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Abstract

We study the decay width and CP asymmetry of the inclusive process b → sg (g de-
notes gluon) in the multi Higgs doublet models with complex Yukawa couplings, including
next to leading QCD corrections. We analyse the dependencies of the decay width and
CP asymmetry on the scale µ and CP violating parameter θ. We observe that there exist
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1 Introduction

Rare B decays are induced by flavor changing neutral currents (FCNC) at loop level. Therefore

they are phenomenologically rich and provide a comprehensive information about the theoretical

models and the existing free parameters. The forthcoming experiments at SLAC, KEK B-

factories, HERA-B and possible future accelerators stimulate the study of such decays since the

large number of events can take place and various branching ratios, CP-violating asymmetries,

polarization effects, etc., can be measured [1, 2].

Among B decay modes, inclusive b → sg is interesting since it is theoretically clean and

sensitive to new physics beyond the SM, like two Higgs doublet model (2HDM) [3], minimal

supersymmetric Standard model (MSSM) [4, 5], etc.

There are various studies on this process in the literature. The Branching ratio (Br) of

b → sg decay in the SM is Br(b → sg) ∼ 0.2% for on-shell gluon [6]. This ratio can be

enhanced with the addition of QCD corrections or by taking into account the extensions of

the SM. The enhanced Br(b → sg) is among the possible explanations for the semileptonic

branching ratio BSL and the average charm multiplicity . The theoretical predictions of BSL

[7] are slightly different than the experimental measurements obtained at the Υ(4S) and Z0

resonance [8]. Further the measured charm multiplicity ηc is smaller than the theoretical result.

The enhancement of Br(B → Xno charm) and therefore Br(b → sg) rate would explain the

missing charm and BSL problem [9]. Further, Br(B → η′Xs) reported by CLEO [10] stimulates

to study on the enhancement of Br(b → sg).

In [11, 12], the enhancement of Br (b → sg) was obtained less than one order compared

to the SM case in the framework of the 2HDM (Model I and II) for mH± ∼ 200GeV and

tan β ∼ 5. The possibility of large Br in the supersymmetric models was studied in [13]. In

[14] Br was calculated in the model III and the prediction of the enhancement, at least one

order larger compared to the SM one, makes it possible to describe the results coming from

experiments [9]. In the case of time-like gluon, namely b → sg∗ decay, Br should be consistent

with the CLEO data [15]

Br (b → sg∗) < 6.8% (1)

and in [14], it was showed that the model III enhancement was not contradict with this data for

light-like gluon case. The calculation of Br (b → sg) with the addition of next to leading loga-

rithmic (NLL) QCD corrections was done in [16] and it was observed that this ratio enhanced

by more than a factor of 2.

1



CP violating asymmetry (ACP ) is another physical parameter which can give strong clues

for the physics beyond the SM. The source of CP violating effects in the SM are complex

Cabbibo-Cobayashi-Maskawa (CKM) matrix elements. ACP for the inclusive b → sg decay

vanishes in the SM and this forces one to go beyond the SM to check if a measurable ACP is

obtained.

In this work, we study the decay width Γ and ACP of b → sg decay in the 3HDM and model

III version of 2HDM. In these models, it is possible to enhance Γ and to get a measurable

ACP . Since the Yukawa couplings for new physics can be chosen complex and the addition of

NLL corrections [16] brings additional complex quantities into the amplitude, theoretically, it

is possible to get a considerable ACP , at the order of the magnitude 2%. This effect is due to

new physics beyond the SM, 3HDM and model III in our case.

The paper is organized as follows: In Section 2, we give a brief summary of the model III

and 3HDM(O2) and present the expressions appearing in the calculation of the decay width

of the inclusive b → sg decay. Further we calculate the CP asymmetry ACP of the process.

Section 3 is devoted to discussion and our conclusions.

