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1. Introduction

Several aspects of classical and quantum field theories on noncommutative deformations of

spacetime have been under investigation for some time now. Among them, field theories

defined on Groenewold-Moyal type deformations of 3 + 1 and 2 + 1 dimensional spacetime

hold a considerably large part of the literature (see for example [1] for a review), whereas

theories in 1 + 1 dimensions have not been considered extensively until very recently.

In [2, 3] a noncommutative deformation of the sine-Gordon model was constructed, however

it lacked some of the desirable features of a 1+1 dimensional field theory even at the classical

level.

In [4] a novel noncommutative deformation of the sine-Gordon model has been pro-

posed. This model is obtained through a dimensional reduction of a certain integrable time-

space noncommutative sigma model in 2+1 dimensions, which was previously constructed

in [5]. In [4] it was demonstrated that this particular deformation of the sine-Gordon model

possesses many attractive features at the classical level, as would be expected from a the-

ory in 1 + 1 dimensions. Firstly, its classical integrability is guaranteed as it is obtained

by dimensional reduction from the linear system of the noncommutative integrable sigma

model. Although this dimensional reduction takes place initially at the level of equations

of motion, it also works at the level of the action, leading directly to the sought for action

in 1 + 1 dimensions. It was also shown in [4] that solitonic solutions of the model exist,

and the presence of the linear system made it possible to use the well-known technique of
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“dressing” to find these solutions in a systematic manner. Finally, a direct evaluation of

the tree-level amplitudes performed in [4] revealed that the theory has a causal S-matrix

and that no particle production occurs.

All these features make this model quite an attractive testing ground for launching

further investigations on noncommutative deformations of 1+ 1-dimensional field theories.

In particular, it is desirable to find some indications on the behaviour of this model as a

quantum field theory. With this state of mind, we first investigate the fluctuation spectrum

in the background of the one-kink solution by applying elementary semi-classical methods.

We find that at O(θ) in perturbation theory the spectrum of quadratic fluctuations remains

the same as that for the commutative sine-Gordon theory. We also argue that this spectrum

remains essentially the same at order O(θ2) as well.

Next, we turn our attention to the two-point functions of the sine-Gordon field and the

additional scalar field, in the vacuum sector at one-loop order, and exhibit that they both

have logarithmic divergences. The amplitude for the sine-Gordon field also contains a piece

which leads to UV/IR mixing. Interestingly, both two-point functions receive contribution

from loop integrals which arise only from noncommutativity but do not lead to UV/IR

mixing. Finally, we discuss the renormalization of the model for the Euclidean signature

and comment on the obstacles in determining the noncommutativity corrections to the

quantum mass of the kink.

2. Basics

In this section, we collect some elementary definitions to set the notation and conventions

used throughout the text. We work in the 1 + 1-dimensional Groenewold-Moyal spacetime

Aθ(R
1+1), generated by the coordinates t and y with the commutation relations

[t , y]⋆ := t ⋆ y − y ⋆ t = iθ . (2.1)

The star product is defined by

(α ⋆ β)(t, y) = α e
i
2
θ(
←−
∂ t

−→
∂ y−

←−
∂ y

−→
∂ t) β , α, β ∈ Aθ(R

1+1) . (2.2)

In order to avoid cluttered notation, we suppress the ⋆ notation for the star products

in all the formulae from now on. It is also understood that functions such as ef(t,y) stand

for e
f(t,y)
⋆ := 1 + f + 1

2f ⋆ f + · · · . Throughout the paper, it will always be clear from the

context whether the star product or the pointwise product is involved in a formula.

