ ∼ 0.001. In the case that

the leptons have non-zero Gaussian profiles in both extra dimensions, the BR enhances less

than one order (less than one order ; more than one order), for the intermediate values of the

parameter ρ, for the decay Z → µ± e± ( (Z → τ± e±) ; (Z → τ± µ±)). It is shown that the

sensitivities of the BRs of studied LFV decays are considerably large for two extra dimensions

and the BRs enhances more than one order, especially for the LFV Z decays with heavy lepton

flavors.

As a summary, the BR is weakly sensitive to the parameter 1/R for 1/R > 500GeV for

a single extra dimension, however, there is an enhancement in the BR, even more than one

order for the scale 1/R ∼ 600GeV . This enhancement decreases with the increasing values of

the scale 1/R. Furthermore, the BR is sensitive to the parameter ρ especially for two extra

dimensions case. Therefore, the LFV Z decays are worthwhile to study and with the help of

the forthcoming more accurate experimental measurements of the these decays, especially the
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Z → τ± µ± one, the valuable information can be obtained to detect the effects due to the extra

dimensions in the case of split fermion scenario.
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5 The explicit expressions appearing in the text

Here we present the explicit expressions for f
(n)
iV , f

(n)
iA , f

(n)
iM and f

(n)
iE [9] (see eq. (14)):

f
(n)
iV =

g

64 π2 cos θW

∫ 1

0
dx

1

m2
l+2
−m2

l−1

{

cV (ml+2
+ml−1

)

(

(−mi η
+
i +ml−1

(−1 + x) ηVi ) ln
Lself
1, h0

µ2
+ (mi η

+
i −ml+2

(−1 + x) ηVi ) ln
Lself
2, h0

µ2

+ (mi η
+
i +ml−1

(−1 + x) ηVi ) ln
Lself
1, A0

µ2
− (mi η

+
i +ml+2

(−1 + x) ηVi ) ln
Lself
2, A0

µ2

)

+ cA (ml+2
−ml−1

)
(

(−mi η
−
i +ml−1

(−1 + x) ηAi ) ln
Lself
1, h0

µ2
+ (mi η

−
i +ml+2

(−1 + x) ηAi ) ln
Lself
2, h0

µ2

+ (mi η
−
i +ml−1

(−1 + x) ηAi ) ln
Lself
1, A0

µ2
+ (−mi η

−
i +ml+2

(−1 + x) ηAi ) ln
Lself
2, A0

µ2

)}

− g

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{

m2
i (cA η

A
i − cV η

V
i ) (

1

Lver
A0

+
1

Lver
h0

)

− (1− x− y)mi

(

cA (ml+2
−ml−1

) η−i (
1

Lver
h0

− 1

Lver
A0

) + cV (ml+2
+ml−1

) η+i (
1

Lver
h0

+
1

Lver
A0

)

)

− (cA η
A
i + cV η

V
i )

(

− 2 + (q2 x y +ml−1
ml+2

(−1 + x+ y)2) (
1

Lver
h0

+
1

Lver
A0

)− ln
Lver
h0

µ2

Lver
A0

µ2

)

− (ml+2
+ml−1

) (1− x− y)

(

ηAi (xml−1
+ y ml+2

) +mi η
−
i

2Lver
A0 h0

+
ηAi (xml−1

+ y ml+2
)−mi η

−
i

2Lver
h0 A0

)

+
1

2
ηAi ln

Lver
A0 h0

µ2

Lver
h0 A0

µ2

}

,

f
(n)
iA =

−g
64 π2 cos θW

∫ 1

0
dx

1

m2
l+2
−m2

l−1

{

cV (ml+2
−ml−1

)

(

(mi η
−
i +ml−1

(−1 + x) ηAi ) ln
Lself
1, A0

µ2
+ (−mi η

−
i +ml+2

(−1 + x) ηAi ) ln
Lself
2, A0

µ2
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+ (−mi η
−
i +ml−1

(−1 + x) ηAi ) ln
Lself
1, h0

µ2
+ (mi η

−
i +ml+2

(−1 + x) ηAi ) ln
Lself
2, h0

µ2

)

+ cA (ml+2
+ml−1

)
(

(mi η
+
i +ml−1

(−1 + x) ηVi ) ln
Lself
1, A0

µ2
− (mi η

+
i +ml+2

(−1 + x) ηVi ) ln
Lself
2, A0

µ2

+ (−mi η
+
i +ml−1

(−1 + x) ηVi ) ln
Lself
1, h0

µ2
+ (mi η

+
i −ml+2

(−1 + x) ηVi )
ln Lself

2, h0

µ2

)}

+
g

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{

m2
i (cV η

A
i − cA η

V
i ) (

1

Lver
A0

+
1

Lver
h0

)

