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Abstract—In this paper, we analyze and compare several strate-
gies for iteratively decoding trellis-encoded signals over channels
with memory. Soft-in/soft-out extensions of reduced-complexity
trellis search algorithms such as delayed decision-feedback
sequence estimating (DDFSE) or parallel decision-feedback de-
coding (PDFD) algorithms are used instead of conventional BCJR
and min-log-BCJR algorithms. It has been shown that for long
channel impulse responses and/or high modulation orders where
the BCJR algorithm becomes prohibitively complex, the proposed
algorithms offer very good performance with low complexity.
The problem of channel estimation in practical implementation
of turbo detection schemes is studied in the second part. Two
methods of channel reestimation are proposed: one based on the
expectation-maximization (EM) algorithm and the second on a
simple Bootstrap technique. Both algorithms are shown to dra-
matically improve the performance of the classical pseudo-inverse
channel estimation performed initially on a training sequence.

Index Terms—Bootstrap algorithm, delayed decision-feedback
estimation (DDFSE), expectation-maximization (EM) algorithm,
iterative decoding, parallel decision-feedback decoding (PDFD),
turbo detection, turbo reestimation.

I. INTRODUCTION

SINCE their first presentation in 1993 [1], a considerable
amount of work has been done on turbo codes, both for

improving the original scheme and for better understanding
the reasons for their astonishing performances. Moreover,
the “turbo principle” has been extended to many fields other
than channel coding theory and should now be regarded as
a general approach for combining and serially performing in
an iterative fashion two or more tasks in the receiver digital
communication chain. In the past few years, a new concept,
called “turbo equalization,” has emerged as a way of efficiently
fighting against strong channel InterSymbol Interference (ISI)
caused by limited bandwidth, multipath propagation, and
motion [2]. Such a concept is potentially very attractive for
time division multiple access (TDMA) schemes with enhanced
data rates such as enhanced data rates for global systems for
mobile communications [3] (GSM) and Evolution (EDGE)
[4], [5]. The basic idea consists of considering the channel
as a time-varying nonrecursive nonsystematic convolutional
code. Assuming an outer convolutional channel encoder and
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a channel interleaver, the reference turbo detection scheme
(scheme 1) is then formally analogous to a serial concatenation
of convolutional codes and the same iterative techniques can be
applied to realize joint detection and decoding [13]. Performing
iterations like in turbo decoding can improve the bit error rate
(BER) and the frame error rate (FER) dramatically. In fact,
simulations show that all the ISI can be eliminated by such a
process and the performance of coded signals over the Gaussian
channel can be reached assuming perfect channel estimation
and sufficient interleaver depth.

From the analysis of studies about turbo detection concept,
three major issues can be identified. This paper aims at bringing
sketches of solutions to each of them.

In the original paper describing the turbo detector [2], a
min-log-BCJR algorithm was used for symbol detection and
a low-complexity SOVA for channel decoding [6]. More
recently, in [8], optimal symbol-by-symbol BCJR detectors
and decoders have been introduced to improve the scheme
[10]. Unfortunately, the complexity of all those MAP or
sub-MAP devices might become quickly prohibitive when
higher level modulations rather than simple BPSK (or GMSK)
and 6-tap (or more) channel impulse responses are considered.
Moreover, symbol detection task is repeated several times
during the iterative process. Consequently, the first challenge
is the reduction of the overall computational complexity of
the turbo detector. Since this complexity will be dominated by
the ISI decoder, we focus on the design of a low-complexity
turbo detector based on a suboptimal soft-input/soft-output
delayed decision-feedback sequence estimator (SISO-DDFSE),
coupled with a minimum-phase prefiltering. We show that its
performance remains close to optimal for the TU3 channel
profile [17], [18].

The second attractive problem studied here deals with an im-
provement of the previous reference scheme, by combining de-
tection and powerful iteratively decodable codes, as first sug-
gested in [11], keeping in mind the intuitive idea that the better
the channel encoder is, the better the overall turbo detector per-
formance will be. It has been shown in [13] that serially con-
catenated codes (SCCC) could be more efficient than parallel
concatenated ones (PCCC). In particular, SCCC do not suffer
from error floor phenomenon and consequently appear as the
most suitable candidates for low BER data applications. This is
essentially the reason why we focus on SCCCs in this paper,
even though other powerful code combinations can also be in-
vestigated (see for example [12]). The main part of the article
is devoted to the design of two different schemes involving the
SCCC and to the analysis of their iterative decoding. The first
scheme (scheme 2) is made of an SCCC, concatenated with the
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Fig. 1. Transmission reference scheme.

ISI channel code. In this approach, all codes are separated by
pseudo-random interleavers. Assuming a constant spectral effi-
ciency, the modulation order must be increased to counterbal-
ance the inner code rate. Scheme 2 is, in fact, formally equiv-
alent to a doubly serially concatenation of convolutional codes
[16] and can be decoded in the same way. Due to modulation
order increase, however, detection task will be computationally
cumbersome, even with the suboptimal DDFSE algorithm.