Let g+ and g− be two elements of Aθ(R
1+1), which are valued in U(1)⋆. Then the

noncommutative sine-Gordon model of reference [4] can be defined by the action functional

S[g+, g−] = SWZW[g+] + SWZW[g−] + α2

∫

dtdy (g†+g− + g
†
−g+ − 2) , (2.3)

where

SWZW[f ] = −1

2

∫

dtdy ∂µf−1∂µf − 1

3

∫

dtdy

∫ 1

0
dλεµνσ f̂−1∂µf̂ f̂−1∂ν f̂ f̂−1∂σ f̂ . (2.4)

– 2 –
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The Wess-Zumino (WZ) term in (2.4) contains a path on the interval [0 , 1], parametrized

by a coordinate λ, which commutes with both t and y. f̂(t, y, λ) is an extension of f(t, y)

on this interval, interpolating between

f̂(t, y, 0) = constant , f̂(t, y, 1) = f(t, y) . (2.5)

It is possible to parametrize g± in terms of scalar fields φ±(t, y) as

g+ = e−iφ+ , g− = eiφ− . (2.6)

Taking θ → 0 and using the field redefinitions ϕ := φ+ + φ− and ρ := φ+ − φ−, the

action S[g+, g−] leads to the usual (commutative) sine-Gordon action in the field ϕ plus a

free scalar field action for the field ρ.

For further details on this model and its derivation from a certain noncommutative

sigma model in 2 + 1 dimensions we refer the reader to the original articles [4, 6].

3. Fluctuations around a classical background

3.1 Stability equations

We split the fields by setting

g+ = g0+e−iπ+ , g− = eiπ−g−1
0− , (3.1)

where the set {g0+ , g0−} is any background satisfying the classical equations of motion that

follow from S[g+, g−], and π+ , π− are the fluctuations in this background. In the following

subsections we will examine the vacuum and the one-kink solutions as backgrounds, which

are both static. In any static background, one has

g0+ = g0− = g0 ⇐⇒ φ+ = φ− =: φ0 (3.2)

and from now on we will restrict ourselves to such backgrounds.

We expand the action S[g+, g−] to quadratic order in the fluctuations π±. A long but

straightforward calculation gives

S[g+, g−] =

∫

dtdy

[

− 1

2
∂µg−1

0 ∂µg0 −
1

2
(∂µπ+)2 − 1

2
(∂µπ−)2 (3.3)

−
(

1

2
ηµν + εµν

)

g−1
0 ∂µg0

(

[∂νπ+ , π+] + [∂νπ− , π−]

)]

+α2

∫

dtdy

[

g−2
0 + g2

0 − 1

2
(π2

+ + π2
−)(g−2

0 + g2
0)

−π+g0π−g0 − π+g−2
0 π−g−2

0

]

+ O(π3) ,

up to cubic and higher order terms in π±. This leads to the following equations of motion

for π±:

− ∂µ∂µπ± + (ηµν − 2εµν)

(

[∂µπ± , g−1
0 ∂νg0] +

1

2
[π± , ∂µ(g−1

0 ∂νg0)]

)

− α2

2
{π± , g−2

0 + g2
0} − α2(g0π∓g0 + g−1

0 π∓g−1
0 ) + O(π2) = 0 . (3.4)

– 3 –
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In (3.4) square and curly brackets denote respectively the commutators and anticommu-

tators with respect to the star product. In the following we will work at order linear in

π±.

The equations in (3.4) decouple if we redefine the fluctuating fields as

η :=
1

2
(π+ + π−) , ξ :=

1

2
(π+ − π−) . (3.5)

Thus we have

− ∂µ∂µη + (ηµν − 2εµν)

(

[∂µη , g−1
0 ∂νg0] +

1

2
[η , ∂µ(g−1

0 ∂νg0)]

)

(3.6)

−α2

2
{η , g−2

0 + g2
0} − α2(g0ηg0 + g−1

0 ηg−1
0 ) = 0 ,

−∂µ∂µξ + (ηµν − 2εµν)

(

[∂µξ , g−1
0 ∂νg0] +

1

2
[ξ , ∂µ(g−1

0 ∂νg0)]

)

(3.7)

−α2

2
{ξ , g−2

0 + g2
0} + α2(g0ξg0 + g−1

0 ξg−1
0 ) = 0 .

Let us now examine the consequences of (3.6) and (3.8) in the vacuum and one-kink sector.

