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Abstract
It has been almost 100 years since Einstein formulated his special theory of
relativity in 1905. He showed that the basic space–time symmetry is dictated
by the Lorentz group. It is shown that this group of Lorentz transformations
is not only applicable to special relativity, but also constitutes the scientific
language for optical sciences. It is noted that coherent and squeezed states
of light are representations of the Lorentz group. The Lorentz group is also
the basic underlying language for classical ray optics, including polarization
optics, interferometers, the Poincaré sphere, one-lens optics, multi-lens
optics, laser cavities, as well multilayer optics.

Keywords: Lorentz group in optics

1. Introduction

Since Einstein formulated special relativity in 1905, the basic
space–time symmetry has been that of the Lorentz group.
He established the energy–momentum relation which is valid
for slow massive particles, high-speed massive particles and
massless particles. Einstein formulated this relation initially
for particles without internal space–time structures, but it is
widely accepted that it is valid for all particles, including
particles with spin and/or internal space–time extension.

In 1939, Wigner published his most fundamental paper
dealing with internal space–time symmetries of relativistic
particles [1]. In this paper, Wigner introduced the Lorentz
group to physics. Furthermore, by introducing his ‘little
groups’, Wigner provided the framework for studying the inter-
nal space–time symmetries of relativistic particles. The scien-
tific contents of this paper have not yet been fully recognized by
the physics community. We are writing this report as a continu-
ation of the work Wigner initiated in this history-making paper.

While particle physicists are still struggling to understand
internal space–time symmetries of elementary particles,

Wigner’s Lorentz group is becoming useful to many other
branches of physics. Among them are optical sciences, both
quantum and classical. In quantum optics, the coherent and
squeezed states are representations of the Lorentz group [2].
Recently, the Lorentz group has started to become the
fundamental language for classical ray optics. It is gratifying
to note that optical components, such as lenses, polarizers,
interferometers, lasers and multi-layers can all be formulated
in terms of the Lorentz group which Wigner formulated in his
1939 paper. Classical ray optics is of course a very old subject,
but we cannot do new physics without measurements using
optical instruments. Indeed, classical ray optics constitutes
Wigner’s frontier in physics.

The word ‘group theory’ sounds like abstract mathemat-
ics, but it is gratifying to note that Wigner’s little groups can
be formulated in terms of two-by-two matrices, while classical
ray optics is largely the physics of two-by-two matrices. The
mathematical correspondence is straightforward.

In order to see this point clearly, let us start with the
following classic example. The second-order differential
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Table 1. Further contents of Einstein’s E = mc2. Massive and
massless particles have different energy–momentum relations.
Einstein’s special relativity gives one relation for both. Wigner’s
little group unifies the internal space–time symmetries for massive
and massless particles. The quark model and the parton model can
also be combined into one covariant model.

Massive, slow Covariance Massless, fast

Energy– Einstein’s

momentum E = p2/2m0 E =
√

p2c2 + m2
0c4 E = cp

Internal S3 S3

space–time Wigner’s
symmetry S1, S2 little group Gauge trans.

Relativistic Lorentz-squeezed
Extended Quarks harmonic Partons
Particles oscillators

equation

A
d2q(t)

dt2
+ B

dq(t)

dt
+ Cq(t) = F cos(ωt) (1)

is applicable to a driven harmonic oscillator with dissipation.
This can also be used for studying an electronic circuit
consisting of inductance, resistance, capacitance and an
alternator. Thus, it is possible to study the oscillator system
using an electronic circuit. Likewise, an algebra of two-by-
two matrices can serve as the scientific language for several
different branches of physics, including special relativity, ray
optics and quantum optics.

There are many physical systems which can be formulated
in terms of two-by-two matrices. If we restrict that their
determinant be one, there is a well established mathematical
discipline called the group theory of SL(2,C). This aspect
was noted in the study of Lorentz transformations. In group
theoretical terminology, the group SL(2,C) is the universal
covering group of the group of the Lorentz group. In practical
terms, to each two-by-two matrix, there corresponds one
four-by-four matrix which performs a Lorentz transformation
in the four-dimensional Minkowskian space. Thus, if a
physical system can be explained in terms of two-by-two
matrices, it can be explained with the language of Lorentz
transformations. Furthermore, the physical system based on
two-by-two matrices can serve as an analogue computer for
Lorentz transformations.

Optical filters, polarizers, and interferometers deal with
two independent optical rays. They superpose the beams,
change the relative phase shift, and change relative amplitudes.
The basic language here is called the Jones matrix formalism,
consisting of the two-by-two matrix representation of the
SL(2,C) group [3, 4]. The four-by-four Mueller matrices
are derivable from the two-by-two matrices of SL(2,C).

For these two-beam systems, the Poincaré sphere serves
as an effective language [5, 6]. Since the two-beam system
is described by the Lorentz group, the Poincaré sphere is
necessarily a representation of the Lorentz group. We shall
use this sphere to study the degree of coherence between the
beams.

Para-axial lens optics can also be formulated in terms of
two-by-two matrices, applicable to the two-component vector
space consisting of the distance from the optical axis and

the slope with respect to the axis. The lens and translation
matrices are triangular, but they are basically representations
of the Sp(2) group which is the real subgroup of the group
SL(2,C) [7, 8].

Laser optics is basically multi-lens lens optics. However,
the problem here is how to get a simple mathematical
expression for the system of a large number of the same
lens separated by equal distance. Here again, group theory
simplifies calculations [9].

In multi-layer optics, we deal with two optical rays moving
in opposite directions. The standard language in this case is
the S-matrix formalism [10]. This is also a two-by-two matrix
formalism. As in the case of laser cavities, the problem is the
multiplication of a large number of matrix chains [11, 12].

It is shown in this report that the two-by-two representation
of the six-parameter Lorentz group is the underlying common
scientific language for all of the instruments mentioned above.
While the abstract group theoretical ideas make two-by-two
matrix calculations more systematic and transparent in optics,
optical instruments can act as analogue computers for Lorentz
transformations in special relativity. It is gratifying to note
that special relativity and ray optics can be formulated as the
physics of two-by-two matrices.

In section 2, we explain how the Lorentz group can be
formulated in terms of four-by-four matrices. It is shown that
the group can have six independent parameters. In section 3,
we explain how it is possible to formulate the Lorentz group in
terms of two-by-two matrices. It is shown that the four-by-four
transformation matrices can be constructed from those of the
two-by-two matrices.

In section 4, we discuss the historical significance
of Wigner’s 1939 paper [1] on the Lorentz group and
its application to the internal space–time symmetries of
relativistic particles. In section 5, we present the basic building
blocks for the two-by-two representation of the Lorentz group
in terms of the matrices commonly seen in ray optics.

In sections 5 and 6, we study the polarizations for the
two-beam system. It is shown that both the Jones and Mueller
matrices are representations of the Lorentz group. The role
of the Stokes parameters is discussed in detail. It is shown in
section 9 that the Poincaré sphere is a graphical representation
of the Poincaré group, and serves as a device to describe the
degree of coherence.

In sections 10–13, we discuss a one-lens system, a multi-
lens system, laser cavities and multi-layer optics, respectively.
In all of these sections, the central scientific language is the
Lorentz group.

In appendix A, we expand the content of the third row
of table 1. It is noted that the covariant harmonic oscillator
formalism can unify the quark model for slow hadrons with
the parton model for ultra-relativistic quarks. It is then shown
that the same oscillator formalism serves as the basic scientific
language for squeezed states of light.

In appendix B, it is shown that the Lie-group method, in
terms of the generators, is not the only method in constructing
group representations. For the rotation group and the three-
parameter subgroups of the Lorentz group, it is simpler to start
with the minimum number of starter matrices. For instance,
while there are three generators for the rotation group in the
Lie approach, we can construct the most general form of
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the rotation matrix from rotations around two directions, as
Goldstein constructed the Euler angles [13].

In appendix C, it is noted that the four-by-four matrices
are real, their two-by-two counterparts are complex. However,
there is a three-parameter real subgroup called Sp(2). It is
shown that the complex subgroup SU (1, 1) is equivalent to
Sp(2) through conjugate transformation.

2. Lorentz transformations

Let us consider the space–time coordinates (ct, z, x, y). Then
the rotation around the z axis is performed by the four-by-four
matrix 


1 0 0 0
0 0 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ


 . (2)

This transformation is generated by

J3 =



0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0


 . (3)

Likewise, we can write down the generators of rotations J1 and
J2 around the x and y axes, respectively.

J1 =



0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0


 , J2 =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 .

(4)
These three generators satisfy the closed set of commutations
relations [

Ji , J j

] = iεi jk Jk. (5)

This set of commutation relations is for the three-dimensional
rotation group.

The Lorentz boost along the z axis takes the form

B =



cosh η sinh η 0 0
sinh η cosh η 0 0

0 0 1 0
0 0 0 1


 , (6)

which is generated by

K3 =



0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 . (7)

Likewise, we can write generators of boosts K1 and K2 along
the x and y axes, respectively, and they take the form

K1 =



0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0


 , K2 =




0 0 0 i
0 0 0 0
0 0 0 0
i 0 0 0


 .

