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Abstract

Spline-based approaches have been applied to inverse
problems in several areas. If proper spline bases are cho-
sen, dimension of the problem can be significantly reduced
while increasing estimation accuracy and robustness of the
inverse procedure. We proposed Multivariate Adaptive Re-
gression Splines (MARS) based methods for the solution of
the inverse electrocardiography (ECG) problem consider-
ing the temporal and spatial evolution of the epicardial po-
tentials. Our model defines the spline functions in terms of
spatial parameters based on the given epicardial surface
geometry. Thus, any change in geometry can alter the con-
structed model for the purpose of obtaining an accurate
estimate. In this study, we focused on the effects of the ge-
ometric model inaccuracies on the proposed MARS-based
approach.

1. Introduction

Inverse electrocardiography (ECG), also known as
electrocardiographic imaging (ECGI), is a non-invasive
method in which the electrical activity of the heart is es-
timated using a large number of electrodes placed on the
anterior and posterior torso surfaces, and a mathematical
model that defines the relationship between torso measure-
ments and heart’s bioelectrical source model. Different
from the standard 12-lead ECG, which produces scalar
data changing over time, ECGI characterises the cardiac
electrical activity by means of equipotential contours prop-
agating over the heart surface, their shape and compact-
ness, propagation patterns, magnitudes, spatial distribu-
tions and location of the extrema. Therefore, ECGI pro-
vides more comprehensive and quantitative information
than the current non-invasive clinical practice and has a po-
tential to be considered as a non-invasive, inexpensive ex-
amination technique for assessing patients with suspected
cardiac abnormalities [1].

Spline-based approaches have been applied to inverse
problems in several areas [2–5]. If proper spline bases are

chosen, dimension of the problem can be significantly re-
duced while increasing estimation accuracy and robustness
of the inverse procedure [5]. However, except the recently
published studies [6–8], there are not many spline-based
approaches proposed in the literature to solve the inverse
ECG problems. Our proposed model differs from the stud-
ies presented in [6–8] such that; the underlying functional
relationship between dependent and independent variables
(i.e. number of spline functions in the model) do not need
to be determined in advance to estimate the unknown func-
tion to be reconstructed. In our case, dependent and in-
dependent variables refer to the epicardial potentials and
spatial coordinate variables respectively. The spline func-
tions are defined in terms of spatial parameters based on
the given epicardial surface geometry. We supply the max-
imum allowed model size, epicardial surface geometry,
torso measurements and lack-of-fit criteria to the MARS
algorithm as inputs, and it constructs the initial model.
Then, the complexity of the model is decreased in the prun-
ing step to obtain the best possible functional representa-
tion. The construction of spline basis collection is depen-
dent on the given epicardial surface geometry, but the se-
lection of those splines for the model from this collection
is dependent on the defined lack-of-fit criteria. Thus, any
change in geometry or measurements can alter the con-
structed model for the purpose of obtaining an accurate
estimate. Consequently, the constructed epicardial poten-
tial distribution model may possess different functional re-
lationships at each time instant in order to obtain a non-
over-fitting model that yields minimum lack-of-fit error.
Computational electrocardiographic models based on re-
alistic human torso include many model parameters. Be-
cause of the assumptions and simplification of the ge-
ometries, errors are associated to those model parameter
[9]. In this study, we carried out simulations with mod-
elling errors in the heart-torso geometry and evaluated
the effects of these errors on the proposed MARS-based
method. Estimation results were compared with the zero-
order Tikhonov regularisation solutions.
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2. MARS

Multivariate Adaptive Regression Splines (MARS) is a
non-parametric regression procedure that makes no spe-
cific assumption about the underlying functional relation-
ship between the dependent and independent variables to
estimate general functions of high-dimensional arguments,
given sparse data [10, 11].

MARS is an adaptive procedure because the selection
of the basis functions (BFs) is data-based and specific to
the given problem at hand. A special advantage of MARS
lies in its ability to estimate the contributions of the ba-
sis functions so that both the additive and the interactive
effects of the predictors are allowed to determine the re-
sponse variable [12]. MARS uses expansions in piecewise
linear one-dimensional basis functions of the form (v−τ)+
and (τ − v)+, where `̀ (·)+ ´́ means the positive part:

(v − τ)+ =

{
v − τ, if v > τ,
0, otherwise, (1)

(τ − v)+ =

{
τ − v, if v < τ,
0, otherwise. (2)

The relation between the input and the response in the
general model is expressed as:

T = f(V) + ε, (3)

where T is a response variable, V = (V1, V2, . . . , Vp)T

is a vector of predictors and ε is the additive stochas-
tic error term in the observation with zero mean and fi-
nite variance. MARS builds reflected pairs for each in-
put Vj (j = 1, 2, . . . , p) with p-dimensional knots τi =
(τi1, τi2, . . . , τip)T at, or just nearby, each input data
vectors ṽi = (ṽi, ṽi, . . . , ṽip)T of that input (i =
1, 2, . . . , N). Then, the collection of BFs is:

ϕ := {(Vj − τ)+, (τ − Vj)+ | τ ∈ {ṽ1j , ṽ2j , . . . , ṽNj} ,
j ∈ {1, 2, . . . , p}}.