3.2 Fluctuations in the vacuum sector

In this case we have

g0 = e−
i
2
ϕ0 = 1 , ϕ0 = 0 , ρ0 = 0 , (3.8)

hence (3.6) and (3.8) simplify to

−∂µ∂µη − 4α2η = 0 , −∂µ∂µξ = 0 . (3.9)

Thus, in the vacuum background, the fluctuations η and ξ are plane waves

η(t, y) = e±iky+iωt , ξ(t, y) = e±iry+iνt , (3.10)

with the dispersion relations ω2 = k2 + 4α2 and ν2 = r2. These results are in complete

agreement with the fluctuation spectrum in the vacuum sector of the usual sine-Gordon

theory. The presence of the ξ-fluctuations does not effect this conclusion as they are

decoupled from η in this background.

3.3 Fluctuations in the kink sector

Let us now examine the static one-kink solution for the g0 background. In this case we

have

g0 = e−
i
2
ϕ0 , ϕ0 = 4arctan e−2αy , ρ0 = 0 . (3.11)

We observe that (3.6) and (3.8) are complicated equations in which infinitely many deriva-

tives in time and space appear due to the star product. It does not seem possible to solve

– 4 –
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these equations analytically. In order to extract some physical information from these equa-

tions, let us assume that the noncommutativity is rather small and allows us to expand

the star product in powers of θ.1

Expanding (3.6) and (3.8) to second order in θ, we find (disregarding 0(θ3) terms)

− ∂µ∂µη − 4α2 cos ϕ0 +
1

2
θ∂2

yϕ0∂t∂yη +
θ

4
∂3

yϕ0∂tη + θ∂2
yϕ0∂

2
t η (3.12)

−1

2
α2θ2

(

∂2
yϕ0 sin ϕ0 + (∂yϕ0)

2 cos ϕ0

)

∂2
t η = 0 ,

−∂µ∂µξ +
1

2
θ∂2

yϕ0∂t∂yξ +
θ

4
∂3

yϕ0∂tξ + θ∂2
yϕ0∂

2
t ξ = 0 . (3.13)

We now assume the following mode expansion for the fluctuations,

η(t, y) =
∑

n

eiωntψn(y) , ξ(t, y) =
∑

n

eiνntχn(y) . (3.14)

Substituting these into (3.12) and (3.13) and projecting to an eigenmode labelled by n we

find

∂2
yψn(y) + A∂yψn(y) + Bψn(y) = 0 ,

∂2
yχn(y) + C∂yχn(y) + Dχn(y) = 0 , (3.15)

where A,B,C,D are given by

A =
i

2
ωnθ∂2

yϕ0 ,

B =

(

1 − θ∂2
yϕ0 +

1

2
α2θ2(∂2

yϕ0 sin ϕ0 + (∂yϕ0)
2 cos ϕ0)

)

ω2
n +

i

4
θωn∂3

yϕ0 − 4α2 cos ϕ0 ,

C =
i

2
νnθ∂2

yϕ0 ,

D = (1 − θ∂2
yϕ0)ν

2
n +

i

4
θνn∂3

yϕ0 , (3.16)

Making the substitutions

ψn := e−
i
4
ωnθ∂yϕ0ψ̃n , χn := e−

i
4
νnθ∂yϕ0χ̃n (3.17)

is sufficient to eliminate the terms which are first order in the y-derivatives in (3.15) and

cast them into

∂2
y ψ̃n(y) +

(

B − 1

4
A2 − 1

2
∂yA

)

ψ̃n(y) = 0 ,

∂2
y χ̃n(y) +

(

D − 1

4
C2 − 1

2
∂yC

)

χ̃n(y) = 0 . (3.18)

1In [7] the fluctuation spectrum of noncommutative Yang-Mills instantons are studied without performing

a θ expansion. It would be worthwhile to investigate the adaptability of the methods of [7] to the current

model.

– 5 –
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Using (3.11) and defining z := 2αy we can write (3.18) as

− ∂2
z ψ̃n(z) + (2 tanh2 z − 1)ψ̃n(z) (3.19)

−
(

2θω2
n

sinh z

cosh2 z
+ ω2

nα2θ2

(

2

cosh4 z
− sinh2 z

cosh4 z

))

ψ̃n(z) =
ω2

n

4α2
ψ̃n(z) ,

−∂2
z χ̃n(z) −

(

2θν2
nα2 sinh z

cosh2 z
− ω2

nα2θ2 sinh2 z

cosh4 z

)

χ̃n(z) =
ν2

n

4α2
χ̃n(z) . (3.20)

Invoking the standard semi-classical reasoning (see for example [9, 10]), we can write

the energy spectrum in the kink sector up to order O(α2) as

Ekink−sector = 16α +
1

2

∑

n

(ωn + νn) + O(α2) . (3.21)

Note that in this expression the frequencies νn associated to the field ρ also appear, as the

kink sector is specified by the configuration (3.11).

