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Abstract

This paper tests whether seasonal mean precipitation is predictable using a new method 

that estimates and analyzes joint probabilities. The new estimation method is to partition 

the globe into boxes, pool all data within the box to estimate a single joint probability of 

precipitation for two consecutive seasons, and then apply the resulting joint probability to 

individual pixels in the box.  Pooling data in this way allows joint probabilities to be 

estimated in relatively small sample sizes, but assumes that the transition probabilities of 

pixels in a box are homogeneous and stationary.  Joint probabilities are estimated from 

the Global Precipitation Climatology Project data set in 21 land boxes and 5 ocean boxes 

during the period 1979-2008.  The state of precipitation is specified by dry, wet, or 

normal terciles of the local climatological distribution.  Predictability is quantified by 

mutual information, which is a fundamental measure of predictability that allows for 

nonlinear dependencies, and tested using bootstrap methods. Predictability was verified 

by constructing probabilistic and quantitative forecasts directly from the transition 

probabilities and showing that they have superior cross-validated skill than forecasts 

based on climatology, persistence, or random selection. Spring was found to be the most 

predictable season whereas summer was the least predictable season. Analysis of joint 

probabilities reveals that though the probabilities are close to climatology, the 

predictability of precipitation arises from a slight tendency of the state to persist from one 

season to the next, or if a transition occurs then it is more often from one extreme to 

normal than from one extreme to the other.  
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1. Introduction

A skillful precipitation prediction is desirable for many industrial and scientific 

fields i.e. agriculture, flood risk analysis, drought, fishery, etc. (Glantz 1992, chapter 15; 

Hansen et al., 1998). Perhaps the first serious assessment of the predictability of 

precipitation is that of Namias (1952, 1960), who used contingency tables estimated from 

historical records to show that precipitation anomalies tend to persist on seasonal time 

scales.  Today, this persistence is assumed to be associated with slowly varying boundary 

conditions, such as sea surface temperatures or soil moisture (Kirtman and Schopf, 1998; 

Koster et al., 2000; Koster et al., 2004). Although the land surface does not have the same 

heat capacity as ocean, anomalies in soil moisture still can persist three months 

(Vinnikov, 1996).  Recently, evidence has emerged that precipitation is most predictable 

in certain “hot spots” characterized by enhanced land-atmosphere coupling (Koster et al., 

2004; Wang et al., 2007; Dirmeyer et al., 2009). 

In general, investigation of precipitation predictability is challenging because 

precipitation rate is strongly non-Gaussian, discontinuous, and only weakly predictable 

(at least compared to temperature). Katz (1977, 1983) proposed a model of precipitation 

in which the occurrence or non-occurrence of precipitation is modeled by a two-state first 

order Markov chain, and the intensity of precipitation is modeled by a random process.  

Variants of this model have been used in a variety of contexts (e.g., Wilks 2002).  These 

and other models could be used to draw inferences about predictability, but then the 

results would be model dependent, or rely on the appropriateness of the model.  
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In this paper, we investigate the predictability of seasonal precipitation directly 

from joint probabilities without assuming anything about the physics or distribution of 

precipitation. However, a major difference from previous studies is that we partition the 

globe into pre-defined boxes containing many pixels, and then pool the data over all 

pixels within a box to estimate a single joint probability.  The resulting joint probability 

for the box is then assumed to apply to individual pixels.  By pooling data over many 

pixels, we are able to estimate joint probabilities with relatively small sample sizes. This 

approach assumes that the system is stationary, in the sense that relations (feedback 

mechanisms) that exist in the past also hold into the future. However, in a changing 

climate system the historical transition probability may loose its relevance (Van den Dool 

2007, p. 123). This approach also assumes that the statistics are homogeneous within the 

box.  The joint probability in question is the probability that precipitation is in one of 

three terciles, called dry, normal, and wet, for two consecutive seasons.  Thus, the joint 

probability can be used to predict whether next season’s precipitation will be wet, dry, or 

normal, given the precipitation of the present season.   

The predictability of precipitation is assessed in two different ways.  First, we 

evaluate the mutual information of the joint probabilities.  Mutual information is a 

fundamental measure of the degree of dependence between two random variables.  If the 

precipitation between two seasons is independent, then mutual information vanishes.  The 

statistical significance of mutual information in each study area is estimated using 

bootstrap methods. Second, we compare cross-validated forecasts constructed from the 

joint probability (or more precisely, the conditional distribution) to three benchmark 

forecasts, namely forecasts based on climatology, persistence, and random selection. 
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This paper is organized as follows.  The dataset is introduced in section 2, 

methodology is outlined in section 3, an overview of the basic concepts of the 

climatology- and persistence-based forecasts is offered in section 4, results are presented 

in section 5, and summary and discussions are given in section 6.