(8)
These boost generators satisfy the commutation relations[

Ji, K j
] = iεi jk Kk,

[
Ki , K j

] = −iεi jk Jk. (9)

Indeed, the three rotation generators and the three boost
generators satisfy the closed set of commutation relations given
in equations (5) and (9). These three commutation relations
form the starting point of the Lorentz group. The generators
given in this section are four-by-four matrices, but they are
not the only set satisfying the commutation relations. We
can also construct six two-by-two matrices satisfying the same
set of commutation relations. The group of transformations
constructed from these two-by-two matrices is often called
SL(2, c) or the two-dimensional representation of the Lorentz
group. Throughout the present paper, we used the two-by-two
transformation matrices constructed from the generators of the
SL(2, c) group.

3. Spinors and four-vectors

In section 2, we started with four-by-four transformation
matrices applicable to the four-dimensional space–time. We
then ended up with a set of closed commutation relations for
the six generators consisting of three rotation and three boost
generators. These generators are in the form of four-by-four
matrices.

In this section, we shall see first that there is a set of
two-by-two matrices satisfying the same set of commutation
relations, constituting the two-by-two representations of the
Lorentz group. The representation so constructed is called the
SL(2, c) group, or the universal covering group of the Lorentz
group. The transformation matrices are applicable to two-
component SL(2,C) spinors. The algebraic property of this
two-by-two representation is the same as that of the four-by-
four representation.

As we shall see in this paper, the spinors and the four-
vectors correspond to Jones vectors and Stokes parameters,
respectively, in polarization optics [4]. The question then is
whether we can construct the four-vector from the spinors. In
the language of polarization optics, the question is whether it
is possible to construct the coherency matrix [5, 6] from the
Jones vector.

With this point in mind, let us start from the following
form of the Pauli spin matrices:

σ1 =
(

1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
,

σ3 =
(

0 −i
i 0

)
.

(10)

These matrices are written in a different convention. Here
σ3 is imaginary, while σ2 is imaginary in the traditional
notation. Also in this convention, we can construct three
rotation generators

Ji = 1
2σi , (11)

which satisfy the closed set of commutation relations[
Ji, J j

] = iεi jk Jk. (12)

We can also construct three boost generators

Ki = i

2
σi , (13)
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S Başkal et al

which satisfy the commutation relations[
Ki , K j

] = −iεi jk Jk. (14)

The Ki matrices alone do not form a closed set of commutation
relations, and the rotation generators Ji are needed to form a
closed set: [

Ji, K j

] = iεi jk Kk . (15)

The six matrices Ji and Ki form a closed set of
commutation relations, and they are like the generators of the
Lorentz group applicable to the (3+1)-dimensional Minkowski
space. The group generated by the above six matrices is called
SL(2, c) consisting of all two-by-two complex matrices with
unit determinant.

Let us write the two-by-two transformation matrix as

L =
(
α β

γ δ

)
. (16)

This matrix has four complex elements with eight real
parameters. However, the six generators are all traceless and,
the determinant of the matrix has to be one. Thus, it has six
independent parameters.

In order to construct four-vectors, we need two different
spinor representations of the Lorentz group. Let us go
to the commutation relations for the generators given in
equations (12), (14) and (15). These commutators are not
invariant under the sign change of the rotation generators Ji ,
but are invariant under the sign change of the squeeze operators
Ki . Thus, to each spinor representation, there is another
representation with the squeeze generators with opposite sign.
This allows us to construct another representation with the
generators:

J̇i = 1
2σi , K̇i = −i

2
σi . (17)

We call this representation the ‘dotted’ representation. If we
write the transformation matrix L of equation (16) in terms of
the generators as

L = exp

{
− i

2

3∑
i=1

(θiσi + iηiσi)

}
, (18)

then the transformation matrix in the dotted representation
becomes

L̇ = exp

{
− i

2

3∑
i=1

(θiσi − iηiσi)

}
. (19)

In both of the above matrices, Hermitian conjugation changes
the direction of rotation. However, it does not change the
direction of boosts. We can achieve this only by changing L
to L̇ , and we shall call this the ‘dot’ conjugation.

Likewise, there are two different set of spinors. Let us
write (

u
v

)
,

(
u̇
v̇

)
(20)

for the spinor in the undotted and dotted representations,
respectively. Then the four-vectors are constructed as [14, 15]

uu̇ = −(x − iy), vv̇ = (x + iy),

uv̇ = (t + z), vu̇ = −(t − z)
(21)

leading to the matrix

V =
(

uv̇ −uu̇
vv̇ −vu̇

)
=

(
u
v

)
( v̇ −u̇ ) , (22)

where u and u̇ are one if the spin is up, and are zero if the spin
is down, while v and v̇ are zero and one for the spin-up and
spin-down cases.

If the two-by-two matrix of equation (16) is applicable to
the column vector of equation (20), what is the transformation
matrix applicable to the row vector (v̇,−u̇) from the right-hand
side? It is the transpose of the matrix applicable to the column
vector (v̇,−u̇). We can obtain this column vector from(

v̇

−u̇

)
, (23)

by applying to it the matrix

g = −iσ3 =
(

0 −1
1 0

)
. (24)

This matrix also has the property

gσi g
−1 = −(σi)

T, (25)

where the superscript T means the transpose of the matrix.
The transformation matrix applicable to the column vector of
equation (23) is L̇ of equation (19). Thus the matrix applicable
to the row vector (v̇,−u̇) in equation (22) is

{
g−1Lg

}T = g−1LTg. (26)

This is precisely the Hermitian conjugate of L .
Let us now write the V matrix of equation (22) as

V =
(

t + z x − iy
x + iy t − z

)
, (27)

where the set of variables (x, y, z, t) is transformed like a
four-vector under Lorentz transformations. Then the Lorentz
transformation on V can be performed as

V ′ = LV L†, (28)

where the transformation matrix L is that of equation (16). As
we have seen in this section, the construction of four-vectors
from the two-component spinors is not a trivial task, but has
been discussed in the literature [14, 16]. Likewise, it is possible
to construct four-by-four Lorentz transformation matrices from
the two-by-two matrix of equation (16) [16, 17].

As we shall see in the present paper, the matrix of the
form equation (22) or (27) appears in optics as the coherency
matrix and the density matrix for two beam systems such as
polarization optics and interferometers.

4. Wigner’s little groups

In his 1939 paper, Wigner introduced his little groups in
order to study the internal space–time structures of relativistic
particles. The little group is the maximal subgroup of the
Lorentz group which leaves the momentum of the particle
invariant. The little groups, originally developed for studying
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relativistic symmetries of particles, are now becoming an
important scientific language for ray optics as we shall see
in this paper.

Let us first discuss the physical basis of Wigner’s little
groups. If the speed of a particle is much smaller than that of
light, the energy–momentum relation is E = p2/2m0 + m0c2.
If the speed is close to that of light, the relation is E =
cp. These two different relations can be combined into one
covariant formula E2 = m2

0c4 + p2c2. This aspect of Einstein’s
E = mc2 is well known, as indicated in table 1.

In addition, particles have internal space–time variables.
Massive particles have spins while massless particles have their
helicities and gauge variables. Our first question is whether this
aspect of space–time variables can be unified into one covariant
concept. The answer to this question is ‘yes’. Wigner’s little
group does the job, as also indicated table 1.

Particles can also have space–time extensions. For
instance, in the quark model, hadrons are bound states of
quarks. However, the hadron appears as a collection of partons
when it moves with speed close to the velocity of light. Quarks
and partons seem to have quite distinct properties. Are they
different manifestations of a single covariant entity? This
is one of the most pressing issues in high-energy particles
physics. The third row of table 1 addresses this question.

The mathematical framework of this program was
developed by Wigner [1]. He constructed the maximal
subgroups of the Lorentz group whose transformations will
leave the four-momentum of a given particle invariant. These
groups are known as Wigner’s little groups. Thus, the
transformations of the little groups change the internal space–
time variables of the particle, while leaving its momentum
invariant.

In his paper [1], Wigner shows that, for each massive
particle, there is a Lorentz frame in which the particle is at
rest. Then the three-dimensional rotation group leaves its
momentum invariant, while changing the direction of its spin.
Thus, the little group for this particular case is O(3). In other
Lorentz frames, the little group is a Lorentz-boosted O(3)
group.

For a massless particle, Wigner notes that there are no
Lorentz frames in which the particle is at rest. The best we can
do is to align its momentum to a given axis, or the z axis. Then,
its momentum is invariant under rotations around the z axis.
In addition, Wigner found two more transformations which
leave the momentum invariant. The physics of these additional
degrees was not explained in Wigner’s original paper [1], but
their mathematics has been worked out. The physics of these
degrees of freedom was later determined to be that of gauge
transformations [18], and its complete understanding was not
achieved until 1990 [19].

The group of Lorentz transformations consists of three
boosts and three rotations. The rotations therefore constitute a
subgroup of the Lorentz group. If a massive particle is at rest,
its four-momentum is invariant under rotations. Thus the little
group for a massive particle at rest is the three-dimensional
rotation group. Then what is affected by the rotation? The
answer to this question is very simple. The particle in general
has its spin. The spin orientation is going to be affected by the
rotation! If we use the four-vector coordinate (ct, z, x, y), the
four-momentum vector for the particle at rest is (m0c, 0, 0, 0),

and the three-dimensional rotation group leaves this four-
momentum invariant. This little group is generated by the
three rotation generators given in equations (3) and (4). They
satisfy the commutation relations for the rotation group given
equation (5).