(4)

The fundamental idea of MARS is to use products and,
then, the combination of the linear truncated basis func-
tions to approximate the model. Thus, the functions of
MARS consist of single spline functions or the product of
two or more of the truncated power functions to allow for
the interactions.

3. Method

In this study, we modelled the potential distribution on
the epicardial surface based on MARS, using the heart
geometry and the body surface measurements. Epicar-
dial potential distribution actually is a continuous function

of time, therefore methods that only exploit spatial con-
straints without considering the temporal evolution of po-
tentials are not ideal. Consequently, simultaneous use of
spatial and temporal constraints could improve the estima-
tion accuracy. The proposed approach will be called ST-
MARS (spatio-temporal MARS) in the rest of the paper.

We treated and modelled the potential distribution on
the epicardial surface as a function f(p) defined over a
3-dimensional epicardial surface. Consequently, the epi-
cardial potential vector x =[x1, x2, . . . , xN ]T can be ex-
pressed as a collection of function values f(p) at prede-
fined coordinates pi (i = 1, 2, ..., N):

xi = f(pi) (pi ∈ Ω). (5)

Here, Ω ∈ R3 denotes the 3-dimensional epicardial sur-
face and p stands for coordinate vector of any point on this
surface. We then write the linear inverse ECG problem as
follows:

y = Ax + n, (6)

If we treat yi (i = 1, 2, . . . ,M) as the responses, and
pj (j = 1, 2, . . . , N) as the predictor values, then MARS
method can be applied to estimate the function f(p). Thus,
the MARS estimate f̂(p) of the unknown function f(p)
can be written in the following form:

f̂(p) = θ +

L∑
l=1

θlψl(p). (7)

Here, L is the number of basis functions in the model,
ψl (l = 1, 2, . . . , L) are linearly independent BFs from ϕ
or products of two or more such functions and θl are the
unknown coefficients for the lth basis function or for the
constant 1 (l = 0). In light of the equations given above,
the ith torso measurement yi can be written as:

yi =

N∑
j=1

aij f̂(pj) + ni, (8)

If we substitute Eqn. (7) into Eqn. (8):

yi =

N∑
j=1

aij

(
θ0 +

L∑
l=1

θlψl(pj)

)
+ ni. (9)

Then, Eqn. (6) can be expressed based on spline functions
and corresponding coefficients as:

y = AΨθ + n, (10)

Here, Ψ is a matrix composed of spline bases, which are
constructed based on epicardial surface geometry, θ repre-
sents a corresponding coefficient vector, A is the forward
transfer matrix, y is the torso measurements and n is the
measurement noise. In other words, the Ψθ term is the
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approximation of the unknown epicardial potential distri-
bution over the epicardial surface.

Since the problem given in Eqn. (10) is ill-posed, the
solution needs to be constrained. We proposed the follow-
ing problem to estimate the spatio-temporal behaviour of
the epicardial potentials.

minimize
x

‖y−Ax‖22+λ1‖x‖22+λ2‖x− x̂k−‖22. (11)

Here, x̂k− is the estimated epicardial potential vector for
the previous time instant, and the initial state is x̂ = 0.
λ1, λ2 ≥ 0 are the corresponding regularisation parame-
ters.

4. Results and Conclusion

The relationship between the body surface potential
measurements (BSPM) and epicardial potentials given in
Eq. 6 is defined by the solution of the forward ECG prob-
lem. Constructing a forward problem requires heart-torso
model that contains inhomogeneities with their geometries
and conductivity values. On the other hand, since heart and
torso are irregular and complex surfaces, numerical meth-
ods are employed to calculate the forward problem. How-
ever, imaging modalities like CT and MRI are not perfect,
so errors in the locations boundaries or size of the organs
may occur. Consequently, it is important to test the robust-
ness of the regularisation against the modelling errors.

In this part, we carried out simulations with mod-
elling errors in the heart geometry to evaluate the perfor-
mance of ST-MARS method under various circumstances.
In all experiments BSPM were simulated using forward
transfer matrix corresponding to exact heart-torso geom-
etry, and by adding 30 dB SNR Gaussian noise to noise-
free BSPMs. The results were compared with classical
zero-order Tikhonov solutions. For comparison purposes
we presented the estimation result obtained by error free
model in Table 1.