2. Data set

The data set used in this study is the Global Precipitation Climatology Project 

(GPCP) precipitation product (Adler et al, 2003). This data set is a global monthly 

merged product from gauge- and satellite-based observations over 2.5° grids for the 

period 1979-2008. The monthly precipitation has been aggregated into boreal seasonal 

rainfall as: winter (December-February); spring (March-May); summer (June-August); 

and autumn (September-November). For ease of reading, the word “boreal” will be 

dropped in the remainder of the paper. 

3. Methodology

a. Estimation of Joint Probabilities

In this study, the predictability of seasonal mean precipitation is investigated 

using joint probabilities, defined as the probability of precipitation in one season jointly 

with the probability in the subsequent season. The state of precipitation at each pixel is 

characterized by terciles of the seasonal mean precipitation.  These terciles were 

determined by standard methods independently for each pixel; namely by sorting the 

observed precipitation at each pixel separately and then identifying the values below 

which 33% and 66% of the observations fall. Because of the non-Gaussian nature of 



6

precipitation, the terciles are not symmetrically distributed relative to the median.  Since 

terciles correspond to three levels, the joint probability has 9 elements.  The available 29 

years of data is not enough to obtain an accurate estimate of the nine elements of the joint 

probability for a single pixel.  

To estimate the joint probability at a pixel, we first partition the precipitation field 

into the 21 land boxes proposed by Giorgi and Francisco (2000) and the 5 ocean boxes 

defined in table 1.  All study areas are defined in table 1 and illustrated in figure 1.  Each 

box will be called a “study area,” while the grid cells within each study area will be 

called “pixels.”  Next, we estimated a single joint probability for the study area by 

pooling data from all pixels in the study area. This approach effectively assumes that the 

transitional probabilities in a study area are homogeneous and stationary—homogeneous 

in the sense that the joint probability at a pixel equals that of all other pixels in a study 

area, and stationary in the sense that the joint probability does not change in time. The 

homogeneity assumption does not imply that the actual states in a study area are equal, 

but only that the transition probabilities are equal. We emphasize that tercile/state 

estimations were performed separately for each pixel,—the same state may not refer to 

the same precipitation amount in the neighboring pixel.  Some representative examples of 

the estimated joint probabilities are given in table 2 and discussed in the section 5.  

Some comments about our proposed methodology are in order.  First, we note that 

the boxes chosen for this study were not chosen to maximize predictability; rather, the 

boxes were chosen independently of this study and for a different purpose (namely, to 

analyze the effect of different scenarios of greenhouse gas and sulfate forcing).  Second, 

the chosen boxes tend to encompass similar climate zones (e.g., deserts are boxed 
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together).  We suggest that transition probabilities are more likely to be homogeneous for 

a box that contains a single climate zone than for a box that contains many climate zones.  

Third, our study period of 1979-2008 avoids crossing the year 1976, which has been 

suggested as a year of possible climate transition (Trenberth 1990).  

Finally, if the joint probabilities in a box are neither homogeneous nor stationary, 

then pooling pixels within a box is not likely to yield predictability.  As a specific 

example, suppose one area has a high probability of transitioning from wet to dry and dry 

to wet, and a neighboring area has high probability of transitioning from dry to dry and 

wet to wet. Pooling these areas tends to even out the transitions, yielding transition 

probabilities close to climatology.  Similarly, if the process is nonstationary, then pooling 

data over non-stationary periods gives predictability “in between” those in individual 

stationary periods, thereby evening out the predictability.  Thus, violation of homogeneity 

and/or stationarity tends to diminish predictability. In essence, rather than assuming 

homogeneity and stationarity, our method actually tests whether pixels are sufficiently 

homogeneous and stationary to detect predictability.