If the rest-particle is boosted along the z direction, it has
a non-zero momentum component along the same direction.
The O(3) generators will also be boosted. The boost matrix
takes the form of equation (6), and the boosted generators will
be

J ′
i = B Ji B−1, (29)

and this boost will not change the commutation relation of
equation (5).

For a massless particle moving along the Z direction,
Wigner observed that the little group generated by the rotation
generator around the z axis, namely J3 of equation (3), and
two other generators which take the form

N1 =



0 0 i 0
0 0 i 0
i −i 0 0
0 0 0 0


 , N2 =




0 0 0 i
0 0 0 i
0 0 0 0
i −i 0 0


 .

(30)
If we use Ki for the boost generator along the i th axis, these
matrices can be written as

N1 = K1 − J2, N2 = K2 + J1, (31)

with K1 and K2 given in equation (8).
The generators J3, N1 and N2 satisfy the following set of

commutation relations.

[N1, N2] = 0, [J3, N1] = iN2, [J3, N2] = −iN1.

(32)
In order to understand the mathematical basis of the above

commutation relations, let us consider transformations on a
two-dimensional plane with the xy coordinate system. We can
then make rotations around the origin and translations along the
x and y directions. If we write these generators as L , Px and
Py , respectively, they satisfy the commutation relations [17]

[Px , Py] = 0, [L , Px ] = iPy, [L , Py] = −iPx .

(33)
This is a closed set of commutation relations for the generators
of the E(2) group, or the two-dimensional Euclidean group. If
we replace N1 and N2 of equation (32) by Px and Py , and J3 by
L , the commutation relations for the generators of the E(2)-
like little group become those for the E(2)-like little group.
This is precisely why we say that the little group for massless
particles are like E(2).

It is not difficult to associate the rotation generator J3

with the helicity degree of freedom of the massless particle.
Then what physical variable is associated with the N1 and N2

generators? Indeed, Wigner was the one who discovered the
existence of these generators, but did not give any physical
interpretation to these translation-like generators in his original
paper [1]. For this reason, for many years only those
representations with the zero-eigenvalues of the N operators
were thought to be physically meaningful representations [20].
It was not until 1971 when Janner and Janssen [18] reported
that the transformations generated by these operators are
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gauge transformations. The role of this translation-like
transformation has also been studied for spin-1/2 particles,
and it was concluded that the polarization of neutrinos is due
to gauge invariance [21].

The O(3)-like little group remains O(3)-like when the
particle is Lorentz-boosted. Then, what happens when the
particle speed becomes the speed of light? The energy–
momentum relation E2 = m2

0c4 + p2c2 become E = pc. Is
there then a limiting case of the O(3)-like little group? Since
those little groups are like the three-dimensional rotation group
and the two-dimensional Euclidean group, respectively, we are
first interested in whether E(2) can be obtained from O(3).
This will then give a clue as to how to obtain the E(2)-like
little group as a limiting case of O(3)-like little group. With
this point in mind, let us look into this geometrical problem.

In 1953, Inönü and Wigner [22] formulated this problem
as the contraction of O(3) to E(2). Let us see what they did.
We always associate the three-dimensional rotation group with
a spherical surface. Let us consider a circular area of radius
1 km centred on the north pole of the earth. Since the radius
of the earth is more than 6450 times longer, the circular region
appears to be flat. Thus, within this region, we use the E(2)
symmetry group. The validity of this approximation depends
on the ratio of the two radii.

How about then the little groups which are isomorphic to
O(3) and E(2)? It is reasonable to expect that the E(2)-like
little group can be obtained as a limiting case of the O(3)-like
little group for massless particles. In 1981, it was observed
by Bacry and Chang [23] and by Ferrara and Savoy [24] that
this limiting process is the Lorentz boost to infinite-momentum
frame.

In 1983, it was noted by Han et al that the large-radius limit
in the contraction of O(3) to E(2) corresponds to the infinite-
momentum limit for the case of the O(3)-like little group to
the E(2)-like little group for massless particles. They showed
that transverse rotation generators become the generators of
gauge transformations in the limit of infinite momentum [25].

Let us see how this happens. The J3 operator of
equation (3), which generates rotations around the z axis,
is not affected by the boost conjugation of the B matrix of
equation (29). On the other hand, the J1 and J2 matrices
become

N1 = lim
η→∞ e−ηB−1 J2 B, N2 = lim

η→∞ −e−ηB−1 J1 B,

(34)
which are given in equation (30). The generators N1 and
N2 are the contracted J2 and J1, respectively in the infinite-
momentum. In 1987, Kim and Wigner [26] studied this
problem in more detail and showed that the little group for
massless particles is the cylindrical group which is isomorphic
to the E(2) group.

This completes the second row in table 1, where Wigner’s
little group unifies the internal space–time symmetries of
massive and massless particles. The transverse components
of the rotation generators become generators of gauge
transformations in the infinite-momentum limit.

Let us go back to table 1 given in section 1. As for the
third row for relativistic extended particles, the most efficient
approach is to construct representations of the little groups
using the wavefunctions which can be Lorentz-boosted. This

means that we have to construct wavefunctions which are
consistent with all known rules of quantum mechanics and
special relativity. It is possible to construct harmonic oscillator
wavefunctions which satisfy these conditions. We can then
take the low-speed and high-speed limits of the covariant
harmonic oscillator wavefunctions for the quark model and
the parton model, respectively. This aspect was extensively
discussed in the literature [17, 27], and is beyond the scope of
the present report.

However, it is important to note that the covariant
harmonic oscillator formalism use for this purpose can serve as
the Fock space description for the squeezed state of light [28];
we give a brief discussion of this aspect in appendix A, entitled
‘squeezed harmonic oscillators’.

In this section, we discussed Wigner’s little groups
applicable to internal space–time symmetries of relativistic
particles. However, as we shall see in this review, these little
groups play an important role in understanding ray optics.
Conversely, optical configurations in ray optics can serve as
analogue computers for space–time symmetries in particle
physics.

5. Polarization optics

Let us consider two optical beams propagating along the z axis.
We are then led to the column vector:(

ψ1(z, t)
ψ2(z, t)

)
=

(
A1 exp (−i (kz − ωt + φ1))

A2 exp (−i (kz − ωt + φ2))

)
. (35)

We can then achieve a phase shift between the beams by
applying the two-by-two matrix:(

eiφ/2 0
0 e−iφ/2

)
. (36)

If we are interested in mixing up the two beams, we can apply(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
(37)

to the column vector.
If the amplitudes become changed either by attenuation or

by reflection, we can use the matrix(
eη/2 0

0 e−η/2

)
(38)

for the change. In this paper, we are dealing only with the
relative amplitudes, or the ratio of the amplitudes. As we shall
see in section 6, the above two-by-two matrices have their
corresponding four-by-four matrices, respectively.

Repeated applications of these matrices lead to the form

G =
(
α β

γ δ

)
, (39)

where the elements are in general complex numbers. The
determinant of this matrix is one. Thus, the matrix can have
six independent parameters.

This matrix takes the identical form as the two-by-two
matrix given in equation (39). However, the construction
process is different. The Lie-group generators are used
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for equation (39), while (39) is constructed from repeated
applications of the transformation matrices. The difference
between these two methods is discussed in appendix B.

In either case, this matrix is the most general form of
the matrices in the SL(2, c) group, which is known to be the
universal covering group for the six-parameter Lorentz group.
This means that, to each two-by-two matrix of SL(2, c), there
corresponds one four-by-four matrix of the group of Lorentz
transformations applicable to the four-dimensional Minkowski
space [17]. It is possible to construct explicitly the four-by-four
Lorentz transformation matrix from the parameters α, β, γ,
and δ. This expression is available in the literature [17], and
we consider here only special cases.

The four-by-four representation of the Lorentz group can
be constructed from the two-by-two representation of the
SL(2, c) group, which is known as the universal covering
group of the six-parameter Lorentz group. This aspect is
discussed in section 3.

Let us go back to equation (39); the SL(2, c) group
represented by this matrix has many interesting subgroups.
If the matrices are to be Hermitian, then the subgroup is
SU (2) corresponding to the three-dimensional rotation group.
If all the elements are real numbers, the group becomes the
three-parameter Sp(2) group. This subgroup is equivalent to
SU (1, 1)which is the primary scientific language for squeezed
states of light [2, 28].

We can also consider the matrix of equation (39) when
one of its off-diagonal elements vanishes. Then, it takes the
form (

exp(iφ/2) 0
γ exp (−iφ/2)

)
, (40)

where γ is a complex number with two real parameters. In
1939 [1], Wigner observed this form as one of the subgroups
of the Lorentz group. He observed further that this group is
isomorphic to the two-dimensional Euclidean group, and that
its four-by-four equivalent can explain the internal space–time
symmetries of massless particles including the photons.

In ray optics, we often have to deal with this type of
triangular matrix, particularly in lens optics and stability
problems in laser and multi-layer optics. In the language
of mathematics, dealing with this form is called the Iwasawa
decomposition [4, 29].

If the Jones matrix contains all the parameters for the
polarized light beam, why do we need the mathematics in the
four-dimensional space? The answer to this question is well
known. In addition to the basic parameter given by the Jones
vector, the Stokes parameters give the degree of coherence
between the two rays.

