Bulletin of Engineering Geology and the Environment (2020) 79:971-983
https://doi.org/10.1007/510064-019-01608-w

ORIGINAL PAPER

®

Check for
updates

Spatial probabilistic evaluation of offshore/nearshore sea bottom
soils based on cone penetration tests

Emir Ahmet Oguz™? - Nejan Huvaj'

Received: 7 January 2019 /Accepted: 21 August 2019 /Published online: 3 September 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

The inherent variability of soil has a crucial role in reliability-based design, especially for offshore foundations where the
variability and uncertainty are more critical due to high costs as compared to the onshore counterparts. In this study, spatial
probabilistic evaluation of the characteristics of offshore/nearshore sea bottom soils is performed based on data of 65 cone
penetration tests (CPTs), reaching to 200-m depths in seabed soils, in up to 64 m of water. The types and typical characteristics of
sea bottom soils are reported, together with statistical evaluation. A key parameter for random field theory, the spatial correlation
length, based on CPT data is obtained for different soil types, using four different autocovariance functions (exponential, squared
exponential, cosine exponential and second-order autoregressive). For these purposes, a MATLAB code is developed to take the
CPT data, identify individual soil layers, carry out statistical evaluation of the properties of soils and report the vertical spatial
correlation length of each layer using four different autocovariance functions. The undrained shear strength of clays in nearshore
and offshore soils increases with depth, at rates of 1 to 3 kPa/m. Sands nearshore and offshore have similar relative density that is
generally less than 50% (i.e. in loose to medium-dense state). The vertical spatial correlation length based on CPT of all soils is in
the range of 0.11 m to 0.27 m, for all four different autocovariance functions, for all CPT cone tip resistances, sleeve friction and
friction ratio, and for all shallow- and deep-water soils. The vertical spatial correlation length of nearshore soils is slightly larger
than offshore soils. The results add to the scarce data on the spatial correlation length of offshore soils and can be useful for future
studies on reliability and risk assessment of nearshore/offshore foundations.

Keywords Spatial correlation length - Offshore/nearshore soils - Spatial probabilistic evaluation - Spatial variability - Cone
penetration test

Introduction

Deterministic approaches in geotechnical engineering practice
have some limitations since they provide only a single value
(such as a factor of safety) and they do not take into account
the heterogeneous and variable nature of the soils. Soil has
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both point and spatial variability which should be included in
the reliability-based design and risk assessment. Probabilistic
(stochastic) approaches are increasingly more widely used,
especially in the last two decades, because the variability of
the soil can be considered by representing the soil parameters
via statistical distributions, using Monte Carlo simulations or
by creating random fields to represent the heterogeneity of the
soil volume. Probabilistic approaches provide results with a
mean and a standard deviation (SD), or a range, or a probabil-
ity of failure, which can be used in reliability-based design,
allowing the engineers and the decision-makers to quantify
the risk. Examples of hazard assessment in offshore geotech-
nical engineering (e.g. for pile foundations and jack-up struc-
tures) are given by Lacasse and Nadim (2007), showing the
benefits of probabilistic analyses in supplementing the deter-
ministically calculated safety factor and deformation-based
analyses in order to reach to a safe and optimum design.
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There are several methods for probabilistic analyses con-
sidering the variability of soil parameters, such as the first-
order second-moment approximation (FOSM), first-order re-
liability method (FORM), Monte Carlo simulation, etc. In the
probabilistic approach, the soil parameters are described by a
mean, SD at the point and spatial correlation length (SCL)
with an autocovariance function through distance. SCL, also
called the scale of fluctuation, is defined as the distance over
which the soil parameters are positively correlated. That is, the
soil parameters within the SCL tend to be on the same side,
above or below, the mean value (Akkaya and Vanmarcke
2003), and beyond the SCL, soil parameters show no correla-
tion (Hommels et al. 2010). Starting in the mid-1990s,
Griffiths and his colleagues (Fenton and Griffiths 2008) point-
ed out the importance of SCL with the development of the
random finite element method (RFEM). In the RFEM, the
spatial variability of the soil parameters, the inherent hetero-
geneous structure of the soil, is represented by generating a
random field with a SCL with an autocovariance function.
Then, the field is matched with the finite element mesh of
the model and analyses are performed.