b. Measuring Predictability

The null hypothesis of this study is that the seasonal mean precipitation in one 

season is independent of the seasonal mean precipitation in the next season.  A test of this 

hypothesis using autocorrelation methods would be limited because such methods assume 

linear dependence whereas precipitation is highly non-Gaussian and hence potentially 

nonlinear. Therefore a distribution independent method was used to quantify the 

precipitation dependency.  Specifically, following Agresti (2002, p79), DelSole 
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(2004),DelSole and Tippett (2007), the statistic used to test the hypothesis is mutual 

information, defined as 

∑∑=
f p pf

fp
fp PP

P
PM )log(*

*

where Pfp is the joint probability of future and present season states, where “present” and 

“future” refer to two consecutive seasons, and Pf and Pp are the marginal probabilities of 

future and present season states respectively.  Since terciles were used in this study, Pfp is 

a 3x3 matrix where each row and column sums approximately to 1/3 and all nine 

elements  sum to 1. The marginal probabilities Pf and Pp are vectors with 3x1 dimension 

and each vector also sums to 1.  If the present and future states are independent, then, by 

definition, Pfp=Pf*Pp , in which case mutual information vanishes.  A standard result in 

information theory is that the maximum mutual information is given by the maximum 

entropy of the marginal distribution (Cover and Thomas 1991, p. 190), which in our case 

is log(3). Therefore, in the present study based on terciles, the mutual information 

between present and future states is between 0 and log(3), with the former value 

corresponding to all lack of predictability and the latter to perfect predictability.   

To test the significance of the observed value of mutual information, a bootstrap 

method was employed in which each observed precipitation field in a given season was 

paired with a randomly selected precipitation field from the corresponding subsequent 

season in a non-matching year. This bootstrap sample is of the same size as the original 

data set and hence the joint probabilities and a single M-value can be computed from this 

sample.  Repeating this procedure for 1000 times, separately for each study area and for 

each season, yields a sample of M-values drawn from the null distribution (i.e., drawn 

from a population in which the precipitation is independent from season to season). From 
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this sample, the upper 5% tail was estimated to determine the 5% threshold for statistical 

significance.  

c. Prediction and Verification

If the above procedure rejects the hypothesis that the present and future 

precipitation states are statistically independent, then it is of interest to verify the 

discovered predictability with actual forecasts (or, with hindcasts at least). The prediction 

of seasonal precipitation can be done in two ways: probabilistically and quantitatively.

PROBABILISTIC PREDICTION AND ITS VERIFICATION

Probabilistic forecasts were constructed by using the law of conditional 

probabilities: pfppf PPP /| = , where pfP | is the probability of the future state f given  the 

present state p.  Specifically, given the observed seasonal precipitation state at a pixel, the 

transition probability pfP | (estimated by pooling all pixels in the study area) immediately 

gives the probability that precipitation in that pixel falls in the wet, dry, or normal terciles 

in the next season.  Since all marginal probabilities are approximately 1/3, and the joint 

probabilities are assumed equal at all pixels in a box, the transitional probability is 

approximately equal at each pixel.  Nevertheless, the actual probabilistic forecast differs 

from pixel to pixel because the initial state of precipitation differs from pixel to pixel. 

Construction of separate probabilistic forecasts for each pixel is particularly important for 

locations with major topographical change, like mountains or land-sea boundaries, which 

may have very different states from those of other pixels in the study area. 
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To avoid overfitting, cross-validation was performed by leaving one year out for 

verification and using the remaining years to calculate the joint probability fpP . This 

procedure was repeated for each year withheld. The skill of the probabilistic forecast was 

measured using the Brier score (Brier, 1950), which is the sum squared difference 

between the forecast and verification probabilities over all terciles. The “verification 

probability” equals one for the tercile in which the precipitation fell at the verification 

time, and equals zero for the other two terciles. The mean Brier score for a particular 

season was averaged within each study area over all years.

Two reference forecasts are used as a basis of comparison, namely climatology 

and persistence (Wilks 1995, p. 347). The climatology forecasts are probabilistic 

forecasts equal to the marginal distributions, as estimated from all years excluding the 

verification year; the probability in each category is close to 1/3.  Persistence forecasts 

are probabilistic forecasts such that the tercile in which the precipitation fell in the prior 

season is assigned a value of one at verification time, while the other terciles at the 

verification time are set to zero (i.e. say 1990 spring was dry for a pixel, then the 

transitional probability from spring to summer would be [1,0,0] representing dry, normal, 

and wet conditions respectively. From these probabilities, the persistence forecast for the 

summer 1990 would be [1,0,0] for that particular pixel and date). Both climatology and 

persistence forecasts were performed locally, without any information from the 

neighboring pixels.