Let us go back to the Jones spinor of equation (35), and
construct the quantities:

S11 = 〈ψ∗
1ψ1〉, S12 = 〈ψ∗

1ψ2〉,
S21 = 〈ψ∗

2ψ1〉, S22 = 〈ψ∗
2ψ2〉.

(41)

Then the Stokes vector consists of

S0 = S11 + S22, S1 = S11 − S22,

S2 = S12 + S21, S3 = −i(S11 + S22).
(42)

The four-component vector

(S0, S1, S2, S3) (43)

transforms like the space–time four-vector (ct, z, x, y) under
Lorentz transformations. The Mueller matrix is therefore like
the Lorentz-transformation matrix.

As in the case of special relativity, let us consider the
quantity

M2 = S2
0 − S2

1 − S2
2 − S2

3 . (44)

Then M is like the mass of the particle while the Stokes four-
vector is like the four-momentum.

If M = 0, the two-beams are in a pure state. As
M increases, the system becomes mixed, and the entropy
increases. If it reaches the value of S0, the system becomes
completely random. It is gratifying to note that this mechanism
can be formulated in terms of the four-momentum in particle
physics [4].

Although we can borrow all the elegant mathematical
identities of the two-by-two representations of the Lorentz
group, this formalism does not allow us to describe the loss
of coherence within the interferometer system. In order to
study this effect, we have to construct the coherency matrix:

C =
(

S11 S12

S21 S22

)
. (45)

Under the optical transformations discussed in this section, the
coherency matrix is transformed as

C ′ = G C G†, (46)

as in the case of the Lorentz transformation given in
equation (28).

Using this formalisms based on the Lorentz group, we can
discuss the group theoretical property of polarization optics
in detail [30]. However, polarization optics is based on two
independent beams propagating in the same direction. Since
interferometers are also based on the same optical system,
we can continue our discussion in the following section on
interferometers.

6. Interferometers

Typically, one beam is divided into two by a beam splitter. We
can write the incoming beam as

� =
(
ψ1

ψ2

)
=

(
exp {i(kz − ωt)}

0

)
. (47)

Then, the beam splitter can be written in the form of a rotation
matrix [31]:

R(θ) =
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (48)

which transforms the column vector of equation (47) into(
ψ1

ψ2

)
=

(
[cos(θ/2)] exp {i(kz − ωt)}
−[sin(θ/2)] exp {i(kz − ωt)}

)
. (49)

The first beam ψ1 of equation (47) is now split into ψ1 and ψ2

of equation (49). The intensity is conserved. If the rotation
angle θ is −π/4, the initial beam is divided into two beams of
the same intensity and the same phase [32].
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These two beams go through two different optical path
lengths, resulting in a phase difference. If the phase difference
is φ, the phase shift matrix is

P(φ) =
(

e−iφ/2 0
0 eiφ/2

)
. (50)

When reflected from mirrors, or while going through beam
splitters, there are intensity losses for both beams. The rate
of loss is not the same for the beams. This results in the
attenuation matrix of the form(

e−η1 0
0 e−η2

)
= e−(η1+η2)/2

(
eη/2 0

0 e−η/2

)
(51)

withη = η2−η1. This attenuator matrix tells us that the electric
fields are attenuated at two different rates. The exponential
factor e−(η1+η2)/2 reduces both components at the same rate
and does not affect the degree of polarization. The effect of
polarization is solely determined by the squeeze matrix

S(η) =
(

eη/2 0
0 e−η/2

)
. (52)

In the detector or in the beam synthesizer, the two beams
undergo a superposition. This can be achieved by the rotation
matrix like the one given in equation (37) [31]. For instance,
if the angle θ is 90◦, the rotation matrix takes the form

1√
2

(
1 −1
1 1

)
. (53)

If this matrix is applied to the column vector of equation (49),
the result is

1√
2

(
ψ1 − ψ2

ψ1 + ψ2

)
. (54)

The upper and lower components show the interferences with
negative and positive signs, respectively.

We have shown previously [3] that the four-by-four
transformation matrices applicable to the Stokes parameters
are like Lorentz-transformation matrices applicable to the
space–time Minkowskian vector (ct, z, x, y). This allows us to
study space–time symmetries in terms of the Stokes parameters
which are applicable to interferometers. Let us first see how
the rotation matrix of equation (37) is translated into the four-
by-four formalism. In this case,

α = δ = cos(θ/2), γ = −β = sin(θ/2). (55)

The corresponding four-by-four matrix takes the form [4]

R(θ) =



1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


 . (56)

Let us next see how the phase-shift matrix of equation (50)
is translated into this four-dimensional space. For this two-by-
two matrix,

α = e−iφ/2, β = γ = 0, δ = eiφ/2. (57)

For these values, the four-by-four transformation matrix takes
the form [4]

P(φ) =



1 0 0 0
0 1 0 0
0 0 cos φ − sinφ
0 0 sin φ cos φ


 . (58)

For the squeeze matrix of equation (52),

α = eη/2, β = γ = 0, δ = e−η/2. (59)

As a consequence, its four-by-four equivalent is

S(η) =



cosh η sinh η 0 0
sinh η cosh η 0 0

0 0 1 0
0 0 0 1


 . (60)

If the above matrices are applied to the four-dimensional
Minkowskian space of (ct, z, x, y), the above squeeze matrix
will perform a Lorentz boost along the z or S1 axis with S0

as the time variable. The rotation matrix of equation (56) will
perform a rotation around the y or S3 axis, while the phase
shifter of equation (58) performs a rotation around the z or the
S1 axis. Matrix multiplications with R(θ) and P(φ) lead to
the three-parameter group of rotation matrices applicable to
the three-dimensional space of (S1, S2, S3).

The phase shifter P(φ) of equation (58) commutes with
the squeeze matrix of equation (60), but the rotation matrix
R(θ) does not. This aspect of matrix algebra leads to many
interesting mathematical identities which can be tested in
laboratories. One of the interesting cases is that we can
produce a rotation by performing three squeezes [4]. Another
interesting case is a combination of squeeze and rotation
matrices which will lead to a triangular matrix with unit
diagonal elements. This aspect is known as the Iwasawa
decomposition and is discussed in detail in [4].

7. Density matrices and their little groups

According to the definition of the density matrix [33], the
coherency matrix of equation (45) is also the density matrix.
In this section, we shall discuss the coherency matrix as the
density matrix.

Under the influence of the G transformation given in
equation (46), this coherency matrix is transformed as

C ′ = G C G† =
(

S ′
11 S ′

12
S ′

21 S ′
22

)

=
(
α β

γ δ

) (
S11 S12

S21 S22

) (
α∗ γ ∗
β∗ δ∗

)
, (61)

where C and G are the density matrix and the transformation
matrix given in equations (45) and (46), respectively.
According to the basic property of the Lorentz group,
these transformations do not change the determinant of the
density matrix C. Transformations which do not change the
determinant are called unimodular transformations.

As we shall see in this section, the determinant for pure
states is zero, while that of mixed states does not vanish.
Is there then a transformation matrix which will change this
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determinant within the Lorentz group. The answer is ‘no’.
This is the basic issue we would like to address in this section.

If the phase difference between the two waves remains
intact, the system is said to in a pure state, and the density
matrix can be brought to the form(

1 0
0 0

)
(62)

through the transformation of equation (61) with a suitable
choice of the G matrix. For the pure state, the Stokes four-
vector takes the form 


1
1
0
0


 . (63)

In order to study the symmetry properties of the density
matrix, let us ask the following question. Is there a group of
transformation matrices which will leave the above density
matrix invariant? In answering this question, it is more
convenient to use the Stokes four-vector. The column vector
of equation (63) is invariant under the operation of the phase
shifter P(φ) of equation (58). In addition, it is invariant under
the following two matrices:

F1(u) =



1 + u2/2 −u2/2 u 0
u2/2 1 − u2/2 u 0

u −u 1 0
0 0 0 1


 ,

F2(v) =



1 + v2/2 −v2/2 0 v

v2/2 1 − v2/2 0 v

0 0 1 0
u −v 0 1


 .

(64)

These mathematical expressions were first discovered by
Wigner [1] in connection with the internal space–time
symmetries of relativistic particles. They went through a
stormy history, but it is gratifying to note that they serve
a useful purpose for studying interferometers where each
matrix corresponds to an operation which can be performed
in laboratories.

The F1 and F2 matrices commute with each other, and the
multiplication of these leads to the form

F2(u)F2(v)=



1 + (u2 + v2)/2 −(u2 + v2)/2 u u
(u2 + v2)/2 1 − (u2 + v2)/2 u v

u −u 1 0
v −v 0 1


 .

(65)
This matrix contains two parameters.

Let us go back to the phase-shift matrix of equation (58).
This matrix also leaves the Stokes vector of equation (63)
invariant. If we define the ‘little group’ as the maximal
subgroup of the Lorentz group which leaves a Stokes vector
invariant, the little group for the Stokes vector of equation (63)
consists of the transformation matrices given in equations (58)
and (65).