Hence, we now have the task of determining the eigenvalues ωn and νn. (3.19) and (3.20)

are one dimensional Schrödinger-type equations with complicated “potentials”. However,

exact solutions for these equations are known when θ = 0. Thus, we may treat the θ

dependent terms as perturbations and θ as a perturbation parameter. We now investigate

different cases in some detail.

θ → 0 limit. In this case (3.19) and (3.20) reduce to

−∂2
z 0ψn(z) + (2 tanh2 z − 1) 0ψn(z) =

0ω
2
n

4α2 0ψn(z) , (3.22)

−∂2
z 0χn(z) =

0ν
2
n

4α2 0χn(z) . (3.23)

where the left subscript in 0ψn(z) , 0ω
2
n etc. are put to indicate that they are the corre-

sponding objects at θ = 0.

We recognize (3.22) as the equation of quadratic fluctuations of the usual (commu-

tative) sine-Gordon theory. It belongs to the class of Schrödinger-type equations with

reflectionless potentials [11] and has the discrete zero-mode solution

0ψ0(z) = ∂zϕ0 = − 2

cosh z
, ω0 = 0 , (3.24)

followed by a continuum of states

0ψq(z) = eiqz(tanh z − iq) , 0ω
2
q = 4α2(q2 + 1) , q ≥ 0 . (3.25)

Usually, 0ψq(z) are normalized by imposing periodic boundary conditions 0ψq(z + L
2 ) =

0ψq(z − L
2 ) in a box of length L. Fluctuations in the vacuum sector can be normalized

likewise. These require

qn2αLδ(qn) = 2πn = knL , (3.26)

where δ(qn) is the phase shift defined below. The normalized states are

0ψqn(z) = Neiqnz(tanh z − iqn) , N = L + Lq2 − 2 tanh
L

2
, (3.27)

– 6 –
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where N is the normalization factor. 0ψqn(z) has the asymptotic behaviour

0ψqn(z) −→ eiqnze±
1

2
δ(qn) , (3.28)

and

δ(qn) = πsgn(qn) − 2 arctan qn (3.29)

is the associated phase shift.

The equation (3.23) is trivially solved by

0χn(z) = e±i νn
2α

z . (3.30)

Thus, the fluctuations 0ξ are plane waves as expected since, at θ = 0, 0ξ represent the

fluctuations of the scalar field ρ, which is free in this limit.

Zero-mode. We observe that

ψ0(z) = ∂zϕ0 = − 2

cosh z
(3.31)

is a solution of (3.6) with zero frequency. This can be verified easily by direct substitution

of ∂zϕ0 in (3.6). Thus, the only discrete mode of the commutative theory is unaffected

by the presence of noncommutativity. In fact, this conclusion can also reached by noting

that the kink solution and the associated zero mode are both independent of the time

coordinate, thus all star products collapse to pointwise products.

Perturbation theory. Let us treat θ in (3.19) and (3.20) as the perturbation parameter.

For the consistency of this assumption we further require that ωn and νn dependence of

the terms at order θ and θ2 in (3.19) and (3.20) are approximated by the commutative

spectrum 0ωn and 0νn.

In order to apply standard perturbation theory, we put the entire system in a box of

length L, so that both ωn and νn have discrete spectra. When L → ∞, the continuum

structure will be recovered. Let us focus on the spectrum of ω2
n. The potential is read off

from (3.19) to be

V (z) = (2 tanh2 z − 1) − 2θω2
n

sinh z

cosh2 z
+ ω2

nα2θ2

(

2

cosh4 z
− sinh2 z

cosh4 z

)