QUANTITATIVE PREDICTION AND ITS VERIFICATION



11

A quantitative prediction from transition probabilities was constructed by 

computing the expected (or mean) precipitation. More specifically, the local seasonal 

mean values of dry, normal, and wet states were weighted according to the transition 

probability and summed over these states to find the quantitative forecast for each pixel. 

Mathematically, quantitative forecasts are calculated as 

∑ ++= )***( ||| drypdrynormalpnormalwetpwetpredic PPPP µµµ

where Ppredic is the quantitative prediction; pwetP | , pnormalP | , and pdryP | are the appropriate 

transitional probabilities for the  forecast; and wetµ , normalµ , and dryµ are  the seasonal 

mean precipitations of the wet, normal, and dry terciles respectively.

In addition to climatology and persistence based quantitative forecasts, a third 

reference was added. This new reference, called a random quantitative forecast, was 

obtained by randomly selecting a precipitation field for the same study box. This field 

was picked from the appropriate season of a random year excluding the verification year. 

The total root mean square errors (RMSE) of these four quantitative precipitation 

forecasts were calculated over space and time; 

>−<= 2)( verifpredic PPRMSE

where Pverif is the verification year precipitation values, and the squared-difference values 

are averaged over both space and time. RMSE was calculated for each study area and 

each season separately.

4. Discussion of Climatological and Persistence Forecasts
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Although the material in this section is straightforward, it does not appear to be 

conveniently available in the predictability literature.  Therefore, we include it for 

reference. As is well known, the mean square error of a climatological forecast is simply 

the climatological variance.  The mean square error of a persistence forecast for a 

stationary process can be shown to be

>−+< 2))()(( tftf τ = )1(2 2
τρσ −f

where <> denotes an expectation, τ is the time lag, f(t) is the verification at time t, f
2σ is 

the variance, and ρτ is the auto-correlation at time lag τ.  Here, we interpret f(t) as the 

“persistence forecast” and f(t+τ) as the verification.  It is readily seen that a persistence 

forecast has less MSE than a climatological forecast (i.e., MSE < f
2σ ) only when the 

autocorrelation between initial and final states exceeds 0.5. Since the autocorrelation of 

geophysical variables generally decreases with lead time, persistence forecasts are 

expected to be better at short lead times while climatology forecasts are expected to be 

better at long lead times. The transition between “short” and “long” lead times occurs at 

the time for which the autocorrelation equals 0.5.

5. Results 

The joint probability for all 26 study areas and all 4 seasons (totally 104) were 

estimated from the 29-year GPCP data set. The estimated joint probabilities for four 

representative regions, as well as the joint probability for all regions and seasons together 

are shown in table 2. Note that if all states were independent of each other, then all table 

entries would be 1/9 ~ 0.11. The probabilities tend to be larger along the “diagonal”, 
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implying a preference for persistence— that is, the probability that precipitation remains 

in the same state is larger than the probability to jump to a different state.  However, if 

the state does jump, then the tables generally show a preference for “single jumps”-- that 

is, the transition from one extreme category to the other is less likely than from one 

extreme to normal. For example, for Cold Tongue area (Table 1) the probabilities for dry 

to dry, normal to normal, or wet to wet (diagonal) transitions are higher than any other 

transition (implying persistence). Also for the same region, dry to normal and wet to 

normal transitions are more probable than dry to wet or wet to dry transitions (implying a 

preference to “single jump”).

The results of evaluating and testing the significance of mutual information in all 

study areas and all seasons are shown in fig. 2.  Mutual information exceeded the 5% 

significance level in 67 out of 104 areas. Spring was the most predictable season (23 out 

of 26 study areas had predictability) whereas summer was the least predictable season 

(only 11 out of 26 study areas). The largest value of mutual information for any region is 

about 0.04, which is well below the theoretically maximum value of 1.09 (corresponding 

to perfect predictability). The most predictable areas are Amazon, N.W. America, E. 

Africa, Sahara, S.E. Africa, and Pacific (all four seasons), while Central N. America was 

the only region that no predictability was found for any season. 

Brier scores of the probabilistic forecasts were smaller than that of either 

climatological probabilistic forecasts or persistence forecasts for all seasons and study 

areas (Table 3).  Interestingly, climatological forecasts had smaller Brier scores than 

persistence forecasts for all seasons and study areas (Table 3). 
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RMSE of quantitative forecasts from the transition probabilities were smallest 

among all quantitative predictions, though only slightly better than climatology (Table 4).  