Dealing with variability and uncertainty is more critical
when the site is offshore, because of the high cost of site
investigations and foundations in the offshore, comparing to
the cost of onshore counterparts. Use of the SCL has signifi-
cant benefits for reliability-based design of offshore/nearshore
structures, e.g. higher reliability indexes and lower probability
of failure are achieved with the use of SCL in design
(Chiasson et al. 1995; Lacasse and Nadim 1996; Cho and
Park 2009; Cho 2010; Zhang and Chen 2012; Carswell et al.
2013; Sarma et al. 2014; Liu et al. 2015; Jha 2016; Akkaya
and Vanmarcke 2003; Firouzianbandpey et al. 2014). For ex-
ample, Liu et al. (2015) compared the annual probability of
failure obtained for axial pile capacity with and without ac-
counting for the vertical SCLcpr - g for undrained shear
strength for clays and relative density for sands. Based on
CPT cone tip resistance at an offshore piled jacket
foundation site in Western Australia, Liu et al. (2015) demon-
strated that taking into account the vertical SCL gave a higher
annual reliability index and a lower probability of failure,
which led to a more optimal and cost-effective pile penetration
depth. The reduction is reported to be by a factor of 2 or 3 on
the annual probability of failure (Liu et al. 2015). Therefore,
the quantification of the vertical SCL is important and useful
for reliability-based design of offshore structures (Cho and
Park 2009; Carswell et al. 2013; Liu et al. 2015; Jha 2016),
whereas studies on the statistical evaluation of soil properties
based on CPT data and SCL in offshore/nearshore soils are
limited in the World (Table 1) and are rare in Turkey.

In this study, 65 CPT data (Oguz 2017) reaching to 200 m
depths in seabed soils, in up to 64-m water depths, in the
northwestern part of Turkey is processed, and properties of
sea bottom soils are presented. The data is analyzed, firstly,
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to determine the types and characteristics of the soils in the
seabed, whether they are uniform or multi-layered, whether
the consistency of clays is soft or stiff, and whether the sandy
soils are in loose or dense state, etc. Using CPT data, the mean
and SD of undrained shear strength (c,) for clays and relative
density (D,) for sands are estimated and reported. Secondly,
CPT data is analyzed to evaluate the vertical SCL of CPT cone
tip resistance, sleeve friction and friction ratio using four dif-
ferent autocovariance functions proposed by Vanmarcke
(1977). For these purposes, a MATLAB code is developed
to take the CPT data, identify individual soil layers, carry
out statistical evaluation of the properties of soils and report
the vertical SCL of each layer using four different
autocovariance functions (Oguz 2017). The results of the pres-
ent study add to the limited database of offshore SCLs based
on real data (Table 1) and could be useful for future studies on
reliability assessment of offshore foundations.

Method of analyses

In the current study, offshore/nearshore CPT measurements
and soil mechanics laboratory test results are evaluated statis-
tically. For the classification of the soil at each depth, and
decision on the layer boundaries of the soil profile, an auto-
matic evaluation of the CPT data is performed by a MATLAB
code developed in this study (Oguz 2017).