To overcome this problem, a last scheme (scheme 3) will be
finally presented, as a more interesting low-complexity fashion
to introduce additional coding gain. It will involve an outer
convolutional code concatenated with a trellis coded modula-
tion (TCM). A SISO parallel decision-feedback decoder (SISO-
PDFD) [22], [23] will be used to perform joint detection and
decoding on the TCM trellis only. It will be shown that such a
suboptimal approach gives similar and sometimes better results
than previous ones with a far smaller complexity.

To conclude with the turbo detection analysis, the problem
of channel knowledge also has to be raised and carefully
investigated. In [9] indeed, it is shown by simulations that MAP
and sub-MAP devices are very sensitive to channel estimation.
A degradation of 2.9 dB occurs when assuming mismatched
channel estimation by classical technique (i.e., pseudo-inverse
method on constant amplitude zero autocorrelation training
sequence). We propose here at least two methods for rees-
timating the channel coefficients. The first method exploits
the EM algorithm. Tne EM iteration is done after each turbo
detector iteration. The second method is even more simple and
basically consists of a simple bootstrap process using linear
pseudo-inverse. A significant part of the degradation introduced
by mismatched channel estimation can be recovered by such
reestimation methods, without substantial complexity increase.
It must be emphasized that the turbo detection coupled with
a channel reestimation can be fairly compared with the ISI
cancellation based turbo equalization proposed by [7] where
mismatched channel estimation is assumed. Simulations prove
that the former achieve far better results than the latter for a
wide range of tested schemes.

The paper is organized as follows: Section II is devoted to
scheme 1 where the transmission reference model is described,
the turbo detection principle is reviewed, and the SISO-DDFSE
is derived. In Section III, scheme 2 is considered where iterative
detection and SCCC decoding is described. Section IV covers
scheme 3 which performs iterative detection and decoding of an
outer code concatenated with TCM by using the SISO-PDFD
algorithm. In Section V, the performances of the proposed
schemes are given through computer simulations. Section VI is
devoted to the problem of channel reestimation where the EM
and the Bootstrap algorithms are derived, and the performances
of these proposed algorithms are given. Finally, in Section VII
concluding remarks and future research topics are presented,
and the Appendix outlines the derivation of the EM channel
reestimation algorithm.

II. L OW COMPLEXITY TURBO DETECTION

A. Transmission Reference Model

Let us consider the digital communication transmission chain
depicted on Fig. 1. A data sequence of
symbols enters an outer channel encoder, which produces a
coded sequence . Each data symbol

contains bits, whereas each coded symbol
contains bits.

Coded bits are interleaved by a pseudo-random interleaver
and divided into bursts of bit-labeled
symbols, including known symbols for channel estimation and
synchronization purposes together with tail and guard symbols.
To each symbol , a -ary signal
mapper associates a complex-valued symbol. The trans-
mitter produces the complex base-band waveform

(1)

where denotes the base-band complex impulse response
of the lowpass equivalent transmitter filter and is the
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Fig. 2. Equivalent discrete-time model of the reference scheme.

symbol rate. At reception, the received base-band signal is
given by

(2)

where the complex impulse response takes into account
the transmitter and receiver filters, together with the disper-
sive channel. denotes the convolution of the complex
zero-mean Gaussian noise (of single-sided power spectral
density ) with the receiver filter . The signal is then
sampled at rate in conjunction with channel estimation
(thanks to the training sequence) to yieldinfinite quantized
received bursts and the channel estimate,
which feed the turbo detector.

B. Equivalent Discrete-Time Model and Associated Trellis

We represent in Fig. 2 the equivalent discrete-time model
(scheme 1) made of an encoder, an interleaver , a signal
mapper , and a transversal filter with dimen-
sionnal complex vector . At the output
of the equivalent discrete-time channel (including transmit and
receive filters), received samples are given by

(3)

where represents the ISI introduced by the
channel and the (considered uncorrelated) complex Gaussian
noise samples of variance . is a circularly symmetric
complex Gaussian variable (i.e., its real and imaginary parts
are uncorrelated and of same power).

As is well known, the equivalent discrete-time ISI channel
can be regarded as a nonrecursive nonsystematic convolutional
code with memory and rate-1, whose single complex-valued
generator polynome may vary in time. The time progression
of the states, as well as the possible transitions, can be visu-
alized by a regular trellis diagram . Note that, in the
following, the channel estimation is considered valid for the
whole burst duration (i.e., the channel is assumed (quasi)-sta-
tionary for a burst duration). We denote by and state
and branch spaces at depth and section, respectively. Due to
time-invariant property, state and branch space complexities sat-
isfy

and

(4)

Fig. 3. A generic log-BCJR equalizer.

Fig. 4. A generic log-BCJR decoder.

Optimally, the detection must be performed using the optimal
symbol-by-symbol BCJR algorithm [10], [8], which operates on
the full ISI channel trellis and whose complexity is roughly in

. A generic ISI decoder module is shown in Fig. 3.