2 The inclusive process b → sg in the framework of the

multi Higgs doublet models

In this section, we study NLL corrected b → sg decay width and the CP violating effects in the

framework of the multi Higgs doublet models (model III version of 2HDM and 3HDM)

In the SM and model I and II 2HDM, the flavour changing neutral current at tree level is

forbidden. However, they are permitted in the general 2HDM, so called model III with new

parameters, i.e. Yukawa couplings. The Yukawa interaction in this general case reads as

LY = ηUijQ̄iLφ̃1UjR + ηDij Q̄iLφ1DjR + ξU †
ij Q̄iLφ̃2UjR + ξDij Q̄iLφ2DjR + h.c. , (2)

where L and R denote chiral projections L(R) = 1/2(1 ∓ γ5), φk, for k = 1, 2, are the two

scalar doublets, QiL are quark doublets, UjR and DjR are quark singlets, ηU,Dij and ξU,Dij are the

matrices of the Yukawa couplings. The Flavor changing (FC) part of the interaction is given

by

LY,FC = ξU †
ij Q̄iLφ̃2UjR + ξDij Q̄iLφ2DjR + h.c. . (3)

The choice of φ1 and φ2

φ1 =
1√
2

[(

0
v +H0

)

+

( √
2χ+

iχ0

)]

;φ2 =
1√
2

( √
2H+

H1 + iH2

)

, (4)
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and the vacuum expectation values,

< φ1 >=
1√
2

(

0
v

)

;< φ2 >= 0 , (5)

allows us to carry the information about new physics in the doublet φ2. Further, we take H1,

H2 as the mass eigenstates h0, A0 respectively. Note that, at tree level, there is no mixing

among CP even neutral Higgs particles, namely the SM one, H0, and beyond, h0.

In eq.(3) the couplings ξU,D for the FC charged interactions are

ξUch = ξneutral VCKM ,

ξDch = VCKM ξneutral , (6)

where ξU,Dneutral is defined by the expression

ξ
U(D)
N = (V

U(D)
R(L) )

−1ξU,(D)V
U(D)
L(R) . (7)

where ξU,Dneutral is denoted as ξU,DN . Here the charged couplings are the linear combinations of

neutral couplings multiplied by VCKM matrix elements (see [20] for details). In the case of the

general 3HDM, there is an additional Higgs doublet, φ3, and the Yukawa interaction can be

written as

LY = ηUijQ̄iLφ̃1UjR + ηDij Q̄iLφ1DjR + ξU †
ij Q̄iLφ̃2UjR + ξDij Q̄iLφ2DjR

+ ρU †
ij Q̄iLφ̃3UjR + ρDijQ̄iLφ3DjR + h.c. , (8)

where ρU,Dij is the new Yukawa matrix having complex entries, in general. The similar choice of

Higgs doublets

φ1 =
1√
2

[(

0
v +H0

)

+

( √
2χ+

iχ0

)]

,

(9)

φ2 =
1√
2

( √
2H+

H1 + iH2

)

, φ3 =
1√
2

( √
2F+

H3 + iH4

)

,

with the vacuum expectation values,

< φ1 >=
1√
2

(

0
v

)

;< φ2 >= 0 ;< φ3 >= 0 (10)

can be done and the information about new physics is carried beyond the SM in the last two

doublets, φ2 and φ3. Further, we take H1, H2, H3 and H4 as the mass eigenstates h0, A0, h
′
0, A

′
0
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where h′
0, A

′
0 are new neutral Higgs bosons due to the additional Higgs doublet in the 3HDM

(see [17]).

The Yukawa interaction for the Flavor Changing (FC) part is

LY,FC = ξU †
ij Q̄iLφ̃2UjR + ξDij Q̄iLφ2DjR + ρU †

ij Q̄iLφ̃3UjR + ρDijQ̄iLφ3DjR + h.c. , (11)

where the charged couplings ξU,Dch and ρU,Dch are

ξUch = ξN VCKM ,

ξDch = VCKM ξN ,

ρUch = ρN VCKM ,

ρDch = VCKM ρN , (12)

and

ξ
U(D)
N = (V

U(D)
R(L) )

−1ξU,(D)V
U(D)
L(R) ,

ρ
U(D)
N = (V

U(D)
R(L) )