In order to quantitatively compare accuracy of the in-
verse ECG solution, we utilised correlation coefficient
(CC) that measure the similarity of potential patterns be-
tween true and estimated epicardial potentials. The corre-
lation coefficient is defined as:

CC =

∑N
i=1 (xi − x̄i)

(
x̂i − ¯̂xi

)√∑N
i=1 (xi − x̄i)2

∑N
i=1

(
x̂i − ¯̂xi

)2 . (12)

Here, xi, x̂i are the true and the estimated potentials
and x̄i, ¯̂xi refers to the mean potential values on the ith

node of the epicardial surface respectively. In this study,
CC was calculated at each time instant, and then, mean
and standard deviation values were obtained over time for
comparison of results.

Table 1. Estimation mean correlations for error free models.

Method Test data 1 Test data 2
ST-MARS 0.70± 0.24 0.73± 0.15
Tikhonov 0.60± 0.30 0.63± 0.21

• Variation in Forward Transfer Matrix: This simulation
mimics the inaccuracy in the model by adding 30 dB SNR
Gaussian noise into the forward transfer matrix.

Table 2. Estimation mean correlations if the forward transfer matrix
contaminated by 30 dB SNR noise.

Method Test data 1 Test data 2
ST-MARS 0.70± 0.24 0.72± 0.16
Tikhonov 0.52± 0.30 0.60± 0.20

• Variation in Size of the Heart: In order to observe the
sensitivity of the estimations to heart size in the model,
scaled heart geometry and corresponding forward transfer
matrix were utilised for the inverse solution procedure.

Table 3. Estimation mean correlations for ST-MARS method for dif-
ferent heart sizes.

Heart size Test data 1 Test data 2
0.7 0.65± 0.24 0.69± 0.14
0.9 0.66± 0.22 0.68± 0.12
1.2 0.64± 0.23 0.66± 0.13
1.4 0.62± 0.23 0.64± 0.14

Table 4. Estimation mean correlations for Tikhonov method for differ-
ent heart sizes.

Heart size Test data 1 Test data 2
0.7 0.47± 0.27 0.57± 0.23
0.9 0.57± 0.27 0.61± 0.19
1.2 0.57± 0.27 0.62± 0.19
1.4 0.57± 0.27 0.62± 0.19

• Variation in Heart Position: Position of the heart inside
the torso is another important factor that can alter the esti-
mation accuracy. We tested its disruptive effect for the in-
verse solution using forward transfer matrices correspond-
ing to shifted heart position in the three main spatial axes.

According to the results given in Tables 1–6, our obser-
vations are as follows:
• In all test cases, mean correlation coefficients of the ST-
MARS estimations were higher or at least equal to the zero
order Tikhonov reconstructions.
• One of the noticeable points about the results is, while
ST-MARS estimations almost were not effected by the 30
dB SNR noise imposed forward transfer matrix, Tikhonov
estimation accuracy degraded especially for test data 1.
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Table 5. Estimation mean correlations for ST-MARS method if heart
position is shifted inside the torso.

Shift Test data 1 Test data 2
+10 in x direction 0.58± 0.21 0.65± 0.11
+10 in y direction 0.59± 0.23 0.62± 0.13
+10 in z direction 0.59± 0.18 0.62± 0.10

Table 6. Estimation mean correlations for Tikhonov methof if heart
position is shifted inside the torso.

Shift Test data 1 Test data 2
+10 in x direction 0.52± 0.23 0.59± 0.17
+10 in y direction 0.57± 0.27 0.62± 0.19
+10 in z direction 0.57± 0.27 0.62± 0.19

• Heart size caused degradation in both method’s esti-
mations accuracies as we expected. While the Tikhonov
method was significantly affected by the smaller heart size,
ST-MARS performance reduced because of extended heart
size.
• The position of the heart more severely decreased the ac-
curacy of the ST-MARS method compared to the Tikhonov
method.

5. Discussions and Future Works

In this study we examined the effects of geometric un-
certainties on the proposed ST-MARS methods. Except
the disturbance on the heart position, ST-MARS method
seems to be more robust against the geometric errors com-
pared to the zero-order Tikhonov method. Our study is
continuing using larger set of experimental data to com-
prehensively understand and investigate the effects of ge-
ometric uncertainties in our approach, such as wave-front
construction and locating pacing site.
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proach to multivariate adaptive regression splines by using
Tikhonov regularization and continuous optimization. TOP
August 2010;18(2):377–395.

Address for correspondence:
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