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Abstract

We calculate the strong coupling constants gP ∗∗P ∗π, where P ∗∗ (D∗∗, B∗∗) is the

1+ p-wave state, in the framework of the light cone QCD sum rules, and using

these values of gP ∗∗P ∗π, we compute the hadronic decay widths for D∗∗ → D∗ π and

B∗∗ → B∗ π.
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1 Introduction

The main goal of the future c - τ andB - meson factories is a deeper and more comprehensive

investigation of the properties of the heavy mesons, containing charm and beauty quarks.

In particular, search for the excited states of D and B mesons and their decay modes

constitute one of the main research program of the above mentioned factories, and can play

an essential role for understanding the dynamics of the excited states.

In general, for the interpretation of the experimental data from heavy meson physics, we

need to know the large distance, i.e., nonperturbative effects. For example, for the exclusive

decays which can easily be measured experimentally, we need a more accurate estimation

of the form factors and other hadronic matrix elements that are described by the long

distance effects, thus one needs a method which takes into account the nonperturbative

(long distance) effects. Among the different approaches in estimating the large distance

effects, the QCD sum rule method [1] occupies a special place, since this method is based

on the first principles of QCD and the fundamental QCD Lagrangian.

In this work we use a version of the QCD sum rule, namely the light cone QCD sum

rule. This method is based on the Wilson Expansion of the T -product of currents near

light cone, in terms of different non-local operators. These operators are characterized by

their twists rather than their dimensions. Matrix elements of the non-local operators in

the variable external field are identified with a set of the wave functions of increasing twist,

and replace the vacuum expectation value of local operators that appear in the traditional

sum rule method. The form of wave functions are restricted by the conformal invariance of

QCD. More about the details of this method and its applications can be found elsewhere

in the literature [2]-[19].

In this article this method is used for the calculation of the strong coupling constants

gP ∗∗P ∗π of the excited positive parity meson decays, where P ∗∗(P ∗) is the 1+(1−) meson

state. In sect.2 we derive the sum rule for the gP ∗∗P ∗π coupling constants. Sect.3 is devoted

to the numerical analysis, where we also compute the widths of the 1+ meson decay to P ∗ π

state.
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2 Light Cone Sum Rule for gP ∗∗P ∗π Coupling Constant

According to the general strategy of QCD sum rule method, the coupling constant gP ∗∗P ∗π

can be calculated by equating the representations of a suitable correlator in hadronic and

quark-gluon languages. For this aim we consider the following correlator:

Πµν = i

∫

d4x eip1x 〈π(q)|T
{

d̄(x)γµQ(x)Q̄(0)γνγ5u(0)
}

|0〉 . (1)

Here d̄γµQ(Q̄γνγ5u) is the interpolating current for 1− (1+) meson state, Q is a heavy quark

(charm quark for D meson, and beauty quark for B meson case), p1 is the momentum of

the 1− meson. When the pion is on the mass shell q2 = m2
π, the correlator function (1)

depends on two invariants, p2 and p21. In what follows we set mπ = 0.

First consider the physical (hadronic) representation of (1). Physical part of it can be

expressed in terms of the contribution of the lowest lying resonances P ∗∗ and P ∗ in the

corresponding channels

Πµν = 〈π(q)P ∗(p1)|P
∗∗(p)〉

〈P ∗|d̄γµQ|0〉

p21 −m2
P ∗

〈0|Q̄γνγ5u|P
∗∗〉

p2 −m2
P ∗∗

. (2)

The matrix elements entering in eq.(2) are defined in the standard manner:

〈P ∗|d̄γµQ|0〉 = mP ∗fP ∗ǫµ(p1) ,

〈0|Q̄γνγ5u|P
∗∗〉 = mP ∗∗fP ∗∗ǫ(1)ν (p) , (3)

where mP ∗ (mP ∗∗), fP ∗ (fP ∗∗) and ǫµ (ǫ(1)ν ) are the mass, leptonic decay constant, and

the polarization vector of the vector 1− (1+) meson state. In general, the matrix element

〈πP ∗|P ∗∗〉 can be written as

〈π(q)P ∗(p1)|P
∗∗(p)〉 = F0(ǫ

∗ǫ(1)) + F1(qǫ)(qǫ
(1)) . (4)

In obtaining eq.(4) we have used the transversality condition, p1ǫ = pǫ(1) = 0, and p1 = p−q.