−1ρU,(D)V
U(D)
L(R) . (13)

Since there exist additional charged Higgs particles, F±, and neutral Higgs bosons h′ 0, A′ 0 in

the 3HDM, we introduce a new global O(2) symmetry in the Higgs sector, considering three

Higgs scalars as orthogonal vectors in a new space, which we call Higgs flavor space and we

denote the Higgs flavor index by ”m”, where m = 1, 2, 3. The transformation reads

φ′
1 = φ1 ,

φ′
2 = cos α φ2 + sin α φ3 ,

φ′
3 = −sin α φ2 + cos α φ3 , (14)

where α is the global parameter, which represents a rotation of the vectors φ2 and φ3 along

the axis that φ1 lies, in the Higgs flavor space. This symmetry ensures that the new particles

are mass degenerate with their counterparts existing in model III (see [17] for details). Further

the Yukawa Lagrangian (eq.(8)) is invariant under this transformation if the Yukawa matrices

satisfy the expressions

ξ̄
′U(D)
ij = ξ̄

U(D)
ij cos α+ ρ̄

U(D)
ij sin α ,

ρ̄
′U(D)
ij = −ξ̄

U(D)
ij sin α + ρ̄

U(D)
ij cos α . (15)

and we get

(ξ̄′U(D))+ξ̄′U(D) + (ρ̄′U(D))+ρ̄′U(D) = (ξ̄U(D))+ξ̄U(D) + (ρ̄U(D))+ρ̄U(D) . (16)
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Therefore, it possible to parametrize the Yukawa matrices ξ̄U(D) and ρ̄U(D) as :

ξ̄U(D) = ǭU(D)cos θ ,

ρ̄U = ǭUsin θ ,

ρ̄D = iǭDsin θ , (17)

where ǭU(D) are real matrices satisfy the equation

(ξ̄′U(D))+ξ̄′U(D) + (ρ̄′U(D))+ρ̄′U(D) = (ǭU(D))T ǭU(D) (18)

and the angle θ is the source of CP violation. Here XU(D) =
√

4GF√
2
X̄U(D) with X = ξ, ρ, ǫ

and T denotes transpose operation. In eq. (17), we take ρ̄D complex to carry all CP violating

effects in the third Higgs scalar.

Now, we would like to continue the study of the inclusive process b → sg. Our starting

point is the recent calculation of NLL corrected decay width [16]

Γ(b → sg) = ΓD + Γbrems , (19)

where

ΓD = c1 |D|2 , (20)

with

D = C0,eff
8 +

αs

4 π
{C1,eff

8 − 16

3
C0,eff

8 + C0
1 (l1 ln

mb

µ
+ r1)

+ C0
2 (l2 ln

mb

µ
+ r2) + C0,eff

8 ((l8 + 8 + β0) ln
mb

µ
+ r8)} , (21)

and Γbrems is the result for the finite part of bremsstrahlung corrections

Γbrems = c2

∫

dEqdEr (τ
+
11 + τ+22 + τ−22 + τ+12 + τ+18 + τ+28 + τ−28) , (22)

where

τ+11 = 48 Ĉ2
1 |∆̄i23|2m2

b (m
2
b − 2Eq Er) ,

τ+22 =
56

3
Ĉ2

2 |∆̄i23|2m2
b (m

2
b − 2Eq Er) ,

τ−22 = 24 Ĉ2
2 |∆̄i17|2mb (16mbE

2
q − 16E2

q Er − 8m2
b Eq + 6mb Eq Er +m3

b) ,

τ+12 = 32 Ĉ1 Ĉ2 |∆̄i23|2m2
b (m

2
b − 2Eq Er) ,

τ+18 = 256 Ĉ1Re[C0 eff ∗
8 ∆̄i23]m

2
b Eq Er ,

τ+28 =
16 56

3
Ĉ2Re[C0 eff ∗

8 ∆̄i23]m
2
b Eq Er ,

τ−28 = −96 Ĉ2Re[C0,eff ∗
8 ∆̄i17]m

4
b (mb (Eq + Er)− 2 (E2

q + E2
r + Eq Er)