C. Turbo Detection Principle

Similarly, the channel code can be optimally decoded using
the BCJR algorithm. A generic log-BCJR decoder module is
depicted in Fig. 4. Inputs and outputs are supposeda posteriori
probability (APP) ratios on bits (converted in the logarithmic
domain) conditioned or not by the knowledge of the consid-
ered code. From delivered APPs on each bit of a sequence, an
extra knowledge, called extrinsic information, is drawn, which
basically consists of the incremental information about that par-
ticular bit brought by information available from all other bits
through the decoding process. The basic SISO module has been
extensively described (see [14], [15], and [9]).

We now recall the turbo detection principle (Fig. 5). The SISO
ISI decoder delivers loga posterioriprobability (log-APP) ra-
tios on bits of symbols composing burst , aided with
log a priori probability ratios on them coming from the decoder
(null at the beginning) and given the received burstand an
estimate (or a reestimate)of the channel coefficient vector.
As we will show thereafter, those log-APP ratios on bits can be
divided in two parts according to the following:

(5)

After deinterleaving , the overall sequence of log ex-
trinsic probability ratios becomes a sequence of logintrinsic
probability ratios on bits of coded symbols for the channel
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Fig. 5. Turbo detection principle.

decoder. Similarly at the output of the SISO channel decoder,
each log-APP ratio on coded bit can be split into an
intrinsic part and an extrinsic part. The latter can be computed
by subtracting bitwise the loga priori ratio at the
input of the decoder from the corresponding log-APP ratio

at the output, so that

(6)

Sequence of log extrinsic probability ratios on coded bits is rein-
terleaved and passed to the SISO ISI decoder asnew se-
quences (one per burst) of loga priori probability ratios on bits
of bit-labeled symbols for a next detection attempt. Iterating the
procedure a few times leads to a dramatic improvement of the
final BER and FER on data bit sequence.

D. SISO DDFSE Detector

To reduce the overall turbo detection complexity, suboptimal
trellis-based detectors must be introduced. Among the set
of trellis-based reduced-states sequence estimators [21], the
DDFSE appears as the most suitable candidate because of its
high regular Viterbi-like structure and the good performance
it provides in regard with its moderate complexity [19]. For a
positive integer , we say that a trellis input sequenceends
at substate if terminates with the substring .

is called the reduced memory. At any depth, the substate
space coincides with the full BCJR trellis state space if

. In the case where , is reduced to the subset
of made of all possible substatesderived from full states
, so that

and

(7)

The above formalism applies for the definition of the subtrellis
on which the DDFSE algorithm proceeds. At each sec-

tion, and for all transitions, the branch metric computation in-
volves a convolution of the channel discrete-time impulse re-
sponse with a sequence of already estimated symbols.
Only the first estimated symbols for that sequence are avail-
able on the current studied transition and on the departure sub-
trellis substate with which it is connected.

In all of the following derivations, bold letters indicate
random variables, whereas normal letters indicate possible
realizations. At each time index and for all bit

indexes , the optimal symbol-by-symbol BCJR
algorithm would compute the log APP ratio, defined as

(8)

where is an estimate (or a reestimate) of the transverse channel
coefficient vector (possibly turned into minimum phase), and
is an observed sequence of length. In the following derivation,
the conditioning by is implicit and omitted for the ease of
expressions.

Marginalizing on bit-labeled input symbol sequences (8) can
be rewritten as

(9)

where

Since (min-log-BCJR approximation)

(10)

with denoting nonnegative quantities, the exact log APP
ratio is usually replaced by

(11)

where is the cost metric of the trellis path
associated with bit-labeled input sequence and received
sequence . Due to trellis reduction, the SISO-DDFSE
evaluates in a suboptimal fashion based on
per-survivor processing (PSP) [19]. For some given subtrellis

, and some given particular branch metric, let
be the cost metric of the best path starting from substate 0 at
depth 0, terminating at substate 0 at depth(assuming tail
symbols) and passing by branch at section . Suppose
also that each branch carries three fields: a departure
substate , an arrival substate , and a label

, modeling a bit-labeled input symbol for
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the time-varying rate-1 convolutional ISI code at time instant
. The suboptimum SISO-DDFSE output can be written as

(12)

The path metric , considered in (12) can always be split
up into a sum of three terms

(13)

where , denoting the forward accumulated metric of the
best subpath starting from substate and terminating in
substate , is recursively computed according to

(14)

with boundary conditions

and (15)

where , denoting the backward accumulated metric of the
best subpath starting from substate and terminating in
substate , is recursively computed according to

(16)

with boundary conditions

and (17)

The PSP-based branch metric used by the
SISO-DDFSE is expressed as

(18)

and is calculated only once during the forward recursion and
stored.

