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Abstract. A wideband metamaterial (MTM) absorber based on a concentric ring resonator is
discussed at visible frequencies. The proposed structure offers a wideband absorption response,
where absorption of >70% is gained for the frequency ranging from 537.91 to 635.73 THz. The
analysis is conducted on the components of the proposed structure to understand the origin of
wideband absorption. Furthermore, a graphene monolayer sheet is integrated to the proposed
MTM absorber to optimize its absorptivity, where the studies show enhancement of the absorp-
tivity of the proposed structure up to 26% from its initial absorptivity. MTM absorbers of this
kind have potential applications in solar cells. © 2017 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOL: [TITT7/TIJNHII.036009]
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1 Introduction

Over the past few decades, metamaterials (MTM) have greatly attracted the attention of many
researchers due to their simultaneous negative electric permittivity and magnetic permeability,
which are unavailable in nature. MTM, which are made of periodic arrangements of the sub-
wavelength unit-cell structures, are manmade composite materials.# Through carefully designing
the geometry of an MTM unit-cell structure, some interesting electromagnetic (EM) responses
can be attained, such as a negative index of refraction, reverse Doppler effects, backward wave
propagation,l and so on. Several applications have been invented due to MTM and its exotic
EM properties. Those applications include, but not limited to superlens,B8 filters, B antennas
and sensors,BH invisible cloaks,BHA subwavelength imaging,lzi etc. Realization of perfect
absorber (PA) devices is one of the greatest applications of MTM.BE The well-tailored MTM
can be made to produce a media with zero (or very negligible) transmission and reflection of
incident EM radiation, resulting in thorough absorption of all incident radiations at a certain
range of frequencies and polarization angles. 28] MTM-based absorbers have demonstrated
the ability to produce high (near perfect) absorptivity, which enabled the creation of absorber
devices, including high absorber solar cells H2 Normally, a unit cell of an MTM consists of a
metallic layer, a dielectric substrate, and a ground plane. A perfect absorption can be realized by
tuning &(w) and p(w) separately so that the impedance of the MTM is matched to the free-
space’s impedance. Absorption can further be optimized by employing a ground metal plane
of thickness greater than its skin depthIﬁ in the frequencies of interest. The first MTM perfect
absorber (MTMA) was demonstrated by Landy et alB in 2008; a unit cell of their MTMA
structure consists of a metallic split ring and a cut wire sandwiched with a dielectric substrate.
Since then, MTM-based PAs have gained significant interest and different MTMASs have been
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proposed from radio frequency to optical frequency ranges.’B—q'E At present, single-band, dual-
band, multiband, and broadband MTM absorber structures have been proposed in some
articles. BEHA Eyen though most of these structures can display high absorption and some other
important responses, such as polarization independency and wide angles of incidence, B there
is still a problem in the wideband MTMA designs that display perfect absorption for the high
frequencies range, which limits their potential applications in solar cells. On the other hand,
adding a graphene monolayer sheet on the MTMA unit-cell structure causes enhancement of
their absorption coefficient and bandwidth. B8 Interesting electronic transport properties far bet-
ter than those of metals and semiconductors, high conductivity, and the excellent mechanical
properties of graphene made it a good candidate in the MTM industry, where graphene sheets
are used for MTM absorber designs in order to manipulate the propagating path of EM waves,
which leads to optimization of absorption characteristics of MTM absorber structures. EIE]

In this work, a wideband MTMA structure with nearly perfect absorption in the visible fre-
quency region of the solar spectrum is proposed and numerically characterized; the proposed
MTMA design consists of circular concentric ring resonators (CCRRs). A complete analysis
concerning graphene’s ability to increase the absorptions of the MTMA is provided, and it
was concluded that addition of a graphene monolayer sheet in the proposed MTMA structure
optimizes the wideband absorptivity character of the proposed MTM.

2 Design, Simulation, and Discussion

To design a reliable and highly efficient MTMA requires minimization of the reflection and
transmission of incident radiations, manipulating the complex interactions of the MTM with
the EM wave.E Generally, the absorption is described as A(w) = 1 — R(w) — T(w), where
A(w), R(w), and T (w) represent frequency (w) dependent absorptivity, reflectivity, and trans-
mission rate, respectively. It is obvious that if one wants to efficiently optimize the absorber,
transmission and reflectivity need to be minimized to the very minimum possible coefficient.
One method to tackle reflectivity is to adjust the MTMA effective impedance Z.z(w) so as to
match it to the free-space impedance Z,. In this work, the T(w) ~ 0 for a metallic ground plane
whose thickness is larger than the skin depth is used. Thus, the total absorptivity of the proposed
MTMA was calculated as A(w) = 1 — R(w). The values of R(w) and T'(w) can be extracted from
the square of the frequency-dependent S-parameters S;; (@) and S;,(w).