+ 4
Eq Er (Eq + Er)

mb
]/(Eq Er) (23)
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Here Ĉ1 =
1
2
C0

1 and Ĉ2 = C0
2 − 1

6
C0

1 , and c1 =
αs m5

b

24π4 |GF VtbV
∗
ts|2 and c2 =

|GF VtbV
∗
ts|2 α2

s

96 64 π2 . (see [16]

for details). In eqs. (21) and (23) the Wilson coefficients C0,eff
8 and C0

1(2) (eq. (34)) includes

LL corrections and new physics effects enter into the expressions through the coefficients C0,eff
8

and C1,eff
8 (see eq. (30)). The symbol η is defined as η = αs(mW )

αs(µ)
and β0 = 23/3. The

vectors ai, h
′
i, e

′
i, f

′
i , k

′
i, l

′
i, a

′
i, appearing during QCD corrections, and the Wilson coefficients

C1, eff
4 (mW ), C1, eff

1 (mW ) and C1,eff
8 (mW ), the functions ∆̄i17 and ∆̄i23 in eqs. (23), r1, r2, r8

and the numbers l1, l2, l8 in eq. (21) are given in [16].

Now, we would like to start with the calculation of CP asymmetry for the inclusive decay

underconsideration. The possible sources of CP violation in the model III (3HDM) are the

complex Yukawa couplings. Our procedure is to neglect all Yukawa couplings except ξ̄UN,tt and

ξ̄DN,bb (ǭ
U
N,tt and ǭDN,bb) (see eqs. (17, 18) and Discussion section) in the model III (3HDM(O2)).

Therefore, in the model III (3HDM(O2)), only the combination ξ̄UN,ttξ̄
D
N,bb (ǭ

U
N,ttǭ

D
N,bb) is respon-

sible for ACP . Using the definition of ACP

ACP =
Γ(b → sg)− Γ(b̄ → s̄g)

Γ(b → sg) + Γ(b̄ → s̄g)
, (24)

we get

ACP = Im[ξ̄DN,bb]
ΩD + Ωbr

ΛD + Λbr
, (25)

in the model III where ΩD(br) and ΛD(br) are the contributions coming from D-part (bremsstrahlung-

part) and they read as

ΩD =
αs

π
c1A7 Im[A5] ,

Ωbr = 2 c2

∫

dEqdEr(B5 Im[∆̄23] +B6 Im[∆̄i17]) ,

ΛD = 2 c1{|A6|2 + |ξ̄DN,bb|2 |A7|2 + 2A7Re[ξDN,bb]Re[A6]} ,

Λbr = 2 c2

∫

dEq dEr{B4 +Re[ξ̄DN,bb] (B5Re[∆̄i23] +B6 Re[∆̄i17])} . (26)

The functions A5,6,7 and B4,5,6 are defined as

A5 = (C0
1(µ) [l1 + ln[

mb

µ
] + r1] + C0

2 (µ) [l2 + ln[
mb

µ
] + r2]) ,

A6 = (η14/23A1 + A3) +
αs(µ)

4π
[A4 + χA1 −

16

3
η14/23 A1 + A3

+ (η14/23 A1 + A3) [(l8 + 8 + β0) ln[
mb

µ
] + r8] + A5] ,

A7 = η14/23 A2 {1 +
αs(µ)

4π
[η−14/23χ− 16

3
+ (l8 + 8 + β0) ln[

mb

µ
] + r8]} , (27)
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and

B4 = B1 +B2 (η
14/23A1 + A3)Re[∆̄ i23] +B3 (η

14/23A1 + A3)Re[∆̄i17] ,

B5 = B2 η
14/23A2 ,

B6 = B3 η
14/23A2 , (28)

B1,2,3 appearing in eq. (28) read

B1 = [τ+11 + τ+22 + τ−22 + τ+12] ,

B2 = 32m2
b Eq Er [8 Ĉ1 +

28

3
Ĉ2] ,

B3 =
τ−28

Re[C0,eff ∗
8 ∆̄i17]