:= V0(z) + θV1(z) + θ2V2(z) (3.32)

and depends on the modes ωn themselves. Symbolically we can express the corrections to

the spectrum of ω2
n as

ω2
n − 0ω

2
n =: ∆n(V1) + ∆n(V2) , (3.33)

where

∆n(V1) = θ∆(1)
n (V1) + θ2∆(2)

n (V1) + · · · ,

∆n(V2) = θ2∆(1)
n (V2) + θ4∆(2)

n (V2) + · · · , (3.34)

– 7 –
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Figure 1: “Potential” V (z) for (3.19). Solid line represents V (z) at θ = 0. Dashed line is at the

values θα2 = 1

16
and 0ω

2

q
= 4α2.

and the superscripts indicate the order of perturbation theory. Applying the perturbation

theory at first-order in θ, we immediately observe that corrections at this order vanish:

∆
(1)
n (V1) = 0, since V1(z) is odd under parity z → −z.

Let us move on to discuss the corrections at order θ2. In this case, it is sufficient to

treat the terms of order θ2 in first-order perturbation theory, while it is necessary to apply

second-order perturbation theory to terms of order θ. Applying first-order perturbation

theory to V2(z) gives:

∆(1)
n (V2) = 0ω

2
nα2|N |2

∫

dz | tanh z − iqn|2
(

2

cosh4 z
− sinh2 z

cosh4 z

)

, (3.35)

where N is the normalization factor given in (3.27). The integral in (3.35) can be computed

exactly. To leading order in L we find

∆(1)
n (V2) ≈ 0ω

2
nα

(

1

15
+ q2

n

)

1

L
,

≈ 0ω
2
nα

(

1

15
+

k2
n

4α2

)

1

L
+ O(

1

L2
) (3.36)

since it follows from (3.26) that q2
n = 1

4α2 (k2
n − 2δ(kn)

L
) + O( 1

L2 ). Thus ∆
(1)
n (V2) vanishes in

the limit L → ∞.

Second-order perturbation theory is required to determine ∆
(2)
n (V1). However, its

calculation becomes too complicated to extract an analytical answer even in the large-L

limit. Perhaps a numerical study could help to assess the strength of this term as L → ∞.

Nevertheless, we observe that the perturbing potentials V1(z) and V2(z) both fall off to

zero exponentially fast as z → ±∞, and V (z) converges to one in both these limits (see,

figure 1). These considerations suggest that the starting point ω2
n = 4α2 of the continuous

– 8 –
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spectrum remains unaltered, while the density of states are probably stirred up to a degree

which is insensitive to the methods applied in this paper. Thus it seems rather unlikely

that ∆
(2)
n (V1) will substantially alter the spectrum of fluctuations.

Similar statements are also valid for the perturbing potential in (3.20). In particular,

corrections to first order in θ vanish, since this perturbation is also odd under parity. Thus

the dispersion relation for the fluctuations ξ remains the same as that of the vacuum sector

ν2
n = r2

n.

After this analysis, it is now possible to perform the vacuum subtraction from Ekink

by writing

Ekink − Evac = 16α +
1

2

∑

n

2α(q2
n + 1)

1

2 +
∑

n

rn − 1

2

∑

n

(k2
n + 4α2)

1

2 −
∑

n

rn + O(α2)

= 16α − 1

4π

∫

dk
√

k2 + 4α2
d

dk
δ(k) + O(α2) + O(θ3) . (3.37)

Up to order O(θ3) this coincides with the usual expression for the sine-Gordon model [8,

9], as we have argued that qn remains unaltered at order θ2. Finally, we note that in

the corresponding commutative model, a mathematically precise treatment of the vacuum

energy subtraction and alternative methods for regularization of the remaining divergences

are presented in [10].

4. One-loop two-point functions

In this section we compute the two-point functions for the sine-Gordon field and the ad-

ditional scalar field in the model at the one-loop level in the vacuum sector. We observe

that for this purpose it will suffice to know the action S[g+, g−] to quadratic order in the

fields φ±. Making this expansion and performing the field redefinitions

ϕ := φ+ + φ− , ρ := φ+ − φ− , (4.1)

we find

S[ϕ , ρ] = −1

4
∂µϕ∂µϕ − 1

4
∂µρ∂µρ − 1

4!