Soil classification

In order to identify different soil layers, the Robertson and
Cabal (2012) soil behavior chart is digitized and defined in
the MATLAB code so that a “soil behavior type” is assigned
to every CPT data point at each depth. Examples of CPT data
used in this study and the Robertson and Cabal (2012) classi-
fication can be seen in Fig. 1. The CPT measurements have
some small gaps in the vertical direction, although they are
assumed to be continuous in practice. Therefore, the data is
divided into segments of continuous data, and then soil layers
within the continuous segments are determined by the devel-
oped MATLAB code. In the soil behavior chart of Robertson
and Cabal (2012), zones 3 and 4, “clay —silty clay to clay” and
“silt mixtures — clayey silt to silty clay” are taken into consid-
eration together and named as a broad group of “clays.”
Likewise, zones 5, 6 and 7, “sand mixtures - silty sand to
sandy silt,” “sands — clean to silty sand” and “gravelly sand
to dense sand,” are evaluated together and grouped into a
broad category of sandy mixtures and named as “sands”.
Zones 1-2 and 8-9 are also evaluated together. According to
the broad soil groups defined in this study, each continuous
segment of CPT data is divided into different soil layers. The
thickness criterion to be classified as an “individual soil layer”
is selected as 0.5 m (25 CPT data points with 0.02-m spacing).
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Fig. 1 Robertson and Cabal’s (a) Tip Resistance (MPa) (b) Tip Resistance (MPa)
(2012) soil behavior classification
used in this study, as an example, 0 10 20 30 40 50 0 10 20 30 40 50
foraCPTsounding—l and b CPT 40 —t — 35 et
sounding-2 % ‘;' a o . R E g e
51+ = | 40 = .
L ? 5 L
S0 1 o 454 T3
B S T =
555 = ° < 50 +
> 1L_ > 8
Q Q (< I o]
— o — 8
= 60 1+ 555 o
N | 8 w2 L
s ° L 5 P
o 65 + Q 2 60 >
2 | A
€70 11 g £ 65
&) | [o) o]
= 75 --l ) - 70 »
I B
80 14 0 75
85 T T T T T T T 1 80 I I I I
1 234567289 1 2 34567289
Soil Behavior Type Soil Behavior Type

o Classification

Soil properties

The moisture content, Atterberg limits, specific gravity, unit
weight, grain size distribution, pocket penetrometer, torvane,
and unconsolidated undrained (UU) triaxial tests were avail-
able on disturbed and undisturbed soil samples (Oguz 2017).

For the broad groups of “clays” and “sands” used in this
study, undrained shear strength and relative density are eval-
uated by using empirical equations. The resolution of the data
in the vertical direction is 2 cm which is the common interval
of data acquisition for CPT. The undrained shear strength of
the “clays” is calculated by utilizing the following relationship
in Eq. 1:

cu = (q0v0)/Nk (1)
where g is the measured cone tip resistance, oy is the total in situ
vertical stress (saturated unit weight is taken as 20 kNN, /m®) and Ny,

is the cone factor that can typically vary in the range of 10 to 20
(Oguz 2017; Robertson and Cabal 2012). Due to the uncertainty

@ Springer

o Classification

of Ny value, values of 14, 17 and 20 are utilized, and detailed
results are reported in Oguz (2017). Relative density, D,, of the
“sands” is evaluated by using Eq. 2 (Jamiolkowski et al. 2003).

D; = (1/0.0296)
2.494 (0:,,0 (%) ) 0‘46] ] (2)

! . . .
where o, , is the effective overburden pressure and K is the at-

rest earth pressure coefficient, which is taken as 0.3, 0.45 and 0.6
in this study.

In|q,/

Spatial correlation length

Lacasse and Nadim (2007) state that aleatory variability may
have greater effects than epistemic uncertainty depending on
the inherent variability of the soil properties. Consideration of this
in design requires knowledge of spatial variability of the soil
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Fig. 2 a Constant mean (a) Cone Tip Resistance (MPa)  (b) Cone Tip Resistance (MPa)
(“constant”) and b depth- 4 5 6 7 10
dependent mean (“trend”) 0 | | 0
approaches ' N [ I
0.5 + 0.5
| _
B ' g
s ' g
o,
a ( z
1.5 + 1.5
|
|
2 T | 2
2.5 2.5

parameters. The soil parameters are generally described as a sum-
mation of mean value and fluctuation around the mean (residuals)
(Fig. 2). The residual part is assumed to have a spatial structure
which can be defined by SCL and autocovariance function, C(T),
where T is the distance between observation points. In the litera-
ture, for calculation of SCL of soil properties in geotechnical en-
gineering, while exponential (Markov) and squared exponential
(Gaussian) spherical autocovariance functions are more widely
used, the second-order autoregressive and cosine of exponential
autocorrelation functions are also utilized (Vanmarcke 1977, 1984,
Li and White 1987; DeGroot and Baecher 1993; Chiles and
Delfiner 1999; Akkaya and Vanmarcke 2003; Wackernagel
2003; Lacasse and Nadim 2007; Webster and Oliver 2007;
Fenton and Griffiths 2008; Chenari and Dodaran 2010; Zhang
and Chen 2012; Huber 2013; Firouzianbandpey et al. 2014;
Shuwang and Linping 2015; Zhang et al. 2016; Peng et al. 2017).