. (29)

Here we use the parametrizations

C0,eff
8 (mW ) = A1 + ξ̄DN,bb A2 ,

C0,eff
8 (µ) = η14/23C0,eff

8 (mW ) + A3 ,

C1,eff
8 (µ) = A4 + χ (A1 + ξ̄DN,bbA2) , (30)

with

A1 = CSM
8 (mW ) + C

H(1)
8 (mW ) ,

A2 = C
H(2)
8 (mW ) ,

A3 =
5
∑

i=1

h′
i η

a′
i C0

2(mW ) ,

A4 = η37/23C1,eff
8 (mW ) +

8
∑

i=1

(e′i η C
1, eff
4 (mW ) + (f ′

i + k′
iη)C

0
2(mW )

+ l′i η C
1, eff
1 (mW ))ηai , (31)

and the Wilson coefficients

CSM
8 (mW ) = − 3x2

4(x− 1)4
lnx+

−x3 + 5x2 + 2x

8(x− 1)3
,

C
H(1)
8 (mW ) =

1

m2
t

|ξ̄UN,tt|2G1(yt) ,

C
H(2)
8 (mW ) =

1

mtmb

(ξ̄∗UN,tt)G2(yt) , (32)

with

G1(yt) =
yt(−y2t + 5yt + 2)

24(yt − 1)3
+

−y2t
4(yt − 1)4

ln yt ,

G2(yt) =
yt(yt − 3)

4(yt − 1)2
+

yt
2(yt − 1)3

ln yt (33)
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The LL corrected Wilson coefficients C0
1 and C0

2 are

C0
1 (µ) = (η6/23 − η−12/23)C0

2(mW ) ,

C0
2 (µ) = (

2

3
η6/23 +

1

3
η−12/23)C0

2(mW ) , (34)

and

C0
2(mW ) = 1 ,

C0
1(mW ) = 0 . (35)

In eq. (27) the parameter χ is given by

χ = 6.7441 (η37/23 − η14/23) . (36)

In our calculations we take only ξ̄DN,bb complex, ξ̄DN,bb = |ξ̄DN,bb| ei θ, where θ is the CP violating

parameter which is restricted by the experimental upper limit of the neutron electric dipole

moment eq. (41). For 3HDM(O2), it is necessary to make the following replacements:

ξ̄UN,tt → ǭUN,tt ,

Im[ξ̄DN,bb] → ǭDN,bb sin
2 θ ,

Re[ξ̄DN,bb] → ǭDN,bb cos
2 θ ,

|ξ̄DN,bb|2 → (ǭDN,bb)
2 . (37)

3 Discussion

The general 3HDM model contains large number of free parameters, such as masses of charged

and neutral Higgs bosons, complex Yukawa matrices, ξU,Dij , ρU,Dij with quark family indices i, j.

First, a new global O(2) symmetry is introduced in the Higgs flavor space to connect the Yukawa

matrices in the second and third doublet and to keep the masses of new charged (neutral) Higgs

particles in the third doublet degenerate to the ones in the second doublet [17]. Second, the

Yukawa couplings, which are entries of Yukawa matrices, is restricted using the experimental

measurements, namely, ∆F = 2 mixing, the ρ parameter [18] and the CLEO measurement [19],

Br(B → Xsγ) = (3.15± 0.35± 0.32) 10−4 . (38)

The constraints for the FC couplings from ∆F = 2 processes and ρ parameter for the model

III were investigated without QCD corrections [18] and the following predictions are reached:

λuj = λdj << 1 , i, j = 1, 2, 3 ,

8



where u(d) is up (down) quark and i, j are the generation numbers and further

λbb , λsb >> 1 and λtt , λct << 1 . (39)

In the analysis, the ansatz proposed by Cheng and Sher,

ξUD
ij = λij

√

mimj

v
, (40)

is used. Respecting these constraints and using the measurement by the CLEO [19] Collabo-

ration we neglect all Yukawa couplings except ξ̄UN,tt, ξ̄
D
N,bb in the model III. In 3HDM(O2), the

same restrictions are done by taking into account only the couplings ǭUN,tt and ǭDN,bb.