Next, if the phase relation is completely random, and the
first and second components have the same amplitude, the
density matrix becomes(

1/2 0
0 1/2

)
. (66)

Here is the question: is there a two-by-two matrix which will
transform the pure-state density matrix of equation (62) into
the impure-state matrix of equation (66)? The answer within
the system of matrices of the form given in equation (46) is
’no’, because the determinant of the pure-state density matrix
is zero while that of the impure-state matrix is 1/4. Is there a
way to deal with this problem? This problem was addressed
in [34]. In this section, we restrict ourselves to the unimodular
transformation of equation (61) which preserves the value of
the determinant of the density matrix. The Stokes four-vector
corresponding to the above density matrix is


1
0
0
0


 . (67)

This vector is invariant under both the rotation matrix of
equation (56) and the phase shift matrix of equation (58).
Repeated applications of these matrices lead to a three-
parameter group of rotations applicable to the three-
dimensional space of (S1, S2, S3).

Not all the impure-state density matrices take the form of
equation (66). In general, if they are brought to a diagonal
form, the matrix takes the form

1
2

(
1 + cosχ 0

0 1 − cosχ

)
, (68)

and the corresponding Stokes four-vector is

e−η




cosh η
sinh η

0
0


 , (69)

with

η = 1

2
ln

1 + cosχ

1 − cos χ
. (70)

The matrix which transforms equations (67) to (69) is the
squeeze matrix of (60). The question then is whether it is
possible to transform the pure state of (63) to the impure state
of (69) or to that of (67).

In order to see the problem in terms of the two-by-two
density matrix, let us go back to the pure-state density matrix
of equation (62). Under the rotation of equation (37),(

cos(χ/2) − sin(χ/2)
sin(χ/2) cos(χ/2)

)(
1 0
0 0

)

×
(

cos(χ/2) sin(χ/2)
− sin(χ/2) cos(χ/2)

)
, (71)

the pure-state density matrix becomes

1
2

(
1 + cosχ sin χ

sin χ 1 − cos χ

)
. (72)

For the present case of two-by-two density matrices, the
trace of the matrix is one for both pure and impure cases. The
trace of the (matri x)2 is one for the pure state, while it is less
than one for impure states.

The next question is whether there is a two-by-two matrix
which will eliminate the off-diagonal elements of the above
expression that will also lead to the expression of equation (68).
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In order to answer this question, let us note that the determinant
of the density matrix vanishes for the pure state, while it is
non-zero for impure states. The Lorentz-like transformations
of equation (61) leave the determinant invariant. Thus, it is
not possible to transform a pure state into an impure state by
means of the transformations from the six-parameter Lorentz
group. Then is it possible to achieve this purpose using two-
by-two matrices not belonging to this group? We do not know
the answer to this question. We are thus forced to resort to
four-by-four matrices applicable to the Stokes four-vector.

8. Decoherence effects on the little groups

We are interested in a transformation which will change the
density matrix of equation (62) to that of equation (66). For
this purpose, we can use the Stokes four-vector consisting of
the four elements of the density matrix. The question then is
whether it is possible to find a transformation matrix which
will transform the pure-state four-vector of equation (63) to
the impure-state four-vector of equation (67).

Mathematically, it is more convenient to ask whether
the inverse of this process is possible: whether it is
possible to transform the four-vector of equation (67) to
that of equation (63). This is known in mathematics as
the contraction of the three-dimensional rotation group into
the two-dimensional Euclidean group [17]. Let us apply
the squeeze matrix of equation (60) to the four-vector of
equation (67). This can be written as




cosh η sinh η 0 0
sinh η cosh η 0 0

0 0 1 0
0 0 0 1







1
0
0
0


 =




cosh η
sinh η

0
0


 . (73)

After an appropriate normalization, the right-hand side of
the above equation becomes like the pure-state vector of
equation (63) in the limit of large η, as cosh η becomes
equal to sinh η in the infinite-η limit. This transformation
is from a mixed state to a pure or almost-pure state. Since
we are interested in the transformation from the pure state of
equation (63) to the impure state of equation (67), we have to
consider an inverse of the above equation:




cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1







cosh η
sinh η

0
0


 =




1
0
0
0


 . (74)

However, the above equation does not start with the pure-state
four-vector. If we apply the same matrix to the pure state
matrix, the result is


cosh η − sinh η 0 0

− sinh η cosh η 0 0
0 0 1 0
0 0 0 1







1
1
0
0


 = e−η




1
1
0
0


 . (75)

The resulting four-vector is proportional to the pure-state four-
vector and is definitely not an impure-state four-vector.

The inverse of the transformation of equation (73) is not
capable of bringing the pure-state vector into an impure-state
vector. Let us go back to equation (73); it is possible to bring

an impure-state into a pure state only in the limit of infinite η.
Otherwise, it is not possible. It is definitely not possible if we
take into account experimental considerations.

The story is different for the little groups. Let us start with
the rotation matrix of equation (56), and apply to this matrix
the transformation matrix of equation (73). Then


cosh η sinh η 0 0
sinh η cosh η 0 0

0 0 1 0
0 0 0 1







1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1




×



cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 1 0
0 0 0 1


 . (76)

If η is zero, the above expression becomes the rotation matrix
of equation (56). If η becomes infinite, it becomes the little-
group matrix F1(u) of equation (64) applicable to the pure
state of equation (63). The details of this calculation for the
case of Lorentz transformations are given in the 1986 paper by
Han et al [15]. We are then led to the question of whether one
little-group transformation matrix can be transformed from the
other.

If we carry out the matrix algebra of equation (76), the
result is


1 + αu2w/2 −αu2w/2 αuw 0
αu2w/2 1 − u2w/2 uw 0
αuw −uw 1 − (1 − α2)u2w/2 0

0 0 0 1


 ,
(77)

where

α = tanh η, u = −2 tan

(
θ

2

)
,

w = 1

1 + (1 − α2) tan2(θ/2)
.

(78)

If α = 0, the above expression becomes the rotation matrix
of equation (56). If α = 1, it becomes the F1 matrix of
equation (64). Here we used the parameter α instead of η.
In terms of this parameter, it is possible to make an analytic
continuation from the pure state with α = 1 to an impure state
with α < 1 including α = 0.

On the other hand, we should keep in mind that the
determinant of the density matrix is zero for the pure state,
while it is non-zero for all impure states. For α = 1, the
determinant vanishes, but it is nonzero and stays the same for
all non-zero values of α less than one and greater than or equal
to zero. The analytic expression of equation (78) hides this
singular nature of the little group [15].

9. Poincaré sphere as the representation of the
Lorentz group

In sections 5, 6 and 8, it was noted that the Stokes parameters
form a four-vector in the Minkowskian space. Thus, it was
possible to discuss the density matrix in terms of the four-
vectors.

The Poincaré sphere was originally constructed from
polarization optics. Therefore, it is also a representation of the
Lorentz group. The Poincaré sphere for various polarization
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states have been thoroughly discussed in a recent book by
Brosseau [6].

What is interesting is that the Poincaré sphere has two
radii. One of them is the maximum radius specified by S0, and
the other radius is the length of the space-like components,
namely

S =
√

S2
1 + S2

2 + S2
3 . (79)

According to the four-vector property of the Stokes parameter,

M2 = S2
0 − S2 (80)

is invariant under Lorentz transformations. On the other hand,
M = 0 for a fully coherent state, while it is non-zero for a
partially coherent state. The system is totally incoherent if
S = 0.

However, the Lorentz group cannot handle this
decoherence mechanism.

We observe here that the pure state with M = 0
corresponds to the E(2)-like little group for massless particles
while it corresponds to the O(3)-like little group for non-zero
values of M . The transition of O(3) to E(2) is well known
as the group contraction. However, the inverse transformation
requires further study.

10. One-lens system

In analysing optical rays in para-axial lens optics, we start with
the lens matrix:

L =
(

1 0
−1/ f 1

)
, (81)

and the translation matrix

T =
(

1 z
0 1

)
, (82)

assuming that the beam is propagating along the z direction.
Then the one-lens system consists of(

1 z2

0 1

)(
1 0

−1/ f 1

)(
1 z1

0 1

)
. (83)

If we perform the matrix multiplication,(
1 − z2/ f z1 + z2 − z1z2/ f
−1/ f 1 − z1/ f

)
. (84)

If we assert that the upper-right element be zero, then

1

z1
+

1

z2
= 1

f
, (85)

and the image is focused, where z1 and z2 are the distance
between the lens and object and between the lens and image,
respectively. They are in general different, but we shall assume
for simplicity that they are the same: z1 = z2 = z. We are
doing this because this simplicity does not destroy the main
point of our discussion, and because the case with two different
values has been dealt with in the literature [12]. Under this
assumption, we are left with(

1 − z/ f 2z − z2/ f
−1/ f 1 − z/ f

)
. (86)

The diagonal elements of this matrix are dimensionless. In
order to make the off-diagonal elements dimensionless, we
write this matrix as

−
(√

z 0
0 1/

√
z

) (
1 − z/ f z/ f − 2

z/ f 1 − z/ f

) (√
z 0

0 1/
√

z

)
.