The scale of fluctuation concept describing the correlation
structure was first proposed by Vanmarcke (1977) studying
the deviations from the trend (mean). In the study of
Vanmarcke (1977), the spatial averaging process is described
by which correlation structures are investigated. In the meth-
od, the soil parameters are averaged through the distance, and
the SDs of averages are evaluated and normalized by regular
SD (Eq. 3)

I'y(Az) =1, /T (3)

where I',(Az) is the reduction function, Uy, is the SD of spa-
tially averaged parameters and U is the SD of the data. The
square of the reduction function is called variance function
which becomes inversely proportional to the distance. The
relationship between variance function and the distance (Eq.
4) provides us with the SCL.

I(Az) = 8,/Az (4)

where 9, is the SCL and Az is the distance over which the soil
parameters are averaged. Besides, Vanmarcke (1977) indicat-
ed that autocovariance functions can be utilized to evaluate the
SCL. In Table 2, widely used autocovariance functions and
corresponding SCL values are provided.

Vanmarcke (1977) stated that for determination of the ex-
istence of a trend and if it exists, standardizing the data should
be the initial step of a spatial variability analysis. This check
can be done by calculating the mean first-order increments of
the data by using Eq. 5 (Chiasson et al. 1995).

d(t) = (1/n) - [X(zi + 7)X(z)] (5)

where d(T) is the mean first-order increment, X(z) is the data,
e.g. cone tip resistance, at a depth z;, T is the spacing and n is
the number of data points. If the data has no distance-
dependent behavior and the mean value is roughly constant,
it is called stationary data. However, if the data shows a trend
(e.g. undrained shear strength of clay generally increases with
depth), the data is called nonstationary. In the current study,
SCL is evaluated by assuming both stationarity and
nonstationarity of the data, and these are called “constant”
and “trend” approaches, respectively. In the “constant” ap-
proach, the data is assumed to have a constant mean through
the depth, while it has a depth-dependent behavior in the
“trend” approach, as illustrated in Fig. 2. Akkaya and

Table 2  Autocovariance functions (Vanmarcke 1977)

Autocovariance function SCL, i.e. scale of

fluctuation
Exponential ¢ A2 2a
Squared exponential g (Az/b) NG
Cosine exponential g (a7 cos(Az/c) c

Second-order autoregressive ¢ “ZY [1+(Az/d)]  4d

@ Springer
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Fig.3 Autocorrelation coefficient Constant Approach
vs. lag distance for a sample CPT 1 ¥
tip resistance and exponential i
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Vanmarcke (2003) indicated that these two approaches will
result in different SCL values and the “trend” approach elim-
inates longer fluctuations.

In the literature, the studies suggest detrending or standard-
izing the data to achieve statistical homogeneity (Vanmarcke
1977; DeGroot and Baecher 1993; Phoon and Kulhawy
1999a, 1999b; Firouzianbandpey et al. 2014). The difference
between detrending and standardizing is that standardizing
provides unit SD (o = 1) in addition to zero mean (p=0). To
standardize the data, means should be subtracted from the
measurements and then divided by the SD at each depth
(Eq. 6).

Xc(2) {X(Z)—X(Z)} /ox@) (6)
where X((z) is standardized data, X(z) and X(z) are real and
trend data at depth z and ox(,, is the SD of data at depth z.
In this study, a linear function is employed in the “trend”
approach and SCL is evaluated accordingly. Although
sophisticated/complicated depth-dependency functions exist,
the linear trend is found to be sufficient to represent the trend

behavior of CPT data.