In the first term of (18), the complex symbol entering the
ISI code at time results from simple remapping of the branch
label . The complex symbol sequence
is simply deduced from substate , whereas the estimated
symbol sequence is obtained by
tracebacking the survivor path which terminates atand by
remapping labels on branches composing it. Survivor paths are
supposed to be stored in a traceback sliding window of depth

.
The loga priori probability on branch

in (18) can be formally identified to the loga priori probability
on its carried label , so that

(19)

Assuming perfect decorrelation between loga priori proba-
bilities on symbol bits after reinterleaving of log extrinsic
probability ratio sequence coming from outer code, we have

(20)

Finally, using (12), (13), and (20), the SISO-DDFSE output
on symbol bit can be split up into the sum of two

logarithmic terms

(21)

where

(22)

is the loga priori probability ratio on bit provided by outer
decoding, and where

(23)

(24)

with

(25)

is the incremental knowledge (or log extrinsic probability ratio)
on bit brought by all other bits of bit-labeled symbol of
burst throughout the ISI decoding process.

It must be emphasized that in case , the SISO-DDFSE
becomes formally equivalent to the min-log-BCJR algorithm
applied on the full ISI channel trellis. When considering pro-
cessing on a reduced-state trellis, estimated sequences taken
from the path history and involved in branch metric derivations
inevitably introduce a degradation in performance, due to a pos-
sible error propagation effect.

E. Minimum-Phase Prefiltering

If the main part of the ISI is contained in the last taps,
the degradation in performance might be important compared to
the min-log-BCJR ISI decoder. This happens when some roots
of the equivalent discrete-time filter are outside the unit
circle. To assure an average error rate close to optimal perfor-
mance, a correcting-phase prefiltering must be fitted just before
the SISO-DDFSE. This prefilter turns the discrete-time channel
impulse response into minimum phase, concentrating energy in
the first taps, thus improving the accuracy of DDFSE branch
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Fig. 6. A low-complexity turbo-detector.

Fig. 7. Equivalent discrete-time model of scheme 2.

metrics dramatically. Many algorithms exist to practically con-
struct the minimum-phase filter, the most straightforward being
based on root finding. Because of its prohibitive complexity,
however, the CEPSTRE principle has been preferred here for
an efficient calculation [20]. A low-complexity turbo detector
is depicted on Fig. 6.

III. I TERATIVE DETECTION AND SCCC DECODING

A. Equivalent Discrete-Time Model

In this new scheme (scheme 2), a data sequence
is first encoded by an outer

channel encoder , which generates an outer coded
sequence . Each data symbol

contains bits, whereas
each coded symbol contains
bits. Coded bits are interleaved by a pseudo-random interleaver

. The interleaved sequence , with
containing bits, enters

an inner channel code . The produced coded sequence
, with

containing bits is interleaved by a pseudo-random channel
interleaver and divided into bursts of

bit-labeled symbols (including known symbols for channel
estimation and synchronization purposes). To each symbol

on bits, a -ary
signal mapper associates a complex-valued symbol. We
represent in Fig. 7 the corresponding equivalent discrete-time
model of scheme 2. Scheme 2 is spectrally equivalent to scheme
1 if the inner coding rate is compensated by an

increase of the modulation order compared to . In other
words, equivalence is assured if .

B. Iterative Decoding

Modulation order increase usually makes an optimal
symbol-by-symbol detection unrealistic for scheme 2. Hence,
we have no option other than using a suboptimal SISO-DDFSE
to perform the detection task. On the other hand, the serially
concatenated codes and will be optimally decoded
by employing a log-BCJR algorithm at both stages. At first
iteration, for each burst, the SISO-DDFSE computes a log
extrinsic ratio on each bit of each symbol , given
the complex valued received burst and a channel estimate
(or reestimate) vector . The sequences of loga priori
probability ratios on symbol bits is set to 0. After channel
deinterleaving , the overall sequence of log extrinsic ratios
is used by an inner SISO decoder as a sequence of logintrinsic
probability ratios on inner coded bits . The inner SISO
decoder first computes a log extrinsic ratio on each
inner data bit . The produced sequence is deinterleaved
by and passed to an outer decoder as a sequence of log
a priori probability ratios on outer coded bits . The inner
SISO decoder also computes log extrinsic probability ratios

on each inner coded bit . The produced sequence
is reinterleaved by and sent to the SISO-DDFSE as
sequences (one per burst) of loga priori probability ratios on
symbol bits for the next iteration. To complete this first it-
eration, the outer SISO decoder finally computes a log extrinsic
ratio on each outer coded bit . The produced
sequence is reinterleaved by and passed to the inner SISO
decoder as a sequence of loga priori probability ratios on inner
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Fig. 8. Iterative decoding of scheme 2.

Fig. 9. Equivalent discrete-time model of scheme 3.

data bits for the next iteration. A recapitulative diagram of
the iterative decoding process is shown in Fig. 8.