RMSE’s of climatological quantitative forecasts were smaller than that of persistence 

forecasts.  Not surprisingly, random forecast had the highest RMSE’s for all seasons and 

study areas (Table 4).

6. Summary and Discussion

Seasonal precipitation predictability was investigated using GPCP monthly data 

from 1979 to 2008 over 21 land boxes defined in Giorgi and Francisco (2000) and 5 

ocean boxes.  The state of precipitation was defined by wet, normal, and dry terciles at 

each pixel. The transition probability from one season to a subsequent season was 

estimated by pooling all pixels within a study box.  Mutual information was used to 

measure the degree of dependence between consecutive seasons and it was estimated 

separately for 26 study areas and 4 seasons. Probabilistic forecasts derived from 

transition probabilities were cross-validated and compared to two benchmark forecasts, 

namely climatology and persistence.  Also, quantitative forecasts were derived by 

computing the expected precipitation from the transition probabilities, and compared to 

three benchmark forecasts, namely climatology, persistence, and random selection.  

The results show that mutual information is statistically different from 0 in most 

study areas, implying statistical dependence between consecutive seasons (i.e., implying 

predictability).  Although mutual information was found to be statistically significant in 

many study areas, the actual values of mutual information were typically less than 0.05, 

which is small relative to the maximum possible value of log(3) ~ 1.09 (corresponding to 
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perfect predictability in which the transition probability is unity for one category and zero 

in all other categories).  Presumably, larger values of mutual information can be obtained 

by suitable spatial filtering (e.g., area averages or canonical correlation analysis), but the 

optimal spatial filtering would be difficult to obtain from such a small sample.

Examination of all joint probabilities reveals that most elements are close to the 

climatological value of 1/9 ~ 0.11. The predictability between seasons can be attributed 

to a slight tendency for precipitation to persist in the same state from one season to the 

next, or if there is a transition to prefer “single jumps” rather than jumping from one 

extreme to the other (Table 2). Transitional probabilities estimated by pooling data in a 

study box produced better forecasts than climatology, persistence, and random selection. 

Our results are relevant to understanding whether persistence forecasts are better 

than climatology forecasts.  Specifically, the skill of forecasts based on the climatological 

seasonal mean precipitation was shown to be superior to persistence forecasts in all 21 

land areas and 5 ocean areas considered, regardless of whether forecasts were 

probabilistic or quantitative.  In general, climatology forecasts are superior to persistence 

forecasts, in a mean square error sense, when the lagged autocorrelation function is less 

than 0.5 (see sec. 3).  Thus, the superiority of climatology-based forecasts over 

persistence-based forecasts is consistent with the weak autocorrelation of precipitation 

between seasons.  

Spring was found to be the most predictable season (23 out of 26 study areas had 

predictability) whereas summer was the least predictable season (only 11 out of 26 study 

areas). The most predictable areas were Amazon, N.W. America, E. Africa, Sahara, S.E. 
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Africa, and Pacific (all four seasons), while Central N. America was the only region that 

no dependency was found for any season.

We have investigated the predictability of seasonal precipitation directly from 

joint probabilities without assuming anything about the physics or distribution of 

precipitation. Perhaps the most intriguing result of this study is the demonstration that 

conditional probabilities estimated by pooling seasonal precipitation data on sub-

continental scales can give skillful forecasts of individual pixels.  It seems likely that this 

result also extends to other variables such as temperature.  While this study showed that 

seasonal mean precipitation is predictable, the degree of predictability is relatively small 

(but statistically significant) and the underlying mechanism for the predictability was not 

elucidated.  It is not clear how the non-parametric methodology studied in this paper can 

be extended to large multivariate data sets to elucidate space-time relations between 

precipitation and associated boundary conditions.  
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List of Figures

FIG. 1 Geo-locations of the 26 study areas (Latitude and Longitude coordinates are given 

in Table 1). 

FIG. 2. Observed mutual information (M) and its null distribution for 4 seasons and 26 

study areas.
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TABLE 1. Location of the 21 Giorgi boxes and 5 defined ocean boxes that are focus of this 

study.

Study Area
Lower 
Lat.

Upper 
Lat.

West 
Long.

East. 
Long.