Black Sea

Mediterranean Sea

Fig. 4 Location of the CPT soundings
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The autocorrelation coefficient (Eq. 7) of the data is calcu-
lated for increasing lag distance, and autocovariance functions
provided in Table 2 are utilized to fit the data to estimate the
SCL (Fig. 3). It is important that the sampling interval be-
tween the measurements has to be constant (Vanmarcke
1977; Fenton and Griffiths 2008; Liu and Chen 2010; Zhang
and Chen 2012; Firouzianbandpey et al. 2014; Lloret-Cabot
et al. 2014; Shuwang and Linping 2015).

n—k

2

i=1

(Xi_Xi) <Xi+k_Xi+k)

n—k N2
()

2

i=1
where the X; and X are the real measurement and trend value
at depth i and X, is the measurement at depth i+k. The
coefficient is constrained by [—1.0, 1.0]. The positive autocor-
relation coefficient means both variables tend to be above or
below the trend, while a negative coefficient means a high-
value variable is associated with the low value of the other
variable (Kottegoda and Rosso 2008). The best fit of the func-
tion is obtained by minimizing the error, E (Eq. 8).

E=3" (ps(t)—p(Ti))’

Pk =

k=0,1,2,....(n-1) (7)

(8)

pe Istanbul

LN

Marmara Sea
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Table 3  Information about the CPT soundings used in this study
(numbers in parenthesis are average values)

Deep-water CPT Shallow-water CPT

Total number 45 20
Length (m) 20.4-200 (60.7) 9.5-200.6 (60.8)
Water depth (m) 16.7-64.2 (38.8) 1.4-9.5 (3.5)

where p,(T;) is the estimated autocorrelation coefficient by
using the data (Eq. 7), p(T;) is the autocorrelation coefficient
obtained by an autocorrelation function and n is the number of
the data points.

Description of site

The project site is located in the Sea of Marmara, in the north-
western part of Turkey (Fig. 4). For this study, 65 CPT sound-
ings where water depths vary from 1.5 m to 64.2 m are used
(Oguz 2017). The soundings are grouped into two, according to
water depth; shallow-water CPT (water depth <10 m) and
deep-water CPT (water depth > 10 m). A total of 65 CPT
soundings consisting of 45 deep-water and 20 shallow-water
CPT measurements are statistically analyzed. Properties of the
CPT soundings, the average length in seabed soils and average
water depths are provided in Table 3. The cone tip resistance
and sleeve friction measurements are taken at each sounding
with a 0.02-m vertical spacing (resolution of the measurement).

The classification of the soil profile is made by Robertson
and Cabal’s (2012) soil behavior types (Fig. 7), and soils types
are grouped into two broad groups: “clays” and “sands.” All
statistical analyses and SCL calculations are conducted for
these two types of soil groups separately. From place to place,
there exists zones of Robertson and Cabal’s (2012) soil be-
havior type 89, very stiff soil layers, with a thickness of up to
10 m. In addition, sensitive and organic layers are locally
found at the seabed with 1-3-m thicknesses. Figure 5

Fig. 5 A rough interpretation of CPT-1 2 3 4 5 6

illustrates a rough interpretation of the soil profile along the
longest cross section at the site with 15 CPT measurements.
An example of the CPT data (tip resistance and friction ratio)
and broad soil layers used in this study is given in Fig. 6.

Results and discussion
Soil properties

According to the classification of Robertson and Cabal (2012)
and the broad soil groups considered in this study, the soil
profile mostly consists of interlayers of “clays” and “sands”
and some soils locally that are categorized in zone 8 and 9
(Robertson and Cabal 2012). In Fig. 7, three sample CPT
soundings are shown on Robertson and Cabal‘s (2012) clas-
sification chart. Figure 7 demonstrates that some of the CPT
data, such as CPT sample 1, is composed of a mixture of
“clays” and “sands” and also includes soils of zone 8-9 soil
behavior type, and other CPT data, such as CPT sample 2 and
3, are fully composed of “clays” and “sands” separately.