IV. I TERATIVE DETECTION AND DECODING OFSERIALLY

CONCATENATED TCM

A. Equivalent Discrete-Time Markovian Model of Inner Part
and Associated Possibly Reduced Trellis

Fig. 9 illustrates the equivalent discrete-time model associ-
ated with a third scheme (scheme 3), where we consider an outer
code concatenated with a TCM , followed by an ISI code.
The -interleaved outer encoded sequence is divided into
data bursts of bit-labeled symbols,
each data symbol containing
bits. The inner TCM , of rate , operates on input bits
and produces coded bursts where
each symbol contains coded and en-
coded bits . To any coded symbol ,
the nonlinear TCM mapping rule associates a -ary com-
plex valued symbol . Again, scheme 3 is spectrally equiva-
lent to scheme 1 . The combination of
TCM and ISI channel encoding can be regarded as a Markovian
process whose memory is the sum of the memories of the con-
stituents and which accepts a “super-trellis” diagram
as a graphical representation. If, for convenience, we suppose
that the TCM encoder is a time-invariant nonrecursive convo-
lutional code of memory , the super-trellis is regular, made
of one single section , which is repeated in time.

The combined states can be expressed in terms of the inner data
sequence as so that super-trellis
complexities are given by

and

(26)

B. SISO Joint Detection and TCM Inner Decoding

At each section and for all inner data bit indexes
, an optimal symbol-by-symbol algorithm would

compute the log APP ratio, defined as

(27)

As previously stated, such a ratio could be optimally computed
by the BCJR algorithm processing on the full combined ISI and
TCM super-trellis. The decoding complexity would be so high,
however, that such an optimal approach must be discarded and
replaced by suboptimal ones operating on reduced-state trel-
lises. Again, for a positive integer , we say that a trellis inner
input sequence ends at substateif terminates with the
substring . The substate space at any depth
coincides with the super-trellis state spaceif .
In the case where , is reduced to the subset of



1736 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 9, SEPTEMBER 2001

Fig. 10. Iterative decoding of scheme 3.

made of all possible substatesderived from full states ,
whose complexity is

(28)

Without loss of generality, let us focus on the special subcase
where is chosen equal to . Path metrics computation
and minimization are then directly performed on the reg-
ular TCM trellis . The resulting suboptimal SISO
algorithm is called SISO parallel decision-feedback decoder
(or SISO-PDFD). Carrying out a similar forward–backward
derivation as was done for SISO-DDFSE, the final SISO-PDFD
output

(29)

is equivalently obtained by just modifying the branch metric for
existing transitions

(30)

In the first term of (30), the complex symbol results
from simple remapping of the branch label , which, in
this new case, models the bit-labeled coded symbol produced
by the TCM for transition (the first one is used in

computation modeling the bit-labeled input entering
the TCM for transition ). The estimated symbol sequence

is obtained by tracebacking the survivor
path which terminates at and by remapping labels on
branches composing it. Survivor paths are supposed to be
stored in a traceback sliding window of depth.

The fundamental interest of the SISO-PDFD lies in the fact
that the ISI introduced by the channel is not taken into account
any more in trellis substates. Its complexity is linear in and
does not depend either on modulation orderor on ISI code
memory . However, since ISI contribution is estimated using
past symbols read on stored survivors, the SISO-PDFD inher-
ently suffers from error propagation effect, especially when a
significant part of the energy is concentrated in middle and last
taps. Hence, as for the SISO-DDFSE, a prefiltering is crucially
needed to turn the channel into minimum phase, before per-
forming joint detection and decoding.

C. Iterative Decoding

At first iteration, for each burst, the SISO-PDFD subopti-
mally computes a log extrinsic ratio on each inner
coded bit, given the complex valued received burstand an
channel estimate (or reestimate) vectorof the equivalent dis-
crete-time channel coefficients. No loga priori information is
yet available on bits . The produced sequences are deinter-
leaved by and sent to the outer SISO decoder as a sequence
of log intrinsic probability ratio on outer coded bits . The
outer SISO decoder then computes a log extrinsic probability
ratio on each outer coded bit . The produced se-
quence is reinterleaved by and passed to the SISO-PDFD as

sequences (one per burst) of loga priori probability ratios on
inner data bits for a next joint detection and inner decoding
attempt. A recapitulative diagram is depicted in Fig. 10.

V. SCHEMESCOMPARISON INTERMS OFPERFORMANCE

To evaluate and compare the proposed schemes (1, 2, and 3)
in terms of performance, simulations have been realized on a
static ISI channel with five independent paths. The attenuation
factors of all paths have been chosen as

so that the total mean power is normalized to 1. Such a min-
imum-phase channel creates an ISI theoretical loss of approxi-
mately 3.0 dB.

For inner and outer codes of scheme 2 and outer code of
scheme 3, we have used four-state recursive systematic con-
volutional (RSC) codes of rate and generator polynomes

. In scheme 2, whose performance
is shown on Fig. 11 with optimal ISI decoding, SCCC inter-
leaver depth has been chosen equal to bits (leading
to a channel interleaver depth of bits) and the mod-
ulation is QPSK. In scheme 3, whose performance is plotted
on Fig. 12, the TCM is made of a four-state nonrecursive non-
systematic convolutional (NRNSC) code of rate and gen-
erator polynomes , coupled with Gray
mapping. As a benchmark, we have also simulated the conven-
tional turbo detection scheme 1, made of one single RSC code of
rate and generator polynomes .
For scheme 1A (Fig. 13), an optimal ISI decoding is realized,
whereas scheme 1B (Fig. 14) employs a SISO-DDFSE with
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Fig. 11. Scheme 2A—Iterative decoding of SCCC concatenated with ISI code
(rate 1/2 four-state RSC inner code, rate 1/2 four-state RSC outer code, QPSK,
five-tap min-phase static channel, Log-BCJR ISI decoder).