Australia -12.5°S -45°S 110°E 155°E

Amazon Basin 12.5°N -20°S -82.5°W -35°W

Southern South America -20°S -55°S -75°W -40°W

Central America 30°N 10°N -115°W -82.5°W

Western North America 60°N 30°N -130°W -102.5°W
Central North America 50°N 30°N -102.5°W -85°W

Eastern North America 50°N 25°N -85°W -60°W

Alaska 72.5°N 60°N -170°W -102.5°W

Greenland 85°N 50°N -102.5 -10°W

Mediterranean 47.5°N 30°N -10°W 40°E

Northern EU 75°N 47.5°N -10°W 40°E

Western Africa 17.5°N -12.5°S -20°W 22.5°E

Eastern Africa 17.5°N -12.5°S 22°E 52.5°E
Southern Africa -12.5°S -35°S -10°W 52.5°E

Sahara Africa 30°N 17.5°N -20°W 65°E

South-east Asia 20°N -10°S 95°E 155°E

East Asia 50°N 20°N 100°E 145°E

South Asia 30°N 5°N 65°E 100°E

Central Asia 50°N 30°N 40°E 75°E

Tibet 50°N 30°N 75°E 100°E

North Asia 70°N 50°N 40°E 180°E
North Atlantic 60°N 40°N -50°W -20°W

North Subtropic Atlantic 40°N 10°N -60°W -20°W

South Atlantic -10°S -50°S -25°W 0°E

Cold Tongue 0°N -20°S -120°W -85°W

Pacific 40°N -20°S 150°E 235°E
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TABLE 2. Joint probability matrices of seasonal precipitation from 1978 to 2008 obtained 

from monthly GPCP data. Due to space considerations, 4 out of 104 matrices (for 26 

study areas and for 4 seasons) and the global average of these 104 matrices are shown 

below.

Present 

Dry Normal Wet
Winter-Autumn, Australia

Dry 0.13 0.11 0.11
Normal 0.10 0.11 0.10

Fu
tu

re

Wet 0.12 0.10 0.10
Winter-Autumn, SE Africa

Dry 0.17 0.11 0.07
Normal 0.10 0.12 0.10

Fu
tu

re

Wet 0.08 0.09 0.15
Winter-Autumn, Tibet

Dry 0.16 0.11 0.08
Normal 0.12 0.11 0.10

Fu
tu

re

Wet 0.08 0.10 0.14
Winter-Autumn, Cold Tongue

Dry 0.19 0.11 0.06
Normal 0.10 0.15 0.07

Fu
tu

re

Wet 0.06 0.07 0.19
All seasons and areas averaged

Dry 0.14 0.11 0.10
Normal 0.11 0.10 0.10

Fu
tu

re

Wet 0.10 0.10 0.14
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TABLE 3. Mean Brier scores in time (29 years) and space (study area average) for all 26 

study areas and 4 seasons for transitional probability-, climatology-, and persistence-

based forecasts. Since the Brier scores of the same type of forecasts had very close values 

for all study areas and seasons, only the minimum and the maximum values out of these 

104 entries are shown.

Mean ErrorForecast 

Type Max Min

Trans. Prob. 0.823 0.792

Climatology 0.846 0.845

Persistence 1.173 0.997
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TABLE 4. Quantitative forecasts and their Root Mean Square Errors (RMSE) for different study areas and seasons. QFE, QCE, QPE, 

and QRE refer to quantative forecast, climatology, persistence, random forecast errors respectively.

SPRING-SUMMER SUMMER-AUTUMN AUTUMN-WINTER WINTER-SPRING

RMSE RMSE RMSE RMSE

QFE QCE QPE QRE

Mean

QFE QCE QPE QRE

Mean

QFE QCE QPE QRE

Mean

QFE QCE QPE QRE

Mean

Austrl. 44.6 45.5 56.9 61.5 127 42.7 44.5 50.8 60.0 107 107 110 137 143 232 91.0 92.9 122 136 177

Amazn. 85.2 89.6 101 119 302 81.9 85.6 98.1 115 345 118 122 145 165 452 125 129 150 158 449

S. Amer. 64.6 66.2 82.6 91.2 226 63.8 65.9 78.3 94.0 247 69.8 71.5 89.3 98.4 273 76.7 78.4 98.3 104 273

C. Amer. 129 132 165 171 460 118 122 149 161 388 63.9 65.3 80.0 93.4 128 65.2 68.1 78.9 93.9 133

WN Amr 38.0 39.0 47.6 51.6 120 48.5 49.8 60.9 64.7 133 60.0 62.7 71.8 83.8 152 41.9 43.9 50.2 61.4 122