For both offshore and nearshore fine-grained soils, 174
Atterberg limit tests were available to classify the soils. Out
of 174 test samples, 166 samples were classified as clay (71%
CH and 25% CL) according to the Unified Soil Classification
System. Figure 8 shows the Atterberg test results on the plas-
ticity chart.

Shallow- and deep-water CPT soundings are studied sepa-
rately, in order to identify whether there are any major differ-
ences in their soil profiles and soil characteristics. The un-
drained shear strength, c,, profiles obtained by utilizing Eq.
1 and laboratory test results (pocket penetrometer, torvane and
UU triaxial compression tests) are provided in Fig. 9 (Oguz
2017). The results show that the employed Ny value has a
significant effect on the undrained shear strength value. The
Nk value typically varies from 14 to 20 (Robertson and Cabal
2010), and the change in the undrained shear strength can be
as much as 40 kPa, depending on the Ny value. For the sake of

1011 12

13 14 15

the soil layers along a cross
section of the offshore study area,
together with Robertson and
Cabal’s (2012) soil behavior types

_ Zones 3-4, “Clays”
_ Zones 5-6-7, “Sands”

_ Zones 1-2

Zones 8-9

Meters
20
0 100 250
I . 0
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Fig. 6 An example of a CPT (a)  Tip Resistance (MPa)  (b) Friction Ratio (%)
proﬁ.le and b'I'O?id soil layers u.sed 0 1 0 20 30 40 50 O 1 2 3 4 5 6
in this study; (a) and (b) are tip
resistance and friction ratio of a 0
sample CPT sounding
5
Z 10
>
m 15
<
A
> 20
Q
©
Q25
S
)
A 30
35
40

simplicity, only the Ny value of 17 is shown in Fig. 9a and b
(data with other values of Ny can be seen in Oguz 2017). The
depth-dependent tendency of ¢, the rate of increase of ¢, with
depth and the coefficient of variance (COV) value of ¢, are not
influenced by using different values of Ny (between 14 and
20). It should be noted that the uncertainties of soil are con-
sidered in two parts, aleatory and epistemic uncertainty. The
aleatory uncertainty is the inherent soil variability (natural
randomness of soil parameters) and cannot be eliminated,
while epistemic uncertainty (measurement errors, statistical
uncertainties, model uncertainties) due to lack of knowledge
can be reduced by collecting more data, which is not the main
goal of this study. Lacasse and Nadim (2007) indicated that
depending on the variation of the natural soil properties,

aleatory uncertainties may have greater importance than epi-
stemic uncertainties, and handling them may require knowl-
edge of the spatial variation of the soil parameters.

Empirical c, values in Fig. 9 show that fine-grained soils in
shallow waters have a c, in the range of 2.2 to 164.6 kPa
(depth-independent average and SD values of 100.4 kPa and
35.6 kPa, respectively), and the soils in deep waters have a ¢,
up to 164.7 kPa with a depth-independent average of 53.6 kPa
(SD of 31.6 kPa). For the undrained shear strength of clays,
the laboratory test results (Fig. 9c and d) of shallow-water
soils indicate the average value of 129.9 kPa (range of 25—
383.5 kPa) for pocket penetrometer, 135.1 kPa (55-223 kPa)
for torvane and 259.9 kPa (63526 kPa) for UU triaxial com-
pression tests. Likewise, the results for deep-water soils are
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Fig. 7 Classification of three 1000
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to Robertson and Cabal (2012)
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the average value of 99.0 kPa (range of 3-246.5 kPa) for
pocket penetrometer, 84.7 kPa (15-200 kPa) for torvane and
206.0 kPa (14455 kPa) for UU triaxial compression tests.
All laboratory undrained shear strength test results and em-
pirically calculated c, values show that the c, has a trend with
depth. In the literature, the rate of increase in ¢, with depth is
reported as 2.1-2.2 kPa/m for nearshore clays based on the
standard penetration test SPT-N value (Oguz et al. 2018),
2.5 kPa/m for marine clays based on the vane shear test
(Basack and Purkayashta 2009) and 1.02-2.55 kPa/m for clays
based on laboratory tests (Hossain et al. 2014). In this study, the
rates of increase in empirical ¢, with depth are found as 5.6 and