(87)
Indeed, the matrix in the middle contains dimensionless
elements. The negative sign in front is purely for convenience.
We are then led to study the core matrix

C =
(

x − 1 x − 2
x x − 1

)
. (88)

Here, the important point is that the above matrices can
be written in terms of transformations of the Lorentz group. In
the two-by-two matrix representation, the Lorentz boost along
the z direction takes the form

B(η) =
(

exp (η/2) 0
0 exp (−η/2)

)
, (89)

and the rotation around the y axis can be written as

R(θ) =
(

cos(φ/2) − sin(φ/2)
sin(φ/2) cos(φ/2)

)
, (90)

and the boost along the x axis takes the form

X (χ) =
(

cosh(χ/2) sinh(χ/2)
sinh(χ/2) cosh(χ/2)

)
. (91)

Then the core matrix of equation (88) can be written as

B(η)R(φ)B(−η), (92)

or (
cos(φ/2) −e−η sin(φ/2)

eη sin(φ/2) cos(φ/2)

)
, (93)

if 1 < x < 2. If x is greater than 2, the upper-right element of
the core is positive and it can take the form

B(η)X (χ)B(−η), (94)

or (
cosh(χ/2) e−η sinh(χ/2)

e+η sinh(χ/2) cosh(χ/2)

)
. (95)

The expressions of equations (92) and (94) are a Lorentz
boosted rotation and a Lorentz-boosted boost matrix along the
x direction, respectively. These expressions play the key role in
understanding Wigner’s little groups for relativistic particles.

Let us look at their explicit matrix representations given
in equations (93) and (95). The transition from equations (93)
to (95) requires the upper right element to go through zero.
This can only be achieved through η going to infinity. If we
like to keep the lower-left element finite during this process,
the angle φ and the boost parameter χ have to approach zero.
The process of approaching the vanishing upper-right element
is necessarily a singular transformation. This aspect plays
the key role in unifying the internal space–time symmetries
of massive and massless particles. This is like Einstein’s

E =
√
(pc)2 + m2

0c4 becoming E = pc in the limit of large
momentum.
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On the other hand, the core matrix of equation (88) is an
analytic function of the variable x . Thus, the lens matrix allows
a parametrization which allows the transition from massive
particle to massless particle analytically. The lens optics
indeed serves as the analogue computer for this important
transition in particle physics.

From the mathematical point of view, equations (93)
and (95) represent circular and hyperbolic geometries,
respectively. The transition from one to the other is not a trivial
mathematical procedure. It requires a further investigation.

Let us go back to the core matrix of equation (88). The
x parameter does not appear to be a parameter of Lorentz
transformations. However, the matrix can be written in terms
of another set of Lorentz transformations. This aspect has been
discussed in the literature [8].

11. Multi-lens problem

Let us consider a co-axial system of an arbitrary number of
lenses. Their focal lengths are not necessarily the same, nor
are their separations. We are then led to consider an arbitrary
number of the lens matrix given in equation (81) and an
arbitrary number of the translation matrix of equation (82).
They are multiplied like

T1 L1 T2 L2 T3 L3 · · · TN L N , (96)

where N is the number of lenses.
The easiest way to tackle this problem is to use the Lie-

algebra approach. Let us start with the generators of the Sp(2)
group:

B1 = 1
2

(
i 0
0 −i

)
, B2 = 1

2

(
0 i
i 0

)
,

J = 1
2

(
0 −i
i 0

)
.

(97)

Since the generators are pure imaginary, the transformation
matrices are real.

On the other hand, the L and T matrices of equations (81)
and (82) are generated by

X1 =
(

0 i
0 0

)
, X2 =

(
0 0
i 0

)
. (98)

If we introduce the third matrix

X3 =
(

i 0
0 −i

)
, (99)

all three matrices form a closed set of commutation relations:

[X1, X2] = iX3, [X1, X3] = −iX1,

[X2, X3] = iX2.
(100)

Thus, these generators also form a closed set of Lie algebra
generating real two-by-two matrices. What group would this
generate? The answer has to be Sp(2). The truth is that the
three generators given in equation (100) can be written as linear
combinations of the generators of the Sp(2) group given in
equation (97) [7]. Thus, the Xi matrices given above can also
act as the generators of the Sp(2) group, and the lens-system

matrix given in equation (96) is a three-parameter matrix of
the form of equation (39) with real elements.

The resulting real matrix is written as(
A B
C D

)
, (101)

and is called the ABC D matrix. The question then is how
many lenses are need to give the most general form of the
ABC D matrix [35]. This matrix has three independent
parameters.

According to Bargmann [36], this three-parameter matrix
can be decomposed into(

cos(α/2) − sin(α/2)
sin(α/2) cos(α/2)

)(
eγ /2 0

0 e−γ /2

)

×
(

cos(β/2) − sin(β/2)
sin(β/2) cos(β/2)

)
, (102)

which can be written as the product of one symmetric matrix
resulting from(

cos(α/2) − sin(α/2)
sin(α/2) cos(α/2)

)(
eγ /2 0

0 e−γ /2

)

×
(

cos(α/2) sin(α/2)
− sin(α/2) cos(α/2)

)
(103)

and one rotation matrix:(
cos[(β + α)/2] − sin[(β + α)/2]
sin[(β + α)/2] cos[(β + α)/2]

)
. (104)

The expression in equation (103) is a symmetric matrix, while
that of equation (104) is an orthogonal one. We can then
decompose each of these two matrices into the lens and
translation matrices. The net result is that we do not need
more than three lenses to describe the lens system consisting
of an arbitrary number of lenses. The detailed calculations are
given in [7].

12. Laser cavities

In a laser cavity, the optical ray makes round trips between two
mirrors. One cycle is therefore equivalent to a two-lens system
with two identical lenses and the same distance between the
lenses. Let us rewrite the matrix corresponding to the one-lens
system given in equation (88).

C =
(

x − 1 x − 2
x x − 1

)
. (105)

Then one complete cycle consists of C2.
Here, the cycle starts from the midpoint between the two

mirrors [7], unlike the traditional approach to this problem
where the cycle starts from the surface of one of the two
mirrors [37]. By choosing the midpoint, we can eliminate the
auxiliary flat mirror between them needed in the traditional
approach. This problem was discussed in detail in [7].

For N cycles, the expression should be C2N . This
calculation, using the above expression, will not lead to a
manageable form. However, we can resort to the expressions
of equations (92) and (94). Then one cycle consists of

C2 = [B(η)R(φ/2)B(−η)][B(η)R(φ/2)B(−η)]
= B(η)R(φ)B(−η), (106)
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if the upper-right element is negative. If it is positive, the
expression should be

C2 = [B(η)X (χ/2)B(−η)][B(η)X (χ/2)B(−η)]
= B(η)X (χ)B(−η). (107)

If these expressions are repeated N times,

C2N = B(η)R(Nφ)B(−η), (108)

if the upper-right element is negative. If it is positive, the
expression should be

C2N = B(η)X (Nχ)B(−η). (109)

As N becomes large, cosh(Nχ) and sinh(Nχ) become very
large; the beam deviates from the laser cavity. Thus, we have
to restrict ourselves to the case given in equation (108).

The core of the expression of equation (108) is the rotation
matrix

R(Nφ) = [R(φ)]N . (110)

This means that one complete cycle in the cavity corresponds
to the rotation matrix R(φ). The rotation continues as the beam
continues to repeat the cycle.

Let us go back to equation (106). The expression
corresponds to a Lorentz boosted rotation, or bringing a
moving particle to its rest frame, rotate, and boost back to
the original momentum. The rotation associated with the
momentum-preserving transformation is called the Wigner
little-group rotation, which is related to the Wigner rotation
commonly mentioned in the literature [7].

13. Multi-layer optics

The most efficient way to study multi-layer optics is to use
the S-matrix formalism [10]. This formalism is also based on
two-by-two matrices, and we can write(

ψ1

ψ2

)
=

(
A B
C D

)(
ψ3

0

)
, (111)

where ψ1, ψ2 and ψ3 are the incoming, reflected and
transmitted beams. Here we use the matrix notion ABC D
for the two-by-two S matrix.

We consider a system of two different optical layers. For
convenience, we start from the boundary from medium 2 to
medium 1. We can write the boundary matrix as [38]

B(η) =
(

cosh(η/2) sinh(η/2)
sinh(η/2) cosh(η/2)

)
, (112)

taking into account both the transmission and reflection of
the beam. The parameter η is of course determined by the
transmission and reflection coefficient at the surface. This
problem was studied in depth by Monzon et al [38], and their
research on this subject is still continuing.

As the beam goes through the medium 1, the beam
undergoes the phase shift represented by the matrix

P(φ1) =
(

e−iφ1/2 0
0 eiφ1/2

)
. (113)

When the wave hits the surface of the second medium, the
boundary matrix is

B(−η) =
(

cosh(η/2) − sinh(η/2)
− sinh(η/2) cosh(η/2)

)
, (114)

which is the inverse of the matrix given in equation (112).
Within the second medium, we write the phase-shift matrix as

P(φ2) =
(

e−iφ2/2 0
0 eiφ2/2

)
. (115)

Then, when the wave hits the first medium from the second,
we have to go back to equation (112). Thus, the one cycle
consists of(

cosh(η/2) sinh(η/2)
sinh(η/2) cosh(η/2)

) (
e−iφ1/2 0

0 eiφ1/2

)

×
(

cosh(η/2) − sinh(η/2)
− sinh(η/2) cosh(η/2)

) (
e−iφ2/2 0

0 eiφ2/2

)
.