This section is devoted to the study of the CP parameter sinθ and the scale µ dependencies

of the decay width Γ and CP asymmetry of ACP for the inclusive decay b → sg, in the

framework of the model III and 3HDM(O2). In our analysis, we restrict the parameters θ,

ξ̄UN,tt and ξ̄DNbb (ǭUN,tt and ǭDNbb) in the model III (3HDM(O2)), using the constraint for |Ceff
7 |,

0.257 ≤ |Ceff
7 | ≤ 0.439, coming from the CLEO data eq. (38) (see [20]). Here Ceff

7 is the

effective magnetic dipole type Wilson coefficient for b → sγ vertex. The above restriction

allows us to define a constraint region for the parameter ξ̄UN,tt (ǭ
U
N,tt) in terms of ξ̄DN,bb (ǭDN,bb)

and θ in the the model III, (3HDM(O2)). Further, in our numerical calculations we respect

the constraint for the angle θ, due to the experimental upper limit of neutron electric dipole

moment, namely

dn < 10−25e·cm (41)

which places an upper bound on the couplings with the expression in the model III (3HDM(O2)):

1
mtmb

(ξ̄UN,tt ξ̄
∗D
N,bb) sin θ < 1.0 ( 1

mtmb
(ǭUN,tt ǭ

∗D
N,bb) sin

2 θ < 1.0) for mH± ≈ 200 GeV [21].

Throughout these calculations, we take the charged Higgs mass mH± = 400GeV , and we

use the input values given in Table (1).

Fig. 1 (2) is devoted to the sin θ dependence of Γ for µ = mb, ξ̄
D
N,bb = 40mb (ǭ

D
N,bb = 40mb)

and |rtb| = | ξ̄
U
N,tt

ξ̄D
N,bb

| < 1 (| ǭ
U
N,tt

ǭD
N,bb

| < 1) in the model III (3HDM(O2)). Here Γ is restricted between

solid (dashed) lines for Ceff
7 > 0 (Ceff

7 < 0). As shown in Fig. 1, the decay width Γ can

reach (0.78 ± 0.06) × 10−14 in the region 0.2 ≤ sin θ ≤ 0.7 for Ceff
7 > 0 and the possible

enhancement, a factor of 4.2 compared to the SM one (0.185± 0.037)× 10−14GeV [16] can be

reached. For 3HDM(O2), the upper range for the decay width Γ is (0.79 ± 0.07) × 10−14 in

the region 0.2 ≤ sin θ ≤ 0.7 for Ceff
7 > 0 and this leads to an enhancement, a factor of 4.3

compared to the SM one. Γ decreases with increasing sinθ for Ceff
7 > 0 and it can get larger

values compared to the Ceff
7 < 0 case, in both models. The sin θ dependence of Γ is weak

9



Parameter Value

mc 1.4 (GeV)
mb 4.8 (GeV)
|Vtb V

∗
ts| 0.04

mt 175 (GeV)
mW 80.26 (GeV)
mZ 91.19 (GeV)
ΛQCD 0.214 (GeV)
αs(mZ) 0.117

Table 1: The values of the input parameters used in the numerical calculations.

for Ceff
7 < 0 and for this case, it takes slightly smaller values in the 3HDM(O2) compared

to the ones in the model III. In our numerical calculations, we observe that the contribution

of bremsstrahlung corrections are almost one order smaller as a magnitude compared to the

rest. Further, the restriction regions for Ceff
7 > 0 and Ceff

7 < 0 become more seperated with

increasing values of the scale µ and this behaviour is strong in the 3HDM(O2). The scale

dependence of Γ is weak for the values µ > 2GeV and almost no dependence is observed for

the large values of µ scale for both models. (see Figs. 3 and 4).