0 } } } } .
0 20 40 60 30 100 2.2 kPa/m for shallow-water soils and 3.3 kPa/m for deep-water
Liquid Limit (LL) % soils (Fig. 9a and b). When the laboratory test results (Fig.
Fig. 8 Atterberg test results Fig9c and d) are C(?nsidered, depth dependency is again ob-
served, and rates of increase are between 0.73 and 2.46 kPa/m.
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Table 4 Summary of depth-
independent ¢, and D, for all

Shallow-water soundings Deep-water soundings

shallow- and deep-water CPT

soundings ¢, (kPa)

Ni—

Mean

Range
Standard dev.
Ko—

Mean

D: (%)

Range
Standard dev.

14 17 20 14 17 20
121.90 100.39 85.33 65.12 53.63 45.58
3-200 2-164 2-140 0-200 0-165 0-140
43.21 35.58 30.24 38.42 31.64 26.90
0.4 0.55 0.7 0.4 0.55 0.7
46.33 43.94 41.86 50.24 47.85 45.77
5-100 2-98 0-95 5-100 2-98 0-96
29.63 29.63 29.63 29.95 29.95 29.95

Based on CPT data, depth-independent c, for clays and D,
for sands are provided in Table 4 for shallow-water and deep-
water soundings separately. The results indicate that the clays at
shallow waters have approximately two times greater average
¢, and lower COV values than the clays at deep waters (when
SD is evaluated for constant mean with depth). In addition, the
D, of sands does not differ at shallow and deep waters. Average
D, values are generally less than 50% (sands are in loose to
medium-dense state) with a COV value of about 60% (when
SD is evaluated for constant mean with depth). In the literature,
for onshore soil deposits, the COV values of ¢, and D, are
reported in the range of 6% to 80% and 11% to 74%, respec-
tively (Phoon and Kulhawy 1999a).

¢y and D, profiles of each CPT sounding are obtained, and
two samples are provided in Fig. 10 where Ny and K, are
taken as 17 and 0.55, respectively, in the empirical equations
(Egs. 1 and 2).

Fig. 10 Two representative
undrained shear strength and

(a)

Undrained Shear Strength (kPa)

Spatial correlation length

For determination of SCL, the cone tip resistance, sleeve fric-
tion and friction ratio data of 65 CPT soundings are utilized,
and corresponding SCL values are reported with both “con-
stant” and “trend” with depth approaches. The average of all
four autocovariance functions (Table 2) and the SCL of only
the exponential function are provided in Table 5.

Based on the statistical evaluation, some of the findings are
summarized below.

All SCL values based on CPT are found to be between
0.17 and 0.27 m for the “constant” approach and between
0.11 and 0.17 m for the “trend” approach. SCL values
based on CPT data with the “constant” approach are ap-
proximately 1.7 times greater than the values with the
“trend” approach.

(b)  Undrained Shear Strength (kPa)

relative density profiles; a 0 100 200 0 100 200
sounding-1 and b sounding-2, 40 — 40 ——
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Table 5 Summary of vertical SCL values based on CPT data
SCL (m)
Deep water Shallow water
“Clays” “Sands” “Clays” “Sands”
Average of all four autocovariance Cone tip resistance Constant approach, mean 0.258 0.263 0.262 0.231
functions in Table 2 Trend approach, mean 0.148 0.168 0.116 0.133
Friction ratio Constant approach, mean 0.269 0.217 0.251 0.167
Trend approach, mean 0.172 0.143 0.142 0.112
Sleeve friction Constant approach, mean 0.250 0.234 0.210 0.216
Trend approach, mean 0.147 0.153 0.124 0.115
Exponential function only Cone tip resistance Constant approach, mean 0.260 0.2607 0.259 0.225
Trend approach, mean 0.148 0.1636 0.115 0.127
Friction ratio Constant approach, mean 0.268 0.2183 0.245 0.166
Trend approach, mean 0.167 0.1411 0.141 0.109
Sleeve friction Constant approach, mean 0.251 0.2340 0.210 0214
Trend approach, mean 0.146 0.1496 0.120 0.111

Regardless of which approach (“constant” or “trend”) is
used, both “clays” and “sands” at the shallow water
(nearshore) have slightly larger SCL values as compared

in up to 64-m water depths) for different soil types broadly
grouped as sands and clays, via a MATLAB code developed
in this study.

to the ones at the deep water (offshore).