CN Amr 75.8 77.2 97.4 108 287 72.1 73.4 97.1 96.0 225 57.5 58.6 73.0 81.6 167 77.3 79.3 95.1 102 253

EN Amr 76.1 77.9 99.7 99.1 339 88.0 90.1 116 123 347 70.1 71.5 91.6 95.3 321 71.9 74.0 87.9 99.1 304

Alaska 34.7 35.5 42.9 47.2 134 45.2 46.6 55.8 62.5 117 37.0 39.8 40.5 56.1 78 26.7 28.9 30.2 39.6 62

Greenlnd 33.9 34.9 42.6 46.2 148 41.7 43.4 51.1 56.4 178 47.1 49.1 56.3 65.0 157 31.7 33.2 37.7 47.4 111

Meditrrn. 36.1 37.0 45.3 50.6 86 61.8 63.3 81.5 87.9 170 66.5 68.0 85.4 101 187 44.2 45.4 56.6 62.3 139

N. EU 49.9 51.1 65.2 68.1 207 61.1 62.5 79.2 82.0 247 71.1 73.0 86.9 97.2 256 42.1 43.9 49.9 60.2 167

W. Afric. 77.9 79.9 98.6 98.8 286 64.6 67.9 76.9 95.4 233 51.2 52.9 61.6 67.7 125 77.9 80.3 94.3 110 241

E. Africa 52.3 54.3 63.2 70.5 173 63.1 65.4 76.4 97.1 172 64.3 67.6 76.0 93.2 181 73.7 75.9 90.7 107 234
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TABLE 4. Continuation

SPRING-SUMMER SUMMER-AUTUMN AUTUMN-WINTER WINTER-SPRING

RMSE RMSE RMSE RMSE

QFE QCE QPE QRE

Mean

QFE QCE QPE QRE

Mean

QFE QCE QPE QRE

Mean

QFE QCE QPE QRE

Mean

S. Africa 25.7 26.2 33.1 35.5 64 42.8 44.3 52.5 59.0 100 88.2 90.4 113 114 237 57.6 59.2 73.7 83.0 138

Sahara 19.2 19.5 24.5 24.5 19 17.7 18.0 21.9 26.5 17 22.8 23.6 27.5 37.7 26 16.9 17.6 20.3 22.6 20

SE. Afrc 157 163 191 217 582 162 170 194 218 545 148 159 168 207 486 136 144 156 195 449

E. Asia 120 123 155 170 439 88 90 119 127 253 46.9 47.8 63.4 67.6 128 78.0 80.7 95.7 104 257

S. Asia 142 146 182 187 619 112 115 140 156 362 59.9 61.7 76.9 86.2 87 77.8 80.1 94.5 106 193

C. Asia 31.9 33.4 37.9 47.1 64 35.1 36.4 42.9 51.2 78 36.0 36.7 46.4 50.8 113 40.5 42.5 47.4 56.2 112

N. Asia 40.9 42.3 50.6 56.7 125 18.8 19.3 23.5 26.3 49 12.9 13.1 17.1 18.0 28 18.8 19.5 22.6 23.8 50

Tibet 45.6 46.6 59.4 64.9 192 40.2 41.4 50.6 53.8 173 34.0 34.9 42.8 46.3 125 31.8 32.5 40.9 44.6 112

N. Atlan 49.6 50.7 64.4 70.6 268 63.9 65.5 83.4 88.6 384 73.3 74.9 94.5 97.4 475 56.1 57.3 73.6 77.1 288

N. S. At. 48.3 49.7 59.6 64.7 119 81.6 83.8 105 114 251 58.0 59.3 75.6 81.4 173 55.3 57.3 67.7 77.0 127

S. Atlan 43.0 44.1 55.2 57.7 188 44.7 46.1 57.7 65.3 161 41.6 42.5 54.2 59.7 147 49.2 50.4 62.9 69.9 206

Cld Tng 13.3 13.5 16.4 14.0 19 6.2 6.5 7.0 9.5 12 44.3 44.8 58.7 65.5 43 81.1 88.2 89.8 131. 115

Pacific 112 119 132 165 286 122 130 140 171 327 164 176 180 242 367 145 155 164 211 327



27

FIG. 1. Geo-locations of the 26 study areas (Latitude and Longitude coordinates are given in Table 1). 
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FIG. 2. Observed mutual information (M) and its null distribution for 4 seasons and 26 study areas.