(116)

The above matrices contain complex numbers. However,
it is possible to transform simultaneously(

cosh(η/2) sinh(η/2)
sinh(η/2) cosh(η/2)

)
(117)

to (
exp (η/2) 0

0 exp (−η/2)
)
, (118)

and transform (
e−iφi /2 0

0 eiφi /2

)
(119)

to (
cos(φi/2) − sin(φi/2)
sin(φi/2) cos(φi/2)

)
, (120)

using a conjugate transformation, as is shown in appendix C.
It is also possible to transform these expressions back to
their original forms. This transformation property has been
discussed in detail in [11], and also in appendix C of the present
review.

As a consequence, the matrix of equation (116) becomes(
eη/2 0

0 e−η/2

)(
cos(φ1/2) − sin(φ1/2)
sin(φ1/2) cos(φ1/2)

)

×
(

e−η/2 0
0 eη/2

)(
cos(φ2/2) − sin(φ2/2)
sin(φ2/2) cos(φ2/2)

)
. (121)

In the above expression, the first three matrices are of the
same mathematical form as that of the core matrix for the
one-lens system given in equation (92). The fourth matrix
is an additional rotation matrix. This makes the mathematics
of repetition more complicated, but this has been done [12].

As a consequence the net result becomes

B(µ)R(Nα)B(−µ), (122)

or
B(µ)X (Nξ)B(−µ), (123)

where the parameters µ, α and ξ are to be determined from the
input parameters η, φ1 and φ2. Detailed calculations are given
in [12].

It is interesting to note that the Lorentz group can serve as
a computational device also in multi-layer optics.
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14. Concluding remarks

We have seen in this report that the Lorentz group provides
convenient calculational tools in many branches of ray optics.
The reason is that ray optics is largely based on two-by-two
matrices. These matrices also constitute the group SL(2, c)
which serves as the universal covering group of the Lorentz
group.

The optical instruments discussed in this report are the
fundamental components in optical circuits. In the world of
electronics, electric circuits form the fabric of the system.
In the future high-technology world, optical components will
hold the key to technological advances. Indeed, the Lorentz
group is the fundamental language for the new world.

It is by now well known that the Lorentz group is the basic
language for quantum optics. Coherent and squeezed states
are representations of the Lorentz group. It is challenging to
see how the Lorentz nature of the above-mentioned optical
components will manifest itself in the quantum world.

The Lorentz group was introduced to physics by Einstein
and Wigner to understand the space–time symmetries of
relativistic particles and the covariant world of electromagnetic
fields. It is gratifying to note that the Lorentz group can serve
as the language common both to particle physics and optical
sciences.

Appendix A. Lorentz-squeezed harmonic oscillators

The purpose of this appendix is to expand the third row of
table 1 using the covariant formalism of harmonic oscillators.
We explain first what this formalism does for the covariant
picture of relativistic extended particles. We then point out
that this oscillator formalism can serve as the basic language
for two-mode coherent states [28], namely squeezed states of
light.

The concept of localized probability distribution is the
backbone of the present formulation of quantum mechanics.
Of course, we would like to have more deterministic form
of dynamics, and efforts have been and are still being made
along this direction. One of the most serious problems with
this probabilistic interpretation is whether this concept of
probability is consistent with special relativity.

In a given Lorentz frame, we know how to do quantum
mechanics with a localized probability distribution. How
would this distribution look to an observer in a different
Lorentz frame?

• Would the probability distribution appear the same to this
observer?

• If different, how is the probability distribution distorted?
• Is the total probability conserved?
• The Lorentz boost mixes up the spatial coordinate with the

time variable. What role does the time-separation variable
play in defining the boundary condition for localization
and the probability distribution?

We can answer some or all of the above questions only if
we construct covariant wavefunctions, namely wavefunctions
which can be Lorentz boosted. It is easy to construct
these wavefunctions if we know the answer. In the initial
development of quantum mechanics, the harmonic oscillator

played the pivotal role. Thus, it is clear to us that if there
is a wavefunction which can be Lorentz-boosted, this has to
be the harmonic oscillator wavefunction. Until we construct
wavefunctions which can be Lorentz-transformed, we cannot
say that quantum mechanics is consistent with relativity.
Indeed, we should examine this problem before attempting
to invent more definitive quantum mechanics.

Since the hadron, in the quark model, is a bound-state of
quarks [39], Feynman et al [40], raised the following question
in connection with the quark model for hadrons: the hadronic
spectrum can indeed be explained in terms of the degeneracy
of three-dimensional harmonic oscillator wavefunctions in
the hadronic rest frame; however, what happens when the
hadron moves? Indeed, Feynman et al wrote a Lorentz-
invariant differential equation whose solutions can become
non-relativistic wavefunctions if the time-separation variable
can be ignored.

This Lorentz-invariant differential equation is a four-
dimensional partial differential equation, with many different
solutions depending on the separation of variables and
boundary conditions. There is a set of normalizable solutions
which can serve as a representation space for Wigner’s little
group for massive particles [1, 17]. We can start with this set
of solutions and give physical interpretations, especially to the
time-separation variable.

Finally, is the covariance of the oscillator wavefunction
consistent with what we observe in the real world? Here
again, Feynman plays the key role. While the quark model
can be fit into the oscillator scheme in the hadronic rest frame,
Feynman in 1969 came up with the idea of partons [41].
According to Feynman’s parton model, the hadron consists
of an infinite number of partons when it moves with a velocity
close to that of light. Quarks and partons are believed to be
the same particles, but their properties are totally different.
While the quarks inside the hadron interact coherently with
external signals, partons interact incoherently. If the partons
are Lorentz-boosted quarks, does the Lorentz boost destroy the
coherence?

Before 1964 [39], the hydrogen atom was used for
illustrating bound states. These days, we use hadrons which
are bound states of quarks. Let us use the simplest hadron
consisting of two quarks bound together with an attractive
force, and consider their space–time positions xa and xb, and
use the variables

X = (xa + xb)/2, x = (xa − xb)/2
√

2. (124)

The four-vector X specifies where the hadron is located in
space and time, while the variable x measures the space–time
separation between the quarks. According to Einstein, this
space–time separation contains a time-like component which
actively participates as can be seen from(

z′
t ′

)
=

(
cosh η sinh η
sinh η cosh η

)(
z
t

)
, (125)

when the hadron is boosted along the z direction. In terms of
the light-cone variables defined as [42]

u = (z + t)/
√

2, v = (z − t)/
√

2, (126)

S468



Review: Lorentz group in classical ray optics

the boost transformation of equation (125) takes the form

u ′ = eηu, v′ = e−ηv. (127)

The u variable becomes expanded while the v variable becomes
contracted.

Does this time-separation variable exist when the hadron
is at rest? ‘Yes’, according to Einstein. In the present form of
quantum mechanics, we pretend not to know anything about
this variable. Indeed, this variable belongs to Feynman’s rest
of the universe. In this report, we shall see the role of this
time-separation variable in the decoherence mechanism.

Also in the present form of quantum mechanics, there is
an uncertainty relation between the time and energy variables.
However, there are no known time-like excitations. Unlike
Heisenberg’s uncertainty relation applicable to position and
momentum, the time and energy separation variables are
c-numbers, and we are not allowed to write down the
commutation relation between them.

How does this space–time asymmetry fit into the world
of covariance [27]. The answer is that Wigner’s O(3)-like
little group is not a Lorentz-invariant symmetry, but is a
covariant symmetry [1]. It has been shown that the time-
energy uncertainty relation applicable to the time-separation
variable fits perfectly into the O(3)-like symmetry of massive
relativistic particles [17].

The c-number time-energy uncertainty relation allows
us to write down a time distribution function without
excitations [17]. If we use Gaussian forms for both space
and time distributions, we can start with the expression

(
1

π

)1/2

exp

{
−1

2

(
z2 + t2

)}
(128)

for the ground-state wavefunction. What do Feynman et al say
about this oscillator wavefunction?

In their classic 1971 paper [40], Feynman et al start with
the following Lorentz-invariant differential equation.

1

2

{
x2
µ − ∂2

∂x2
µ

}
ψ(x) = λψ(x). (129)

This partial differential equation has many different solutions
depending on the choice of separable variables and boundary
conditions. Feynman et al insist on Lorentz-invariant solutions
which are not normalizable. On the other hand, if we insist
on normalization, the ground-state wavefunction takes the
form of equation (128). It is then possible to construct a
representation of the Poincaré group from the solutions of the
above differential equation [17]. If the system is boosted, the
wavefunction becomes

ψη(z, t) =
(

1

π

)1/2

exp

{
−1

2

(
e−2ηu2 + e2ηv2)}. (130)

This wavefunction becomes equation (128) if η becomes
zero. The transition from equations (128) to (130) is a
squeeze transformation. The wavefunction of equation (128)
is distributed within a circular region in the uv plane, and
thus in the zt plane. On the other hand, the wavefunction
of equation (130) is distributed in an elliptic region with the

β =0
z

t

β =0.8

Figure A.1. Effect of the Lorentz boost on the space–time
wavefunction. The circular space–time distribution at the rest frame
becomes Lorentz-squeezed to become an elliptic distribution. The
first version of this figure consists of two ellipses in the 1973 paper
by Kim and Noz [27]. This figure consisting of a circle and a ellipse
is from the 1978 paper by Kim et al [43].

light-cone axes as the major and minor axes, respectively. If η
becomes very large, the wavefunction becomes concentrated
along one of the light-cone axes. Indeed, the form given
in equation (130) is a Lorentz-squeezed wavefunction. This
Lorentz-squeeze mechanism is illustrated in figure A.1.