In Fig. 5 and 6, we present the sin θ dependence of ACP for µ = mb, ξ̄DN,bb = 40mb

(ǭDN,bb = 40mb) and |rtb| < 1 in the model III (3HDM(O2)). Here ACP is restricted in the

region bounded by solid (dashed) lines for Ceff
7 > 0 (Ceff

7 < 0). As shown in figures, |ACP |
reaches 2.5% for sin θ = 0.7 and all possible values of ACP are negative. However, for Ceff

7 < 0,

the allowed region becomes broader and ACP can take both signs, even can vanish. For this

case, |ACP | reaches almost 1% as an upper limit in both models. Further ACP is more sensitive

to sin θ in the 3HDM(O2) compared to the model III.

Fig. 7 and 8 represent the scale µ dependence of ACP for sinθ = 0.5, |ξ̄DN,bb| (ǭDN,bb) = 40mb

and |rtb| < 1 in both models underconsideration. The scale dependence of ACP is also weak for

the values µ > 2GeV similar to that of Γ. Here the increasing values of sin θ cause to increase

the size of restriction region.

At this stage we give the numerical values of Γ and ACP for |ξ̄DN,bb| = 40mb (ǭ
D
N,bb = 40mb)

and µ = mb in the range 0.2 ≤ sinθ ≤ 0.7, for model III (3HDM(O2)):

0.72 (0.72)× 10−14GeV ≤ Γ ≤ 0.84 (0.86)× 10−14GeV (upper boundary) for Ceff
7 > 0 ,

0.28 (0.28)× 10−14GeV ≤ Γ ≤ 0.40 (0.42)× 10−14GeV (lower boundary) for Ceff
7 > 0 ,

Γ = 0.50 (0.48)× 10−14GeV (upper boundary) for Ceff
7 < 0 ,
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Γ = 0.20 (0.20)× 10−14GeV (lower boundary) for Ceff
7 < 0 ,

(42)

and

0.0080 (0.0015) ≤ |ACP | ≤ 0.0250 (0.0250) (upper boundary) for Ceff
7 > 0 ,

0.0050 (0.0010) ≤ |ACP | ≤ 0.0170 (0.0165) (lower boundary) for Ceff
7 > 0 ,

0.0020 (0.0010) ≤ ACP ≤ 0.0060 (0.0060) (upper boundary) for Ceff
7 < 0 ,

−0.0100 (−0.0100) ≤ ACP ≤ −0.0020 (−0.0010) (lower boundary) for Ceff
7 < 0 .

(43)

Now we would like to present our conclusions:

• Γ can reach 0.84 (0.86) ×10−14 in the model III (3HDM(O2)) and this is an enhancement

a factor of 4 compared to the SM one.

• A measurable CP asymmetry ACP exists with the addition of NLL QCD corrections

and choice of complex Yukawa coupling ξ̄DN,bb (ρ̄DN,bb (see section 2)) in the model III

(3HDM(O2)). |ACP | can be obtained at the order of the magnitude of % 2.5. This

physical parameter is coming from the new physics effects and it can give strong clues

about the physics beyond the SM.
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Figure 1: Γ as a function of sinθ for |rtb| = | ξ̄
U
N,tt

ξ̄D
N,bb

| < 1, ξ̄DN,bb = 40mb and µ = mb. Here Γ is

restricted in the region bounded by solid (dashed) lines for Ceff
7 > 0 (Ceff

7 < 0), in the model
III. Dotted line represents the SM contribution.
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Figure 2: The same as Fig. 1 but for 3HDM(O2).
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Figure 3: The same as Fig. 1 but Γ as a function of µ for sinθ = 0.5.
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Figure 4: The same as Fig. 3 but for 3HDM(O2).
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Figure 5: The same as Fig. 1 but ACP as a function of sinθ.
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Figure 6: The same as Fig. 2 but ACP as a function of sin θ.
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Figure 7: The same as Fig. 3 but ACP as a function of µ.
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Figure 8: The same as Fig. 4 but ACP as a function of µ.
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