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Abstract. We discuss quantum effects in the diffusion process which isused to describe the shape
evolution from the touching configuration of fusing two nuclei to a compound nucleus. Applying the
theory with quantum effects to the case where the potential field, the mass and friction parameters
are adapted to realistic values of heavy-ion collisions, weshow that the quantum effects play
significant roles at low temperatures which are relevant to the synthesis of superheavy elements.
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INTRODUCTION

It is now well accepted that it is not sufficient for the two nuclei in heavy-ion collisions to
overcome the Coulomb barrier to form a heavy compound nucleus such as superheavy
elements. This is because the conditional saddle, which should be overcome for two
nuclei to fuse, is located inside the Coulomb barrier for collisions between two heavy
nuclei. This provides an origin of the so-called fusion hindrance phenomena [1]. We
thus need to describe the shape evolution from the touching configuration of fusing two
nuclei to a more compact spherical-like compound nucleus byovercoming a potential
barrier near the conditional saddle point.

A diffusion model has been applied to describing this process, especially to describing
the formation of superheavy elements [2, 3, 4]. In these studies, so far the standard
fluctuation-dissipation relation which holds at high temperatures has been postulated
to relate the diffusion coefficients to the friction coefficients. Although these studies
provide some illuminating information and look to be successful to some extent in the
data analysis, one needs to carefully examine the validity of the standard fluctuation-
dissipation relation in order to apply to the diffusion process at low temperatures which
are relevant to the synthesis of superheavy elements. Sincesuperheavy elements are
stabilized by shell correction energies, one has to synthesize them at reasonably low
excitation energies, that is, at low temperatures as low as 1MeV or below. On the other
hand, the barrier curvature around the conditional saddle point is also of the order of
1 MeV. It is thus likely that quantum effects play an important role in the compound
nucleus formation process, especially in the synthesis of superheavy elements.

One can find a diffusion theory with quantum effects in some literatures. However,
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most of them handle the quantum diffusion process in a potential well. To the contrary,
our problem is the quantum diffusion along a potential barrier. In order to adapt to
this situation, i.e., to the diffusion process along a potential barrier, especially at low
temperatures, we have developed a quantum diffusion theorythat takes the quantum
fluctuation due to the finite curvature of the potential barrier into account [5]. Our theory
incorporates also a memory effect. In Ref. [5], using a simplified model for the potential
barrier, mass and friction parameters, we reported that thequantum effects, especially
memory effects, enhance the probability of overcoming the barrier to form a compound
nucleus compared with that calculated by assuming the standard fluctuation-dissipation
theorem at low temperatures and for the potential curvaturerelevant to the synthesis
of superheavy elements. In Ref. [6], we developed a Langevinequation version of the
quantum diffusion theory. Also, we reformulated so as to introduce the dissipation effect
in a way more suitable to nuclear processes than the Caldeira-Leggett model adopted in
Ref. [5].

In this contribution we discuss quantum effects in the compound nucleus formation
process with more realistic parameters of the potential, mass, and friction and show that
these effects enhance the compound nucleus formation probability at low temperatures
compared with that by the classical diffusion theory using the standard fluctuation-
dissipation relation.

QUANTUM DIFFUSION THEORY

In this section, we explain two aspects of the quantum effects.
The first is that the connection between the diffusion and friction coefficients is

modified from the well known fluctuation-dissipation theorem at high temperatures due
to the quantum fluctuation originating from the finite barrier curvature. For the diffusion
process in a potential well, it is known that the ratio of the diffusion to the friction
coefficients is given by

D
γ
=

1
2

h̄Ωcoth(
h̄Ω
2T

) (1)

if the quantum fluctuation is taken into account. In Eq. (1)D, γ, andT are the diffusion
and friction coefficients and the temperature, respectively. TheΩ is defined by

Ω =

√

V ′′(Rb)

M
, (2)

whereV ′′(Rb) andM are the second derivative of the potential well at the bottomposition
of the potentialRb and the mass parameter, respectively. The relevant formulafor the
diffusion along a potential barrier such as the diffusion process around the conditional
saddle point can be obtained by analytic continuation of Eq.(1) with respect to the
frequency parameterΩ [5, 7, 8]. The result reads,

D
γ
=

1
2

h̄Ωcot(
h̄Ω
2T

), (3)
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FIGURE 1. Correlation function as a function of time.

with

Ω =

√

|V ′′(RB)|

M
, (4)

whereV ′′(RB) is the second derivative of the potential at the barrier top positionRB.
One can easily confirm that both formulas, Eq. (1) and Eq. (3),reduce to the classi-

cal fluctuation-dissipation theorem,D/γ = T , in the high temperature limit where the
thermal fluctuation far dominates the quantum fluctuation.