− mi (1− x− y)

(

cV (ml+2
−ml−1

) η−i + cA (ml+2
+ml−1

) η+i

)

(
1

Lver
h0

− 1

Lver
A0

)

+ (cV η
A
i + cA η

V
i )

(

− 2 + (q2 x y −ml−1
ml+2

(−1 + x+ y)2)(
1

Lver
h0

+
1

Lver
A0

)− ln
Lver
h0

µ2

Lver
A0

µ2

)

− (ml+2
−ml−1

) (1− x− y)

(

ηVi (xml−1
− y ml+2

) +mi η
+
i

2Lver
A0 h0

+
ηVi (xml−1

− yml+2
)−mi η

+
i

2Lver
h0 A0

)

− 1

2
ηVi ln

Lver
A0 h0

µ2

Lver
h0 A0

µ2

}

,

f
(n)
iM = − g mW

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{(

(1− x− y) (cV η
V
i + cA η

A
i ) (xml−1

+ y ml+2
)

+ mi (cA (x− y) η−i + cV η
+
i (x+ y))

)

1

Lver
h0

+

(

(1− x− y) (cV η
V
i + cA η

A
i ) (xml−1

+ y ml+2
)−mi (cA (x− y) η−i + cV η

+
i (x+ y))

)

1

Lver
A0

− (1− x− y)

(

ηAi (xml−1
+ y ml+2

)

2

( 1

Lver
A0 h0

+
1

Lver
h0 A0

)

+
mi η

−
i

2

( 1

Lver
h0 A0

− 1

Lver
A0 h0

)

)}

,

f
(n)
iE = − g mW

64 π2 cos θW

∫ 1

0
dx

∫ 1−x

0
dy

{(

(1− x− y)
(

− (cV η
A
i + cA η

V
i ) (xml−1

− y ml+2
)
)

− mi (cA (x− y) η+i + cV η
−
i (x+ y))

)

1

Lver
h0

+

(

(1− x− y)
(

− (cV η
A
i + cA η

V
i ) (xml−1

− y ml+2
)
)

+mi (cA (x− y) η+i + cV η
−
i (x+ y))

)

1

Lver
A0

+ (1− x− y)

(

ηVi
2

(ml−1
x−ml+2

y)
( 1

Lver
A0 h0

+
1

Lver
h0 A0

)

+
mi η

+
i

2

( 1

Lver
A0 h0

− 1

Lver
h0 A0

)

)}

, (18)

where

Lself
1, h0 = m

(n)2
h0 (1− x) + (m2

i −m2
l−1
(1− x)) x ,

Lself
1, A0 = Lself

1, h0(m
(n)
h0 → m

(n)
A0 ) ,

Lself
2, h0 = Lself

1, h0(ml−1
→ ml+2

) ,

11



Lself
2, A0 = Lself

1, A0(ml−1
→ ml+2

) ,

Lver
h0 = m

(n)2
h0 (1− x− y) +m2

i (x+ y)− q2 x y ,

Lver
h0 A0 = m

(n)2
A0 x+m2

i (1− x− y) + (m
(n)2
h0 − q2 x) y ,

Lver
A0 = Lver

h0 (m
(n)
h0 → m

(n)
A0 ) ,

Lver
A0 h0 = Lver

h0 A0(m
(n)
h0 → m

(n)
A0 ) , (19)

and

ηVi = e−n2 σ2/2R2 {cn (l1, i) cn (l2, i) ξEil1ξ
E ∗
il2

+ c′n (l1, i) c
′
n (l2, i) ξ

E ∗
l1i
ξEl2i} ,

ηAi = e−n2 σ2/2R2 {cn (l1, i) cn (l2, i) ξEil1ξ
E ∗
il2

− c′n (l1, i) c
′
n (l2, i) ξ

E ∗
l1i
ξEl2i} ,

η+i = e−n2 σ2/2R2 {c′n (l1, i) cn (l2, i) ξE ∗
l1i
ξE ∗
il2

+ cn (l1, i) c
′
n (l2, i) ξ

E
il1
ξEl2i } ,

η−i = e−n2 σ2/2R2 {c′n (l1, i) c′n (l2, i) ξE ∗
l1i ξ

E ∗
il2 − cn (l1, i) c

′
n (l2, i) ξ

E
il1ξ

E
l2i} . (20)