*  When SCL values obtained by different autocorrelation
functions are compared, the squared exponential function
gives the highest mean SCL values in 79% of all evalua-
tions, and the second-order autoregressive function gives
the highest in 21% of all evaluations. Furthermore, the
cosine of the exponential function (equation given in
Table 2) always gives the smallest SCL values in both
“constant” and “trend” approaches.

* For “clays,” the “trend” approach (where the fluctuations
are evaluated about a linear trend line) gives the highest
SCL values based on friction ratio than cone tip resistance
and sleeve friction.

» For “sands.” SCL values based on cone tip resistance are
always greater (although slightly) as compared to the
values based on sleeve friction and friction ratio.

* Based on cone tip resistance, sands have always larger
vertical SCL than clays in the trend approach. Clays
always have slightly greater vertical SCL based on the
friction ratio than sands.

Conclusions

This study identified the typical characteristics, statistical in-
formation and variability of nearshore/offshore sea bottom
soils, and presented the SCL in the vertical direction based
on data of 65 CPTs (reaching to 200-m depths in seabed soils,

One of the goals of this study was to determine the types
and characteristics of soils in the seabed. It is noted that
the seabed soils in the study area are not uniform, but
rather, they are composed of interlayers of “clays” (silty
clay, clayey silt, clay) and “sands” (clean sand, silty sand,
sandy silt, gravelly sand) with varying thicknesses.
Preliminary foundation designs, e.g. for offshore plat-
forms or offshore wind turbines, should consider this
multi-layered nature of the seabed soils. When evaluating
as constant mean with depth, the average undrained shear
strength of clays at the shallow water (<10 m) is about
100 kPa (stiff clays) and it is 54 kPa in deep waters (soft
to medium-stiff clays). Clays at shallow waters have low-
er COV (%) values than the clays at deep waters (when
SD is evaluated for constant mean with depth), and for all
clays, COV values are in the range of 35-60%. The un-
drained shear strength of clays in nearshore and offshore
soils seems to increase with depth, with rates of increase
in the range of mostly 1 to 3 kPa/m. The broad group of
“sands” at both nearshore and offshore seem to have sim-
ilar relative density, D,, values that are generally less than
50% (i.e. sands are in loose to medium-dense state), with
a COV value of D, of about 60%. In this study, the COV
values are close to the upper bound of reported COV
values in the literature.

The vertical SCL of clays and sands is in the range of
0.11 m to 0.27 m for all four different autocovariance
functions used in this study, for all CPT cone tip
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resistance, sleeve friction and friction ratio, for both the
“constant” and “trend”-with-depth approaches and for all
shallow- and deep-water soils. The vertical SCL values
obtained in this study compares well with the very few
data available on offshore sediments’ variability, present-
ed in Table 1. All measurements (cone tip resistance, fric-
tion ratio and sleeve friction) show that the “trend”’-with-
depth approach always results in smaller SCL values,
although slightly, as compared to the “constant”-mean-
with-depth approach. In addition, deep-water clays and
sands have slightly greater vertical SCL based on CPT
data than shallow-water clays (meaning that the data in
shallow waters fluctuate more frequently), which is pos-
sibly because of more uniform deposition and formation
processes in geological history in deep water. The similar
result is reported in the study of Cheon and Gilbert
(2014), and it is stated that deeper offshore marine soils
have larger SCL based on CPT data as compared to the
shallower depths. In addition, Nadim (2015) states that
although the soil types in the offshore and nearshore are
similar, their spatial variation properties show significant
differences, i.e. the correlation structures are different.

The results of the present study contribute to the limited
data on the vertical SCL for offshore sediments and will be
useful for future studies on reliability assessment of offshore
foundations, e.g. via the random finite element method.
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