Fig. 12. Scheme 3—Iterative decoding of outer code concatenated with TCM
using PDFD (rate 1/2 four-state RSC outer code, rate 1/2 four-state NRNSC
inner code+ QPSK, five tap min phase static channel).

which leads to a degradation of 1 dB at BER .
If a BPSK modulation is assumed together with a channel inter-
leaver depth of bits, such a reference scheme has in
fact the same spectral occupation than others. At reception, the
channel is supposed to be known in all cases.

Observation of Figs. 11–13 reveals that scheme 2 provides the
best performance, which is only 0.7 dB better than the perfor-
mance of scheme 3. Iterative process for scheme 2 also starts 1
dB earlier than others. Its computational complexity is, however,
exorbitant. If suboptimum SISO-DDFSE is used in scheme 2
(Fig. 15), a reduction factor of 16 is reached with , but the
corresponding performance loss of 2.0 dB makes this scenario
not so attractive in practice. The great advantage of scheme 3 lies
in its computational complexity 128 times less than scheme 2
(with optimal ISI decoding), for an almost similar performance
(neglecting the prefiltering and PSP complexity).

Fig. 13. Scheme 1A—Turbo decoder using Log-BCJR ISI decoder (rate 1/2
four-state RSC outer code, BPSK, five tap min phase static channel).

Fig. 14. Scheme 1B—Low-complexity turbo-decoder using SISO-DDFSE
� = 2 (rate 1/2 four-state RSC outer code, BPSK, five tap min phase static
channel).

Fig. 13 also shows that the “no_ISI” curve corresponding to
the optimal decoding performance of a RSC code on a Gaussian
channel and acting as the theoretical lower bound for scheme
1A (optimal ISI decoding) is clearly outperformed by schemes
2 and 3. As expected, this is due to the more powerful code
combination involved in the last two. It must also be emphasized
that computational complexity of the 12 iterations of scheme 3
is of the same order as five iterations of scheme 1A, for a far
better asymptotic performance of the former. (Note that we did
not take into account the additional complexity due to PSP.)

From this analysis, we conclude that scheme 3 provides the
best compromise between performance and complexity. Un-
fortunately, it cannot be applied for highly frequency selective
channels. Indeed, for most channel outcomes, the prefiltering
reveals powerless to fight against the error propagation that
appears in SISO-PDFD branch metrics computation. As a con-
sequence, a new generalized SISO-PDFD has been investigated
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Fig. 15. Scheme 2B—Iterative decoding of SCCC concatenated with ISI code
(rate 1/2 four-state RSC inner code, rate 1/2 four-state RSC outer code, QPSK,
five-tap min-phase static channel, SISO-DDFSE� = 2).

in [24] and [25], which is proved to be very efficient against
this per-survivor processing limitation.

VI. TURBO DETECTION COMBINED WITH CHANNEL

REESTIMATION

A. EM Based Reestimation

As mentioned previously, the SISO ISI decoders presented in
Sections II and III and simulation results presented above as-
sume that the channel coefficient vector is
known at the receiver. In practice, channel coefficients are es-
timated by inserting a known constant amplitude zero autocor-
relation (CAZAC) training sequence in the transmitted frame at
the expense of reduced spectral efficiency. The classical method
of correlative channel estimation (the pseudo-inverse method)
causes a performance degradation of 2.9 dB with respect to the
perfect channel estimation [26]. This gap can be reduced by
using more advanced channel estimation techniques, such as the
expectation-maximization (EM) algorithm, a powerful tool that
performs maximum likelihood (ML) parameter estimation of a
doubly stochastic process in an iterative fashion [27]. The EM
channel estimation of this work utilizes the decoupling decom-
position proposed in [28] together with the forward–backward
trellis search of the SISO ISI decoder to obtain separate closed
form recursion expressions for channel coefficient estimates.

The optimum ML solution to the problem of channel estima-
tion is obtained by maximizing the log likelihood function
of the received vector of samples

(31)

In most cases, finding the solution of (31) is practically im-
possible. However, the EM algorithm provides a feasible solu-
tion to this optimization problem by iteratively reestimating the
channel coefficients, so that a monotonic increase in the likeli-

hood function is guaranteed. It achieves this monotonic increase
by introducing the following auxiliary function:

(32)

where is the vector of estimated channel coefficients at the
th iteration of turbo-detector and is the so-calledcomplete

datathat is actually unobservable, but whose knowledge makes
the estimation easy. Since the complete datais unknown, its
log-likelihood function is a random variable, and therefore we
maximize the conditional mean of this log-likelihood function
given the (observable)incomplete data and the set of most

recent channel estimates . The complexity and the rate of
convergence of the algorithm is affected by the choice of the
complete data .