The parameters cV and cA are cA = −1
4
and cV = 1

4
− sin2 θW and the masses m

(n)
S read

m
(n)
S =

√

m2
S + n2/R2, where R is the compactification radius. In eq. (20) the flavor changing

couplings ξEilj represent the effective interaction between the internal lepton i, (i = e, µ, τ) and

outgoing (incoming) j = 1 (j = 2) one. The parameters cn (f, i), c
′
n (f, i) read

cn (f, i) = cos[
n (yfR + yiL)

2R
] ,

c′n (f, i) = cos[
n (yfL + yiR)

2R
] . (21)

In the case of two extra dimensions which all the particles feel, the parameters cn (f, i) and

c′n (f, i) are replaced by

c(n,s) (f, i) = cos[
n (yfR + yiL) + s (zfR + ziL)

2R
] ,

c′(n,s)(f, i) = cos[
n (yfL + yiR) + s (zfL + ziR)

2R
] , (22)

and the exponential factor e−n2 σ2/2R2
becomes e−(n2+s2)σ2/2R2

. Furthermore, the masses m
(n)
S

are replaced by m
(n,s)
S , m

(n,s)
S =

√

m2
S +m2

n +m2
s, with mn = n/R, ms = s/R. Here we use

a possible positions of left handed and right handed leptons in the two extra dimensions, by

using the observed masses 3. With the assumption that the lepton mass matrix is diagonal,

one of the possible set of locations for the Gaussian peaks of the lepton fields in the two extra

dimensions can be obtained as [22]

Pli =
√
2σ







(8.417, 8.417)
(1.0, 1.0)
(0.0, 0.0)





 , Pei =
√
2 σ







(4.7913, 4.7913)
(3.7913, 3.7913)

(−2.2272,−2.2272)





 , (23)

3The calculation is similar to the one presented in [16] which is done for a single extra dimension.

12



where the numbers in the parenthesis denote the y and z coordinates of the location of the

Gaussian peaks of lepton flavors in the extra dimensions. Here we choose the same numbers

for the y and z locations of the Gaussian peaks.

Finally, the couplings ξElji may be complex in general and they can be parametrized as

ξElij = |ξElij| e
iθij , (24)

where i, lj denote the lepton flavors and θij are CP violating parameters which are the possible

sources of the lepton EDM. However, in the present work we take these couplings real.
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Figure 1: One loop diagrams contribute to Z → k+ j− decay due to the neutral Higgs bosons
h0 and A0 in the 2HDM. i represents the internal, j (k) outgoing (incoming) lepton, dashed
lines the vector field Z, h0 and A0 fields. In the case 5 (6) dimensions there exits also the KK
modes of h0 and A0 fields.
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Figure 2: BR( (Z → µ± e±)) with respect to the scale 1/R for ρ = 0.01, ξ̄EN,τe = 0.01GeV ,
ξ̄EN,τµ = 1GeV . Here the solid (dashed, small dashed, dotted) line represents the BR without
extra dimension (with a single extra dimension, with two extra dimensions where the leptons
have non-zero Gaussian profiles in the fifth extra dimension, with two extra dimensions where
the leptons have non-zero Gaussian profiles in both extra dimensions)
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Figure 3: BR( (Z → τ± e±)) with respect to the scale 1/R for ρ = 0.01, ξ̄EN,τe = 0.01GeV ,
ξ̄EN,ττ = 10GeV . Here the solid (dashed, small dashed, dotted) line represents the BR without
extra dimension (with a single extra dimension, with two extra dimensions where the leptons
have non-zero Gaussian profiles in the fifth extra dimension, with two extra dimensions where
the leptons have non-zero Gaussian profiles in both extra dimensions)
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Figure 4: BR( (Z → µ± e±)) with respect to the scale 1/R for ρ = 0.01, ξ̄EN,τmu = 1GeV ,
ξ̄EN,τµ = 1GeV . Here the solid (dashed, small dashed, dotted) line represents the BR without
extra dimension (with a single extra dimension, with two extra dimensions where the leptons
have non-zero Gaussian profiles in the fifth extra dimension, with two extra dimensions where
the leptons have non-zero Gaussian profiles in both extra dimensions)
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Figure 5: The same as Fig. 2 but with respect to parameter ρ and for 1/R = 500GeV .
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Figure 6: The same as Fig. 3 but with respect to parameter ρ and for 1/R = 500GeV .
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Figure 7: The same as Fig. 4 but with respect to parameter ρ and for 1/R = 500GeV .
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