The second term in eq.(4) gives negligible contribution to the decay width P ∗∗ → P ∗π, in

comparision to the first term, since it is proportional to

(

m2
π +

∆4

m2
P ∗∗m2

P ∗

)

,
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where ∆ = mP ∗∗ − mP ∗ . Therefore we shall neglect the second term in (4) and set

gP ∗∗P ∗π ≡ F0. Using eqs.(2), (3), and (4) for the physical part, we get

Πµν =
mP ∗mP ∗∗fP ∗fP ∗∗gP ∗∗P ∗π

(p2 −m2
P ∗∗)(p21 −m2

P ∗)

{

gµν −
pµpν

m2
P ∗∗

−
p1µp1ν

m2
P ∗

−
(p1p)p1µpν
m2

P ∗m2
P ∗∗

}

. (5)

At this point we would like to make the following comment. Since the vector current q̄γµQ

is not conserved, it also couples to JP = 0+ scalar mesons P0 as well as the J
P = 1− vector

mesons. Therefore the P0 contribution should be taken into account in the sum rule and

this addition introduces further uncertainities. In order to avoid the 0+ meson contributions

we must choose a structure that does not contain its contribution.

Noting that the corresponding transition matrix element is given as

〈0|q̄γµQ|P0〉 = fD0mD0p1µ ,

that is, only the structure ∼ p1µ contains the 0+ meson contribution, it follows from eq.(5)

that we have only two structures, namely ∼ gµν and pµpν , which do not contain the JP = 0+

meson contribution. In our analysis we choose the structure ∼ gµν . We also perform

calculations for the structure pµpν and the final results of both structures in predicting of

gP ∗∗P ∗π are practically the same.

After performing double Borel transformation over variables −p2 and −p21 (see eq.(5))

for the physical part of the sum rule for gP ∗∗Pπ, for the structure of gµν , we get :

Πphys =
1

M2
1M

2
2

gP ∗∗P ∗πfP ∗∗fP ∗mP ∗∗mP ∗e

(

−
m2

P∗∗
+m2

P∗

2M2

)

. (6)

Now we turn out attention to the theoretical part of (1). In this calculation we will use the

notation of the work [16]. After a lengthy calculation we get (after double Borel transfor-

mation over −p2 and −p21)

Πtheor = fπ
1

M2
1M

2
2

e−
m2

M2

[

m2
π

mu +md

mQM
2ϕP (u0)

+ 2m2
Qg2(u0)−

1

2
M4ϕ′

π(u0) + 2(M2 +m2
Q)(g

′
1(u0) +G′

2(u0))

+
1

2
M2

[

2
∫ u0

0
dα1

∫ 1−α1

u0−α1

dα3

ϕ‖(α1, 1− α1 − α3, α3)

α2
3

+
∫ u0

0

dα3

α3

{

ϕ̃‖(u0 − α3, 1− u0, α3)− ϕ‖(u0 − α3, 1− u0, α3)
}

−
∫ 1

0

dα3

α3

{

ϕ̃‖(u0, 1− u0, α3) + ϕ‖(u0, 1− u0 − α3, α3)
} ]

]

+ (continuum contribution) . (7)
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The pion wave functions ϕπ(u), ϕP (u), g1(u) and G2(u), have the twists τ = 2, τ = 3,

τ = 4 and τ = 4 respectively, and they appear in the matrix elements of nonlocal quark

operators as shown below (see [6] and [16]):