As depicted in Fig. 16, the EM reestimation sequencing is as
follows: during each iterationof the turbo detector, an iteration
of the EM algorithm is performed together with the SISO equal-
ization process. This EM iteration itself involves a two-step pro-
cedure:

1) E-step: Compute

2) M-step: Solve

The new vector of channel coefficients is used by the
SISO ISI decoder at iteration of the turbo detector. The
expectation operation in the E-step is with respect to the com-
plete data . The performance of the EM algorithm is very sen-

sitive to the choice of the initial estimate . Therefore, we
initialize the algorithm by applying the pseudo-inverse method
on the training sequence.

It has been shown in [28] that for the class of problems
involving superimposed signals, there is a natural choice of
complete data, leading to simple analytical expressions to
extract the ML estimates. This is achieved by decomposing the
noise components (that are present in the received samples)
arbitrarily (and artificially) into independent noise processes

whose number is equal to the number
of superimposed signals. Adopting this approach, and consid-
ering that our problem also includes the unknown transmitted
symbols as random parameters, we choose the complete data
as where is the random
sequence composed of the complex transmitted symbols and

is chosen as a random matrix whose th entry is given
by a process formed by adding one of the superimposed signals
and its corresponding noise component

(33)

and is the set of noise components
that are complex, independent, and identically distributed
(i.i.d.), zero-mean Gaussian random variables with variances

. Clearly, s have to satisfy the
normalization constraint . Besides, it is stated
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Fig. 16. EM channel reestimation.

in that introducing variations in the choice of thes can be
helpful to control the rate of convergence of the EM algorithm
and to avoid the convergence to an unwanted stationary point.
In our simulations, however, we have taken
for all .

Having defined the complete data, we can write the objec-
tive function as follows (see the Appendix):

(34)

where denotes the complex conjugate operator,denotes
the modulation alphabet, denotes the (complex-valued
equivalent) EM algorithm state at time, is some possible
realization in whose th component is , and

(35)

is the conditional expectation of given . For

phase modulated systems, the second term of in (34)
reduces to where is the energy of the symbols.

The essence of the decomposition in defining the complete
data can be clearly seen in the expression of the objective
function. The complicated superimposed parameter optimiza-
tion problem which leads to nonlinear expressions is decoupled
into separate ML optimizations leading to tractable linear
expressions.

The M-step is performed by taking the partial derivative

of with respect to each channel coefficient and

equating the resulting expressions to zero to extract for
all . Then, we obtain the recursive expression to update the
channel coefficient estimates as follows:

(36)

with

(37)

Due to the ISI Markovian structure, thea posteriorconditional

probabilities can easily be obtained
from the forward–backward recursion trellis search performed
by the ISI SISO decoder. Thus, the EM channel reestimation can
be naturally embedded in the iterative detection process without
bringing a significant overhead. For an optimal BCJR detection,
and following the formalism of [10], we can explicitly compute
the EM algorithm state APPs by

(38)

where the joint probability can be
split into

(39)

with

(40)

and

(41)
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Fig. 17. Bootstrap channel reestimation.

B. A Simple Suboptimal Linear Alternative for the Channel
Reestimation Problem

This very simple approach is inspired by the well-known
bootstrap technique. Instead of considering estimated data
symbols after the ISI decoder, however, decisions are taken
after reinterleaving of the decoded sequence. Thus, the
so-called bootstrap reestimation benefits from time diversity
brought by interleaving and from channel decoding efficiency.

We now describe the sequencing.

1) After reinterleaving of soft outputs on produced by
the channel decoder, a hard decision is taken on each bit

of each bit-labeled symbol of sequence . An es-
timate of useful symbols, denoted , is then available
(tail symbols, guard symbols, and symbols of CAZAC
training sequence are knowna priori).

2) The matrix system is formed by

(42)

where
sequence of observed symbols;
unknown vector of channel coefficients;
Toeplitz square matrix whose complex coefficients are
made of estimated symbols of at iteration .

3) A solution minimizing the error probability (or, equiv-
alently, the Euclidean distance, being a Gaussian
random vector with circular symmetry) is well-known

(43)

where denotes transpose conjugate operator. Matrix
system (43) can be solved by a Choleski decomposi-

tion. Exhibited is used as a channel estimate for
iteration .

A recapituative diagram is shown in Fig. 17 for the full turbo
DDFSE-based receiver.

C. Performance Analysis

Fig. 18 depicts the simulation results on the raw BER perfor-
mance of the classical turbo detection scheme (optimal BCJR-

Fig. 18. Scheme 1A—Full turbo detector (rate 1/2 16-state RSC outer code,
BPSK, five-tap min phase static channel) with log-BCJR ISI decoder and EM
channel reestimation.

based ISI decoding) that uses a 16-state RSC code of rate 1/2 and
generator polynomials
on the static five-tap minimum-phase channel

with EM channel reestimation. For comparison purposes, the
corresponding performances of the perfect channel estimation
and the classical pseudo-inverse channel estimation with
26-symbol CAZAC training sequence are also included in the
same figure. The pseudo-inverse channel estimation is done
only at the beginning of the turbo iterations and is not updated
within the course of the turbo iterations. The initial estimate
for the EM reestimation is obtained with the pseudo-inverse
method.