There are many different solutions of the Lorentz invariant
differential equation of equation (129). The solution given in
equation (130) is not Lorentz invariant but is covariant. It is
normalizable in the t variable, as well as in the space-separation
variable z. How can we extract probability interpretation from
this covariant wavefunction? This issue has been discussed
thoroughly in the literature [17].

Another pressing problem in physics is that hadrons, like
the proton, can be regarded as quantum bound states of quarks
when they move slowly. However, they appear like collections
of partons when they move with velocity very close to that of
light [41]. Since the quarks and partons have quite different
properties, it is a challenging problem in modern physics to
show that they are the same but appear different depending on
the observer’s Lorentz frame.

It has been shown that this Lorentz-squeezed wavefunc-
tion can explain the quark model and the parton model as two
different manifestations of one covariant entity [44]. Thus,
the covariant harmonic oscillator can occupy the third row of
table 1.

The Lorentz-squeezed wavefunction can be written as

ψη(z, t) = 1√
π

exp

{
−1

4

[
eη(z − t)2 + e−η(z + t)2

]}
. (131)

As was discussed in the literature for several different
purposes [2, 17, 45], this wavefunction can be expanded as

ψη(z, t) = 1

cosh η

∑
k

(
tanh

η

2

)k
φk(z)φk(t). (132)

This is an expansion in terms of the oscillations along two
different directions. If those directions are x1 and x2, we can
write equation (132) as

ψη(x1, x2) = 1

cosh η

∑
k

(
tanh

η

2

)k
φk(x1)φk(x2). (133)
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The mathematics of harmonic oscillators can be translated
into second-quantized Fock space. In the Fock space, this
expression describes the two-photon coherent state discussed
first by Yuen [28].

Appendix B. Euler versus Lie representations

The group SL(2, c) consists of two-by-two unimodular
matrices whose elements are complex. There are therefore
six independent parameters, and thus six generators of the Lie
algebra. This group is locally isomorphic to the six-parameter
Lorentz group or O(3, 1) applicable to the Minkowskian space
of three space-like directions and one time-like direction.

We can construct representations of the group starting
from the Lie algebra given in sections 2 and 3. We can construct
the representation by using a method similar to what Goldstein
did for the three-dimensional rotation group in terms of the
Euler angles [13]. There are three-generators for the rotation
group, but Goldstein starts with rotations around the z and x
directions. Rotations around the y axis and the most general
form for the rotation matrix can be constructed from repeated
applications of those two starting matrices. Let us call this
type of approach the ‘Euler construction’.

In constructing the Lorentz group, we observe first that
we need rotations around two different directions. As for the
boost, we need boosts along one given direction since boots
along other directions can be achieved by rotations.

There are three basic advantages of this approach. First,
the number of ‘starter’ matrices is less than the number of
generators. For example, we need only two starters for the
three-parameter rotation group. In our case, we started with
two matrices for the three-parameter group Sp(2) and also for
SU (1, 1). Second, each starter matrix takes a simple form and
has its own physical interpretation.

The third advantage can be stated in the following way.
Repeated applications of the starter matrices will lead to
a very complicated expression. However, the complicated
expression can be decomposed into the minimum number of
starter matrices. For example, this number is three for the
three-dimensional rotation group. This number is also three
for SU (2) and Sp(2). We call this the Euler decomposition.
The present paper is based on both the Euler construction and
the Euler decomposition.

Among the several useful Euler decompositions, the
Iwasawa decomposition plays an important role in the Lorentz
group. We have seen in this paper what the decomposition
does to the two-by-two matrices of Sp(2), but it has been an
interesting subject since Iwasawa’s first publication on this
subject [29]. It is beyond the scope of this review to present
a historical review of the subject. However, we would like to
point out that there are areas of physics where this important
mathematical theorem was totally overlooked.

For instance, in particle theory, Wigner’s little groups
dictate the internal space–time symmetries of massive and
massless particles which are locally isomorphic to O(3) and
E(2), respectively [1]. The little group is the maximal
subgroup of the Lorentz group whose transformations do not
change the four-momentum of a given particle [34]. The
E(2)-like subgroup for massless particles is locally isomorphic
to the subgroup of SL(2, c) which can be started from one

of the matrices in equation (149) and the diagonal matrix
of equation (113). Thus there was an underlying Iwasawa
decomposition while the E(2)-like subgroup was decomposed
into rotation and boost matrices [46], but the authors did not
know this.

In optics, there are two-by-two matrices with one
vanishing off-diagonal element. It was generally known that
this has something to do with the Iwasawa effect, but Simon and
Mukunda [47] and Han et al [4] started treating the Iwasawa
decomposition as the main issue in their papers on polarized
light.

In para-axial lens optics, the matrices of the form given
in equation (149) are the starters, and repeated applications of
those two starters will lead to the most general form of Sp(2)
matrices. It had been a challenging problem since 1985 [35]
to write the most general two-by-two matrix in lens optics in
terms the minimum number of those starter matrices. This
problem has been solved recently [7], and the central issue in
the problem was the Iwasawa decomposition.

Appendix C. Conjugate transformations

The core matrix of equation (88) contains the chain of the
matrices

W =
(

e−iφ 0
0 eiφ

)(
cosh η sinh η
sinh η cosh η

) (
e−iξ 0

0 eiξ

)
.

(134)
The Lorentz group allows us to simplify this expression under
certain conditions.

For this purpose, we transform the above expression into
a more convenient form, by taking the conjugate of each of the
matrices with

C1 = 1√
2

(
1 i
i 1

)
. (135)

Then C1W C−1
1 leads to(

cosφ − sinφ
sinφ cosφ

)(
cosh η sinh η
sinh η cosh η

) (
cos ξ − sin ξ
sin ξ cos ξ

)
.

(136)
In this way, we have converted W of equation (134) into a real
matrix, but it is not simple enough.

Let us take another conjugate with

C2 = 1√
2

(
1 1

−1 1

)
. (137)

Then the conjugate C2C1W C−1
1 C−1

2 becomes(
cosφ − sin φ
sinφ cosφ

) (
eη 0
0 e−η

) (
cos ξ − sin ξ
sin ξ cos ξ

)
. (138)

The combined effect of C2C1 is

C = C2C1 = 1√
2

(
eiπ/4 eiπ/4

−e−iπ/4 e−iπ/4

)
, (139)

with

C−1 = 1√
2

(
e−iπ/4 −eiπ/4

e−iπ/4 eiπ/4

)
. (140)
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After multiplication, the matrix of equation (138) will take
the form

V =
(

A B
C D

)
, (141)

where A, B,C and D are real numbers. If B and C vanish, this
matrix will become diagonal, and the problem will become too
simple. If, on the other hand, only one of these two elements
become zero, we will achieve a substantial mathematical
simplification and will be encouraged to look for physical
circumstances which will lead to this simplification.

Let us summarize. We started in this section with the
matrix representation W given in equation (134). This form
can be transformed into the V matrix of equation (138) through
the conjugate transformation

V = CW C−1, (142)

where C is given in equation (139). Conversely, we can recover
the W representation by

W = C−1V C. (143)

For calculational purposes, the V representation is much easier
because we are dealing with real numbers. On the other hand,
the W representation is of the form for the S-matrix we intend
to compute. It is gratifying to see that they are equivalent.

Let us go back to equation (138) and consider the case
where the angles φ and ξ satisfy the following constraints:

φ + ξ = 2θ, φ − ξ = π/2, (144)

thus
φ = θ + π/4, ξ = θ − π/4. (145)

Then in terms of θ , we can reduce the matrix of equation (138)
to the form(

(cosh η) cos(2θ) sinh η − (cosh η) sin(2θ)
sinh η + (cosh η) sin(2θ) (cosh η) cos(2θ)

)
.

(146)
Thus the matrix takes a surprisingly simple form if the
parameters θ and η satisfy the constraint

sinh η = (cosh η) sin(2θ). (147)

Then the matrix becomes(
1 0

2 sinh η 1

)
. (148)

This aspect of the Lorentz group is known as the Iwasawa
decomposition [29], and has been discussed in the optics
literature [4, 11, 47].

Matrices of this form are not so strange in optics. In para-
axial lens optics, the translation and lens matrices are written
as (

1 u
0 1

)
, and

(
1 0
u 1

)
, (149)

respectively. These matrices have the following interesting
mathematical property [3],(

1 u1

0 1

)(
1 u2

0 1

)
=

(
1 u1 + u2

0 1

)
(150)

and (
1 0
u1 1

)(
1 0
u1 1

)
=

(
1 0

u1 + u2 1

)
. (151)

We note that the multiplication is commutative, and the
parameter becomes additive. These matrices convert
multiplication into addition, as logarithmic functions do.

References

[1] Wigner E 1939 Ann. Math. 40 149
[2] Kim Y S and Noz M E 1991 Phase Space Picture of Quantum

Mechanics (Singapore: World Scientific)
[3] Han D, Kim Y S and Noz M E 1997 Phys. Rev. E 56 6065
[4] Han D, Kim Y S and Noz M E 1991 Phys. Rev. E 60 1036
[5] Born M and Wolf E 1980 Principles of Optics 6th edn

(Oxford: Pergamon)
[6] Brosseau C 1998 Fundamentals of Polarized Light (New York:

Wiley)
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