The second quantum effect is the non-Markovian effect, which leads to a colored
noise problem. The time correlation function is given by [5,6, 9]

〈R(t)R(t ′)〉 = 2γT ·χ(t − t ′), (5)

χ(t − t ′) =

∫ +∞

−∞

dω
2π

e−iω(t−t ′) h̄ω
2T

coth
h̄ω
2T

·C(ω), (6)

to define the property of the random forceR(t). The C(ω) is the cutoff function in
the spectral density of the heat bath which corresponds to the subspace of nuclear
intrinsic degrees of freedom in heavy-ion collisions. We employ the Gaussian form
for the cutoff function,C(ω) = exp

[

−(h̄ω)2/2∆2
]

. We can see from Eq. (6) that the
correlation function reduces to its classical Markovian form, χ(t − t ′)→ δ (t − t ′), if the
temperature is higher than the cutoff energy∆ and if the cutoff energy is sufficiently
high. To the contrary, at low temperatures, the quantum colored noise property of the
random force needs to be seriously considered.

In Fig. 1, we show the correlation function as a function of time for two temperatures,
T = 0.5 MeV (the solid line) and 1.0 MeV (the dotted line). The cutoff energy has been
fixed to be∆ = 15 MeV as in Ref. [6]. At these temperatures, the non-Markovian effect
is significant.
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FIGURE 2. The compound nucleus formation probability as a function ofnuclear temperature. The
systems are100Mo +100Mo (the left panel) and110Pd +110Pd (the right panel) reactions. Note that different
scales are used for the ordinates in the right and left figures.

RESULT

In applying our theory to the compound nucleus formation process we use the liquid
drop model [10] to calculate the potential energy surface inthe space of nuclear defor-
mation, the hydrodynamical mass [11] for the mass parameter, and the one-body dis-
sipation [12] for the friction tenser. The colored noise random force is handled by the
spectral method given in Ref. [13]. We choose the100Mo + 100Mo and110Pd + 110Pd
systems, whose experimental fusion cross sections are available, to examine the quan-
tum effects on the probability of overcoming the conditional saddle to form a compound
nucleus. We use the separation distance between two fragments to describe the dynamics
from inside the Coulomb barrier to inside the conditional saddle and determine its time
evolution by solving the Langevin equation for a single macroscopic variable one hun-
dred thousands times. The other macroscopic degrees of freedom in the two center shell
model parametrization [14] are frozen during the compound nucleus formation process
as; the mass partition parameterα = 0, the deformation parameterδ1 = δ2 = 0, and the
neck parameterε = 0.9. We initiate each trajectory from the touching configuration of
the two fusing nuclei with zero momentum. This corresponds to assuming that a strong
energy dissipation from the macroscopic motion, i.e., the relative motion between the
fusing two fragments, to nuclear intrinsic motions takes place inside the Coulomb bar-
rier. For simplicity, we ignore the change of the temperature of nuclear intrinsic degrees
of freedom during the time evolution of the system.

Figure 2 compares the compound nucleus formation probability as a function of
nuclear temperature calculated by the quantum diffusion theory and by the classical
diffusion theory which postulates the standard fluctuation-dissipation relation for the
100Mo +100Mo (the left panel) and for the110Pd +110Pd (the right panel) reactions. The
solid lines are the results of the quantum diffusion theory,while the dashed lines the
classical diffusion theory. These figures show that quantumeffects become significant at



low temperatures relevant to the experiments to synthesizesuperheavy elements. They
increase the compound nucleus formation probability at lowtemperatures.

SUMMARY

We discussed quantum effects in the formation process of a heavy compound nucleus
described as a diffusion process along a potential barrier.We have shown that the
quantum effects increase the compound nucleus formation probability at low excitation
energies, which are relevant to the synthesis of superheavyelements.

Further developments are needed in various aspects to applythe theory to more realis-
tic problems. One of the essential developments is to generalize the present model which
explicitly handles only one macroscopic variable, i.e., the relative distance between the
colliding fragments, to the diffusion process in a multidimensional space by taking, for
instance, the mass partition into account. This will be crucial to discuss the competition
between the complete fusion and quasi-fission by including quantum effects.
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