〈π(q)|d̄γµγ5u(0)|0〉 = −ifπqµ

∫ 1

0
du eiqux

[

ϕπ(u) + x2g1(u) +O(x4)
]

+fπ

(

xµ −
x2qµ

qx

)

∫ 1

0
du eiquxg2(u) , (8)

〈π(q)|d̄iγ5u(0)|0〉 =
fπm

2
π

mu +md

∫ 1

0
du eiquxϕP (u) , (9)

G2(u) = −
∫ u

0
g2(v)dv . (10)

The functions ϕ(αi) and ϕ̃(αi) are the twist-4 wave functions and are defined in the following

way:

〈π(q)|d̄(x)γµγ5gsGαβ(ux)u(0)|0〉 =

fπ

[

qβ

(

gαµ −
xαqµ

qx

)

− qα

(

gβµ
xβqµ

qx

)]

∫

Dαiϕ⊥(αi)e
iqx(α1+uα3)

+ fπ
qµ

qx
(qαxβ − qβxα)

∫

Dαiϕ‖(αi)e
iqx(α1+uα3) , (11)

〈π(q)|d̄(x)γµgsG̃αβ(ux)u(0)|0〉 =

ifπ

[

qβ

(

gαµ −
xαqµ

qx

)

− qα

(

gβµ
xβqµ

qx

)]

∫

Dαiϕ̃⊥(αi)e
iqx(α1+uα3)

+ ifπ
qµ

qx
(qαxβ − qβxα)

∫

Dαiϕ̃‖(αi)e
iqx(α1+uα3) , (12)

and

G̃αβ =
1

2
ǫαβσλG

σλ , and

Dαi = dα1dα2dα3δ(1− α1 − α2 − α3) .

In (7) we set

M2 =
M2

1M
2
2

M2
1 +M2

2

, u0 =
M2

1

M2
1 +M2

2

and ϕ′ =
dϕ

du
|u=u0

.
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We omitted the path-ordered factor Pe[igs
∫ 1

0
du xµAµ(ux)], since in the Fock-Schwinger

gauge xµAµ = 0, it is trivial. In numerical calculations, we choose the symmetric point

u0 = 1
2
which means that quark and antiquark have equal momenta inside the pion. At

this point the subtraction of the continuum can be done by substituting

e−
m2

Q

M2 → e−
m2

Q

M2 − e−
s2
0

M2 , (13)

at least for the twist-3 contribution [16]. However, we use this substitution everywhere in

(7) since higher twist contributions are negligible. Equating eqs.(6) and (7) and using (13)

we finally obtain the following sum rule for the strong coupling constant gP ∗∗Pπ :

gP ∗∗PπfP ∗∗fP ∗ =
(

1

mP ∗∗mP ∗

)

e

(

m2

P∗∗
+m2

P∗

2M2

)

fπM
2

(

e−
m2

Q

M2 − e−
s2
0

M2

)

×

[

m2
π

mu +md

mQϕP (u0) +
2m2

Q

M2
g2(u0)−

1

2
M2ϕ′

π(u0)

+ 2

(

1 +
m2

Q

M2

)

(g′1(u0) +G′
2(u0))

+
1

2

[

2
∫ u0

0
dα1

∫ 1−α1

u0−α1

dα3
ϕ‖(α1, 1− α1 − α3, α3)

α2
3

+
∫ u0

0

dα3

α3

{

ϕ̃‖(u0 − α3, 1− u0, α3)− ϕ‖(u0 − α3, 1− u0, α3)
}

−
∫ 1

0

dα3

α3

{

ϕ̃‖(u0, 1− u0, α3) + ϕ‖(u0, 1− u0 − α3, α3)
} ]

]

. (14)

From (14) it follows that, for the calculation of the value of the strong coupling constant

gP ∗∗P ∗π, we need to know the leptonic decay constants of the P ∗∗ and P ∗, fP ∗∗ , and fP ∗.