In this study, a structure that was reported in our previous work® is utilized, then further
study was extended to this work for integration of graphene on the same structure to understand
graphene’s effects on the absorptivity of the MTMA. The proposed MTMA is provided in Fig. [l
A unit cell of the structure consists of three circular ring resonators and each resonator is respon-
sible for generating EM resonance once coupled with the dielectric space and ground metallic
plane. Thus, three resonances were produced at three different resonant frequencies. All metallic
layers were designated to be gold (Au) whose electric conductivity is 4.561 x 107 % Au is
chosen based on its well-known properties such as ability to stand against extreme heat and
high reflectance in the presence of high frequency EM radiations.B The intermediate dielectric
layer is gallium arsenide (GaAs) lossy with electric permittivity and loss tangent delta of 12.94
and 0.006, respectively. GaAs is preferred mainly due to its outstanding electron mobility and
saturated electron velocity. In addition, GaAs is insensitive to excessive heat due to its wide
bandgap and has a direct bandgap, which makes it an outstanding material for fabrication of
devices for absorption and emission of light. The properties of glass Pyrex are electric permit-
tivity and lossy tangent delta of 4.82 and 0.0054, respectively. Glass Pyrex is selected for its
outstanding transitivity of visible frequencies and its ability to stand against heat expansion.

The geometry parameters of the suggested MTMA unit cell are @ = 17 nm, e = 102 nm,
g=146.2 nm, d = 57.8 nm, ¢ =27.2 nm, d = 40.8 nm, t = 103.4 nm, z = 103.4 nm, x =
530 nm, n (thickness of glass Pyrex) = 16 nm, and k (CCRRs’ thickness) = 6.8 nm.

The numerical simulations for the proposed MTMA unit cell are performed with a full-wave
EM simulator, which employs a finite integration technique (FIT). B8 The MTMA unit cell is
intended to work in the visible frequency ranging from 450 to 800 THz. The incident EM radi-
ations polarize in a way that the E-field and H-field propagate in parallel with the structure plane,
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Fig. 1 (a) The proposed MTMA unit cell and (b) the top CCRRs with their geometric labels.

while wave vector (k) is perpendicular to the geometric plane of the unit cell structure. The
boundary conditions are set to periodic boundaries along X and Y directions, while the open
and add space boundaries are selected for the simulations environment (Z-plane).

The numerical simulation results for the proposed MTMA unit cell are reported in Fig. . As
can be seen in Fig. P(a), a wideband is gained at the resonant frequency, which believed to be a
result of enhanced three-band resonant absorptions that join together to produce a wideband with
a perfect absorption of 99.99%. This is understood to result from independent EM resonances
shaped by the strong coupling of each one of the three ring resonators with the dielectric sub-
strate and with the ground metallic plane.

To comprehend the source of the observed wideband absorption characteristics for the
MTMA unit cell in this study, numerical analysis is conducted for each resonator. In Fig. E(b],
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Fig. 2 (a) Simulated absorption and reflection rate for the proposed wideband MTMA unit cell and
(b) simulated absorption rate of each ring resonator.
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the simulated absorption for each resonator is shown. One can notice that each resonator
accounts for a single-band absorption resonance of about 90% absorption, while a combination
of the three resonators generates strong electric and magnetic field resonances. This results in the
enhancement of the total absorption gained by a unit cell and also produces a wideband absorp-
tion response.

3 Integration of Graphene Monolayer Sheet on the Proposed MTMA
Unit Cell

In order to optimize the absorptivity of the proposed structure, a graphene monolayer sheet is
integrated with it, where a layer of glass Pyrex lossy on the top of a dielectric spacer is substituted
by the graphene sheet. In addition, a graphene layer is used to shield the top face of the res-
onators’ surface. The simulation of graphene is made possible by using its surface conductivity,
which can be controlled by chemical potential or bias electrostatic voltage and regulating gra-
phene transport properties. The permittivity of graphene is calculated using Eq. ([l]):

£g = (HZ) + &, 1)
where &,, &), and (6,) symbolize the permittivity of graphene and free-space and the conductivity
of graphene, respectively, while n and o represent the thickness of the graphene sheet and work-
ing frequency, respectively.