It can be observed that even with a single EM iteration, the
performance of the EM-based channel reestimation outperforms
the classical pseudo-inverse channel estimation by 1.5 dB and is
inferior with respect to the perfect channel estimation by 1 dB.
Furthermore, the effect of updating the channel coefficient es-
timates at each turbo iteration can clearly be observed, i.e., the
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Fig. 19. Scheme 1B—Low-complexity full turbo-detector (rate 1/2 16-state
RSC outer code, eight-PSK, TU channel profile) with SISO-DDFSE (� = 2)
and bootstrap channel reestimation.

Fig. 20. Scheme 1B—Low-complexity full turbo-detector (rate 1/2 16-state
RSC outer code, GMSK, TU channel profile) with SISO-DDFSE (� = 5) and
bootstrap channel reestimation.

superiority of the EM channel reestimation over the pseudo-in-
verse method increases with the turbo iteration index. In itera-
tion 1, the difference is less than 0.5 dB, whereas in iteration 3,
it is approximately 1.5 dB.

Figs. 19 and 20 show simulation results for a time-varying
and frequency-selective GSM typical urban (TU) channel at low
speed (the channel is assumed to be stationary over the duration
of each radio burst defined as in [18]) and ideal frequency hop-
ping (the channel is independent from burst to burst). The initial
mismatched channel estimation is based on the pseudo-inverse
method performed on the 26-symbol CAZAC training sequence
of the GSM burst as defined [18]. The structure of the commu-
nication chain is given Fig. 1 and the turbo-detector is based on
Fig. 17. The channel coding is the same with scheme 1. Fig. 19
is for 8-PSK with interleaving depth of 2784 bits and 64-state
SISO-DDFSE ( ), the transmitter filter being the lin-
earized GMSK pulse shape and the receiver filter a root raise co-
sine filter with roll-off 0.5 (this low complexity receiver design
can be used for the EDGE system). Fig. 20 is for GMSK with
an interleaving depth of 928 bits and eight-state SISO-DDFSE
( ), the receiver filter being a six-pole butterworth with

(this low complexity receiver design can be used for
GSM system).

VII. CONCLUSION AND FUTURE RESEARCHTOPICS

In this paper, we have investigated several schemes for it-
erative decoding of encoded signals under multipath Rayleigh
fading. The schemes, utilizing reduced complexity trellis search
algorithms (SISO-DDFSE and SISO-PDFD) are especially ap-
propriate for practical applications where higher order modu-
lations (than BPSK) prohibit the implementation of the BCJR
algorithm. The importance of such a study can be more pro-
nounced if we consider the enhanced data rate TDMA systems
(like EDGE) where eight-PSK is used to allow high data rates.
Among the schemes proposed in this work, the most favorable
one is the concatenation of an RSC code with a TCM which en-
ables us to perform joint equalization and inner decoding using
a SISO-PDFD algorithm. It has been demonstrated that such a
scheme has a reasonable complexity and a very good perfor-
mance on minimum phase channels where a prefilter is inserted
at the receiver front-end to ensure that the equivalent channel re-
sponse is minimum phase. The natural extension of this work is
to study similar reduced-complexity iterative decoding schemes
for nonminimum phase channels where prefiltering is not done.

The importance of channel reestimation is also studied in this
paper. We have proposed two channel reestimation schemes (the
EM and the Bootstrap algorithms) and compared their perfor-
mances to that of the classical pseudo-inverse method. It has
been shown that both of the proposed schemes perform much
better than the pseudo-inverse method using 26-symbol CAZAC
training sequence. Offering good performance at the expense of
small additional complexity, the proposed channel reestimation
algorithms can be implemented in turbo detection applications
that are very sensitive to channel estimation errors. Particularly,
the Bootstrap algorithm seems as a good tradeoff between per-
formance and complexity.

APPENDIX

Considering that the random sequenceand random vector
are independent random vectors, we can write the log likeli-

hood of the complete data as

(44)

The second term is not a function of, so that it can be dis-
carded. Since the decomposed noise processes are i.i.d, the first
term can be split into

(45)
where is a constant independent of. Expanding the term in

and omitting the terms that do not depend onleads to:

(46)
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We now focus on the conditional expectation with respect to
where

(47)

can be explicitly derived as

(48)

with

(49)

the symbol sequence or EM algorithm state at time

(50)

some possible realization in whose th component is ,
and

(51)

Note that, due to the ISI Markovian structure, APPs on EM al-
gorithm states at time are equal to APPs on underlying
(complex-valued equivalent) ISI trellis states at depth

. Observing that and are jointly Gaussian, we can rewrite
the explicit expression of as [28]

(52)

The expression of the objective function is finally
given by

(53)

Q.E.D
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