The decay constant fP∗∗ can be obtained from the two point sum rules:

f 2
P ∗∗m

2
P ∗∗ =

1

8π2

∫ s0

m2
Q

dse

(

m2

P∗∗
−s

M2

)

(s−m2
Q)

2

s

(

2 +
m2

Q

s

)

+ mQ〈q̄q〉e

(

m2

P∗∗
−m2

Q

M2

)

(

1−
m2

0m
2
Q

4M2

)

, (15)

where

m2
0 =

〈q̄σαβG
αβq〉

〈q̄q〉
= (0.8± 0.2) GeV 2 .
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To obtain fP ∗ it is necessary to make the following replacements: mP ∗∗ → mP ∗ and

change the sign in front of the second term in (15) (in this case, of course the value of

the continuum threshold must also change ). Note that we do not take into account the

perturbative O(αs) corrections in (15), as they are not included in (14) either. Note that

the values of the decay constants fB∗ and fD∗ we use in our calculations are given in [16].

3 Numerical Analysis

For the numerical analysis of the QCD sum rule (14) we first give the values of the input

parameters:

fπ = 132 MeV,
m2

π

mu +md

(1 GeV ) = 1.65 GeV, mc = 1.3 GeV,

mb = 4.7 GeV, mD∗∗ = 2.420 GeV, mD∗ = 2.01 GeV,

mB∗ = 5.279 GeV, mB∗∗ = 5.732 GeV,

(s0)D = 6÷ 8 GeV 2, (s0)B = 35÷ 40 GeV 2 .

Using these parameters, from (15) for the leptonic decay constants fD∗∗ and fB∗∗ we get

fD∗∗ = (300± 30) MeV , (16)

fB∗∗ = (200± 20) MeV . (17)

Sum rule for gP ∗∗P ∗π contains the nonperturbative quantities, namely the wave functions.

In our numerical analysis we use the wave functions proposed in [6] (see also [16]). Having

the values of the input parameters, one must find the region of Borel parameter M2, for

which the sum rule eq.(14) is reliable.The lowest value of M2 is usually fixed by imposing

the condition that the terms proportional to the 1
M2 are resonably small. The upper bound

for M2 is usually fixed by the condition that the continuum and higher states contributions

constitute about (25÷ 30%) of the ground resonance contribution. Under these conditions

the fiducial range ofM2 forB (D) case turns out to be 8 GeV 2 < M2 < 20GeV 2 (2 GeV 2 <

M2 < 6 GeV 2). Using the values of the input parameters we get

fB∗∗fB∗gB∗∗B∗π = (0.78± 0.12) GeV 3 , (18)

fD∗∗fD∗gD∗∗D∗π = (0.68± 0.10) GeV 3 . (19)
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Dividing this product by the decay constants, we finally obtain for theD∗∗D∗π (B∗∗B∗π)

coupling constants :

gB∗∗B∗π = 24± 3 GeV , (20)

gD∗∗D∗π = 10± 2 GeV . (21)

Substituting these values in the expressions for the decay widths,

Γ(P ∗∗0 → P ∗+ π−) =
g2P ∗∗P ∗π

24π

(

2 +
(m2

P ∗∗ +m2
P ∗)2

4m2
P ∗∗m2

P ∗

)

×

[

{m2
P ∗∗ − (mP ∗ +mπ)

2} {m2
P ∗∗ − (mP ∗ −mπ)

2}
]

1

2

2m3
P ∗∗

(22)

we get,

Γ(D∗∗0 → D∗+ π−) ≃ 249 MeV ,

Γ(B∗∗0 → B∗+ π−) ≃ 296 MeV . (23)

Strong coupling constants (and correspondingly the decay widths) of the decays P ∗∗− →

P ∗0 π−, P ∗∗− → P ∗− π0 and P ∗∗0 → P ∗0 π0 can easily be obtained from P ∗∗0 → P ∗+ π−

with the help of the isotopic invariance.
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