1

23

(

[∂µϕ ,ϕ]2 + [∂µρ , ρ]2 + 2[∂µϕ ,ϕ] [∂µρ , ρ]

)

− i

4
εµν(3∂µϕ∂νϕρ + ∂µρ∂νρρ) + α2

(

− ϕ2 +
1

12
ϕ4

)

+ O(ϕkρ5−k) . (4.2)

From the commutative limit of (2.3) or (4.2) it is clear that ϕ is the sine-Gordon field.

Feynman rules are extracted from this action, and they are listed in appendix A.

For ϕ, we find that one-loop two-point function

〈ϕ(P )ϕ(P )〉 := Iϕ(P 2) (4.3)

– 9 –
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in momentum space is given by the sum of the following integrals:

I1 =
2α2

3 (2π)2

∫

d2k
2

k2 + 4α2
, (4.4)

I2 =
α2

3 (2π)2

∫

d2k
2

k2 + 4α2
e−iθk∧P , (4.5)

I3 =
32

22 (2π)2

∫

d2k
(k ∧ P )2 sin2

(

θ k∧P
2

)

(k2 + 4α2)((k − P )2 + µ2)
, (4.6)

I4 =
−i

23 (2π)2

∫

d2k
2

k2 + 4α2

(

k2e−iθ k∧P
2 − P 2eiθ k∧P

2

)

sin

(

θ
k ∧ P

2

)

. (4.7)

In I3 a small mass µ for the field ρ has been introduced to regularize the IR divergence of

this integral. We have also used the ∧ symbol, which is defined by

a ∧ b := atby − aybt . (4.8)

The integrals can be performed by standard methods, and full results are given in appendix

B. Up to leading order in θ and the momentum cut-off Λ, we find the following results,

depending on the external momentum P being zero or not.

For P = 0. I3 and I4 vanish while I1 and I2 add up to give

Iϕ(P 2 = 0) =
−α2

2π
log

4α2

Λ2
+ subleading terms (s.t.) . (4.9)

In this case, the result coincides with that of the usual sine-Gordon model at one loop.

For P 6= 0.

I1 =
−α2

3π
log

4α2

Λ2
+ s.t. , I2 =

−α2

6π
log

[

α2θ2P 2 +
4α2

Λ2

]

+ s.t. , (4.10)

I3 =
32

26π

[

− 8

θ
+

∫ 1

0
dx

(

P 2 log
θ2P 2A

4
− P 2 log

4α2

Λ2
− P 2 log

[

1 +
P 2

4α2
x(1 − x)

]

(4.11)

−2θP 2A log

[

θP

2

√
A

])]

+ s.t. ,

I4 =
1

25π

(

− 2

θ2P 2
− P 2 log(α2θ2P 2) + P 2 log

4α2

Λ2

)

+ s.t. , (4.12)

with

A = 4α2 + (1 − x)µ2 + P 2x(1 − x) , (4.13)

and the limit µ2 → 0 can be taken without any ambiguity. Note that in I2 we have kept

the momentum cut-off Λ to stress that I2 is the term that leads to an IR singularity at

zero external momentum and hence to the well known effect of UV/IR mixing. There is no

UV/IR mixing from I3 and I4 as these integrals vanish at zero external momentum. This

is rather interesting, because I3 and I4 appear only due to the noncommutativity of the

theory (they vanish identically at θ = 0), nevertheless they do not lead to UV/IR mixing.

However, they diverge logarithmically. Moreover, it is worthwhile to note that in (4.11)
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and (4.12) (or more precisely in (B.2) and (B.3)), the θ → 0 limit should be taken along

with Λ → ∞ to obtain the correct result. This is so because, when θ 6= 0, it is necessary

to regularize the integrals in (4.6) and (4.7) by suitably introducing the cut-off Λ. As

θ → 0 this cut-off is no longer required, and it must be removed as the integrands in (4.6)

and (4.7) vanish identically.

For the field ρ, the one-loop two-point function can now be expressed as

Iρ(P
2) := 〈ρ(P )ρ(P )〉 :=

(

1

2
I3 + I4

) ∣

∣

∣

∣

4α2→µ2

. (4.14)

Thus we observe that 〈ρ(P )ρ(P )〉 is present purely due to the noncommutativity of the

theory, but amusingly it does not lead to any UV/IR mixing.