The Kubo-equation [Eq. (B)], which is generally used for modelling of conductivity (c,) of
graphene, BEHA 5 applied in this study and the obtained values are used in Eq. () to determine
the permittivity of graphene:

(a)

(b) 1
— Without graphene|
— With graphene

0.8 R

=}

£ 06

£

o

2 0.4

< 0

o
o

0 1 1 1 1 1 1 1 1 1
500 520 540 560 580 600 620 640 660 680 700
Frequency (THz)

Fig. 3 (a) The proposed wideband MTMA structure with use of graphene monolayer sheet and
(b) the simulated absorption of the proposed design with and without using graphene monolayer
sheet.
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Fig. 4 Absorption characteristics of the proposed graphene-based wideband MPA structure under
different geometric parameters. (a) Different value of graphene periodicity “x” and (b) different
thickness “n” of graphene sheet.
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where e, kg, and 7 are universal constants, which symbolize the charge of an electron
(1.6 x 1071 ©), Boltzmann’s constant (1.3806 X 1072 m?kgs~2K~!), and Planck’s constant
(1.0545 x 1073* m*kgs™'), respectively. T characterizes temperature and is taken to be
room temperature (300 K) in this study; . and I" denote physical parameters of the graphene
monolayer sheet and are responsible for chemical potential (Fermi energy) and intrinsic losses/
phonological scattering rate, in order. I' = %, and 7 denotes electron relaxation time.

The input value for the phonological scattering rate is fixed to I’ = 1 x 1072 eV in reference
to the estimated maximum value of the electron mobility in graphene.m In this study, the opera-
tional frequency w is the visible spectrum range ranging from 450 to 800 THz and the thickness
(n) of graphene is taken to be 1 nm. By using the model in Eq. (fJ), conductivity was calculated at
different chemical potentials (u.) (bias electrostatic voltage) and by using (1) the permittivity of
graphene was determined. The calculated permittivity is integrated in the computer simulator,
which uses FIT in order to numerically analyze the contribution of graphene on the absorption
characteristics of the proposed wideband MTMA structure. In Fig. B, enhanced wideband
absorption results for the proposed structure are reported.

It can seen from Fig. [§ that an improved absorption bandwidth for the proposed structure is
gained, which is a result of replacing the glass Pyrex layer with a graphene monolayer sheet and
also by wrapping the resonators’ face with the sheet of graphene, which causes excitation of
surface plasmonic waves and leads to enhancement of the absorption bandwidth of the
MTMA. Adding a graphene sheet on the proposed MTMA structure unit cell increases its
absorption bandwidth up to 26% of its initial bandwidth, where an absorption rate of more
than 90% covers a wide frequency range of 137 THz.
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The geometrical parameters of the graphene sheet are also investigated in order to understand
their impact on the absorptivity of the proposed structure. In Fig. [, the simulated results for
different geometry parameters are reported.

The first observation is the effect of the structure’s periodicity “x,” where by changing the
values of x from 515 to 550 nm with a step width of 5 nm, the absorption rate is found to improve
and the ripples start to decline up to a slight ripple obtained at x = 550 nm. The physics behind
this is that the dimension of “x” affects both the inter- and intraunits’ interactions and sub-
sequently alters the magnetic and electric resonances.l This can also be supported by the
LC circuit theory (L: inductance and C: capacitance of the structure), where variation of the
parameter “x” affects the capacitance of the structure and for the larger value of “x,” the magnetic
and electric fields tend to be almost overlapped so the ripples become slight.m Another impor-
tant geometrical parameter is graphene’s thickness “n.” Typically, the thickness of graphene
must be small and in this study, it is set to be a fix value n = 1 nm referring to the one in liter-
ature for a graphene-based MTM absorber.® This corresponds roughly to three layers of gra-
phene. By performing simulations of the proposed structure at different thicknesses of graphene
sheets, it is realized that the absorptivity of the proposed MTMA unit cell is getting enhanced for
smaller values of n and begins to decrease for all thicknesses >1 nm.

4 Conclusions

A graphene-based wideband MTMA was proposed and characterized in this study. Nearly per-
fect absorption of 99.9% was achieved at the resonant frequencies and absorption and the wide-
band response were confirmed by an absorption rate of >70%, which is gained for the frequency
ranging from 537.91 to 635.73 THz. A study was conducted on the components of the proposed
MTMA unit cell to understand the origin and its wideband absorptivity nature, and it was under-
stood this is a result of strong EM resonances that arise from strong coupling of the structure’s
resonator with a dielectric spacer and ground metallic plane. As the main objective of this study
was to use a graphene sheet for enhancement of the structure absorptivity, the calculated results
show that integration of the graphene monolayer on the proposed MTMA unit cell improves its
absorption bandwidth up to 26% of its initial bandwidth without graphene. Finally, the geometry
parameters analysis was conducted on the proposed structure after integration of graphene, and it
was found that the periodicity of a unit cell structure and the thickness of the graphene layer play
a crucial role in their absorptivity (remove or generate ripples on the absorption peaks). The
structure proposed here is believed to have some potential applications in the realization of
high efficiency solar cells. Experimental study of the proposed MTMA structure remains a sub-
ject for future work.
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