Let us now briefly discuss the mass and the field strength renormalization in the

Euclidean signature. The renormalized self-energy of ϕ can be given as

ΣR(P 2) = Z−1
ϕ I(P 2) + δm2

ϕ − δZϕP 2 , (4.15)

where Zϕ = 1+ δZϕ. We can determine δm2
ϕ and δZϕ from the renormalization conditions

ΣR(P 2)

∣

∣

∣

∣

P 2=P 2
0

= 0 ,
d

dP 2
ΣR(P 2)

∣

∣

∣

∣

P 2=P 2
0

= 0 (4.16)

at an arbitrary reference momentum P 2
0 .

For instance, when Λ → ∞, we can focus on the logarithmically divergent parts of

Iϕ(P 2) and Iρ(P
2). For δm2

ϕ and δZϕ these conditions lead to

δm2
ϕ =

1

1 + δZϕ

[

α2

3π
log

4α2

Λ2

]

, δZϕ =
−1 +

√

1 − 7
24π

log 4α2

Λ2

2
. (4.17)

A similar calculation shows that there is no mass renormalization for the field ρ, and

the field-strength renormalization is given by

δZρ =
−1 +

√

1 − 5
25π

log µ2

Λ2

2
. (4.18)

It is important to stress, that the above expressions for δm2
ϕ, δZϕ and δZρ are valid for

θ 6= 0, although θ does not explicitly appear in them. As we have already remarked, when

θ approaches to zero in Iϕ(P 2) and Iρ(P
2), the divergent terms in the cut-off Λ cancel with

those terms divergent in θ. In this case, the standard answer for the commutative sine-

Gordon model will be recovered, and a mass counter term will be sufficent to renormalize

the theory.

When the results for the one-loop amplitude I(P 2) are analytically continued to the

Minkowski space, the logarithms develop branch cuts. This leads to imaginary parts in

the total one-loop amplitudes Iϕ(P 2), Iρ(P
2), which for space-like external momenta leads

to a violation of unitarity. The latter is a rather typical behaviour, known to occur in

certain formulations of time-space noncommutative field theories [12]. We observe the

– 11 –
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integrability and causal tree-level S-matrix of the current model are unable to improve this

rather catastrophic behaviour.

It is, however, important to point out that there are alternative ways of formulating

time-space noncommutative theories, which preserve unitarity [13 – 15]. The applicability

of these formulations to the present model remains an open problem. In this context, we

note that the integrability of a time-space noncommutative sinh-Gordon model has recently

been studied in [16].

5. Conclusions and outlook

In this article we employed semi-classical methods to study the quantum properties of the

integrable time-space noncommutative sine-Gordon model defined by the action (2.3). We

have examined the fluctuations at quadratic order around the static kink solution. The

spectrum of the fluctuations for the sine-Gordon field consists of a single discrete mode

(the zero mode) followed by a continuum. Applying standard perturbation theory, we have

proved that at O(θ) this spectrum coincides with that of the corresponding commutative

theory. We have also reasoned, by means of qualitative arguments, that the same conclusion

holds at O(θ2) as well. It is worthwhile to note that the collective-coordinate quantization

of the zero mode may reveal novel properties of this model. However, this appears to be a

formidable task, as the standard methods are not directly applicable in this context, due

to time-space noncommutativity.

We also studied the one-loop structure of the two-point functions for the sine-Gordon

field ϕ and the additional scalar field ρ, in the vacuum sector and showed that they have

logarithmic divergences. Using these results, we have computed the mass and field strength

renormalization counterterms in the Euclidean signature. We have seen that the two-point

function for the sine-Gordon field exhibits UV/IR mixing, and one-loop amplitudes for

both ϕ and ρ develop imaginary parts under Wick rotation to the Minkowski signature.

The latter fact violates unitarity relations for space-like external momenta. This property

presents an important obstacle in studying the quantum corrections to the mass of the sine-

Gordon kink. Although the usual vacuum subtraction can be performed as in (3.37), the

mass and field-strength renormalization counterterms can not be unambiguously identified

in Minkowski space. It may be useful to study the corresponding aspects of the 2 + 1-

dimensional sigma model [5] from which the model considered in this paper descends by

dimensional and algebraic reduction. This may help us to built further inroads to the

structure of these theories.
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A. Feynman rules

In Euclidean signature, Feynman rules that follow from the action (4.2) are as follows. In

all the vertices momentum conservation is already imposed.
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• The propagators are

≡ 〈ϕϕ〉 =
2

k2 + 4α2
, ≡ 〈ρ ρ〉 =

2

k2
. (A.1)

• The vertices are

= − 1

22

[

(k1 ∧ k2) sin

(

θ
k1 ∧ k2

2

)

(A.2)

+(k2 ∧ k3) sin

(

θ
k2 ∧ k3

2

)

+ (k1 ∧ k3) sin

(

θ
k1 ∧ k3

2

)]

= − 1

3 · 22

[

(k1 ∧ k2) sin

(

θ
k1 ∧ k2

2

)

(A.3)

+(k2 ∧ k3) sin

(

θ
k2 ∧ k3

2

)

+ (k1 ∧ k3) sin

(

θ
k1 ∧ k3

2

)]

= − i

24 · 4!

[

k1 · (k3 − k2) sin

(

θ
k2 ∧ k3

2

)

e−
i
2
θk1∧(k2+k3) (A.4)

+ k2 · (k4 − k3) sin

(

θ
k3 ∧ k4

2

)

e−
i
2
θk2∧(k3+k4)

+ k3 · (k1 − k4) sin

(

θ
k4 ∧ k1

2

)

e−
i
2
θk3∧(k1+k4)

+ k4 · (k2 − k1) sin

(

θ
k1 ∧ k2

2

)

e−
i
2
θk4∧(k1+k2)

]

+
1

12
α2e−

i
2
θ(k1∧k2+k1∧k3+k2∧k3)

=
1

234!

[

(k1 − k2) · (k3 − k4) sin

(

θ
k1 ∧ k2

2

)

sin

(

θ
k3 ∧ k4

2

)

(A.5)

(k2 − k3) · (k4 − k1) sin

(

θ
k2 ∧ k3

2

)

sin

(

θ
k4 ∧ k1

2

)]

= − i

24 · 4!

[

k1 · (k3 − k2) sin

(

θ
k2 ∧ k3

2

)

e−
i
2
θk1∧(k2+k3) (A.6)

+ k2 · (k4 − k3) sin

(

θ
k3 ∧ k4

2

)

e−
i
2
θk2∧(k3+k4)

+ k3 · (k1 − k4) sin

(

θ
k4 ∧ k1

2

)

e−
i
2
θk3∧(k1+k4)

+ k4 · (k2 − k1) sin

(

θ
k1 ∧ k2

2

)

e−
i
2
θk4∧(k1+k2)

]

.
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B. Results of the loop integrals

In this appendix we give the full result for the integrals I1, I2, I3, I4 given

in (4.5), (4.6), (4.7). We have

I1 =
2α2

3π
K0

(

4α

Λ

)

, I2 =
α2

3π
K0

(

4α

√

θ2P 2

4
+

1

Λ2

)

, (B.1)

I3 =
32

24π

∫ 1

0
dx

[

− P 2

2
K0(θP

√
A) − 2P

√
AK1(θP

√
A) +

P 2

2
K0

(

2
√

A

Λ

)

]

, (B.2)

where P =
√

P 2, Kν(x) is the modified Bessel function and A is already defined in (4.13).

For I4 we have

I4 =
1

24π

[

− P 2K0

(

4α

Λ

)

+ P 2K0(2αθP ) − 4α2K−2(2αθP ) +
2α

θP
K−1(2αθP )

]

. (B.3)

It is worthwhile to note that an integral of the form 1
(2π)2

∫

d2k k2

k2+4α2 is present in (4.7).

This integral can be set to zero after dimensional regularization. In order to see this, note

that in d dimensions we have

1

(2π)2

∫

ddk
k2

k2 + 4α2
=

−id
2Γ(−d

2)

(4π)
d
2 (4α2)−

d
2

. (B.4)

This expression has no poles at d = 0, and for d ≥ 0 it is proportional to a positive power

of 4α2. Thus, it can be set to zero without loss of generality.
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