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1 Introduction

Rare B meson decays, induced by flavor changing neutral current (FCNC) b → s(d)ℓ+ℓ−

transitions constitute one of the most important class of decays for testing the gauge struc-
ture of the Standard Model (SM). These decays which are forbidden in the SM at tree
level, occur at loop level and provide insight to check the predictions of the SM at quan-
tum level. Moreover, these decays are also quite sensitive to the existence of new physics
beyond the SM, since new particles running at loops can give contribution to these decays.
The new physics manifests itself in rare decays in two different ways; one via modification
of the existing Wilson coefficients in the SM, or through the introduction of some new
operators with new coefficients which are absent in the SM. Some of the most important
exclusive FCNC decays governed by b → s(d) transition at quark level are B → K∗γ and
B → (π, ρ,K,K∗)ℓ+ℓ− decays. The decays of the kind B → Mℓ+ℓ−, where M stands for
pseudoscalar or vector mesons, enable the investigation of the experimental observables,
such as, lepton pair forward–backward (FB) asymmetry, lepton polarizations, etc. One
of the most efficient ways in looking for new physics beyond the SM is the measurement
of lepton polarization in the decays. Polarization of a single lepton has been studied in
B → K∗ℓ+ℓ− [1], B → Xsℓ

+ℓ− [2, 3], B → Kℓ+ℓ− [4], B → π(ρ)ℓ+ℓ−[5, 6] and B → ℓ+ℓ−γ
[7] decays in detail in fitting the parameters of the SM and set constraints on new physics
beyond the SM. Moreover, as has already been pointed out in [8], some of the single lepton
polarization asymmetries might be quite small to be observed and might not provide suffi-
cient number of observables in checking the structure of the effective Hamiltonian. By taking
both lepton polarizations into account simultaneously, maximum number of independent
observables are constructed. It is clear that, measurement of many more observables which
would be useful in further improvement of the parameters of the SM probing new physics
beyond the SM. It should be noted here that both lepton polarizations in the B → K∗τ+τ−

and B → Kℓ+ℓ− decays are studied in [9] and [10], respectively. The decays of B mesons
induced by the b → dℓ+ℓ− transition are promising in looking for CP violation since the
CKM factors VtbV

∗
td, VubV

∗
ud and VcbV

∗
cd in the SM are all of the same order. For this reason

CP violation is much more considerable in the decays induced by b → d transition. So,
study of the exclusive decays Bd → (π, ρ, η)ℓ+ℓ− are quite promising for the confirmation
of the CP violation and these decays have extensively been investigated in the SM [11] and
beyond [12].

The aim of the present work is to study the double–lepton polarization asymmetries in
the exclusive B → ρℓ+ℓ− decay in a model independent way, including all possible forms
of interactions into the effective Hamiltonian. Moreover, we study the correlation between
the double–lepton polarization asymmetries and the branching ratio of the B → ρℓ+ℓ−

decay, in order to find such regions of new Wilson coefficients in which the branching ratio
(as well as single–lepton polarization) coincides with the SM prediction while the double–
lepton polarization asymmetries do not. It is clear that if such a region of the new Wilson
coefficients exists it is an indication of the fact that new physics beyond the SM can be
established by measurement of the double–lepton polarizations only. Note that the double–
lepton polarizations in the B → Kℓ+ℓ− and B → ℓ+ℓ−γ decays are studied in [13] and [14]
in detail.

The paper is organized as follows. In section 2, using a general form of the effective
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Hamiltonian, we obtain the matrix element in terms of the form factors of the B → ρ tran-
sition. In section 3 we derive the analytical results for the nine double–lepton polarization
asymmetries. Last section is devoted to the numerical analysis, discussion and conclusions.

2 Double lepton polarization asymmetries in B → ρℓ+ℓ−

decay

In this section we calculate the double lepton polarizations using a general form of the
effective Hamiltonian. The B → ρℓ+ℓ− process is governed by b → dℓ+ℓ− transition at
quark level. The matrix element for the b → dℓ+ℓ− transition can be written in terms of
the twelve model independent four–Fermi interactions in the following form:

Heff =
GFα√
2π
VtdV

∗
tb

{
CSL d̄Riσµν

qν

q2
bL ℓ̄γ

µℓ+ CBR d̄Liσµν
qν

q2
bR ℓ̄γ

µℓ

+ Ctot
LL d̄LγµbL ℓ̄Lγ

µℓL + Ctot
LR d̄LγµbL ℓ̄Rγ

µℓR + CRL d̄RγµbR ℓ̄Lγ
µℓL

+ CRR d̄RγµbR ℓ̄Rγ
µℓR + CLRLR d̄LbR ℓ̄LℓR + CRLLR d̄RbL ℓ̄LℓR

+ CLRRL d̄LbR ℓ̄RℓL + CRLRL d̄RbL ℓ̄RℓL + CT d̄σµνb ℓ̄σ
µνℓ

+ iCTE ǫ
µναβ d̄σµνb ℓ̄σαβℓ

}
, (1)

where

dL =
1− γ5

2
d , dR =

1 + γ5
2

d ,

CX are the coefficients of the four–Fermi interactions and q is the momentum transfer.
Among all these Wilson coefficients, several already exits in the SM. Indeed, the first two
coefficients in Eq. (1), CSL and CBR, are the nonlocal Fermi interactions, which correspond
to −2msC

eff
7 and −2mbC

eff
7 in the SM, respectively. The next four terms with coefficients

CLL, CLR, CRL and CRR are the vector type interactions. Two of these vector interactions
containing Ctot

LL and Ctot
LR do already exist in the SM in the form (Ceff

9 −C10) and (Ceff
9 +C10).

Therefore, Ctot
LL and Ctot

LR can be written as

Ctot
LL = Ceff

9 − C10 + CLL ,

Ctot
LR = Ceff

9 + C10 + CLR ,

where CLL and CLR describe the contributions of the new physics. The terms with coeffi-
cients CLRLR, CRLLR, CLRRL and CRLRL describe the scalar type interactions. The remain-
ing last two terms lead by the coefficients CT and CTE, obviously, describe the tensor type
interactions.

It should be noted here that, in further analysis we will assume that all new Wilson
coefficients are real, as is the case in the SM, while only Ceff

9 contains imaginary part and
it is parametrized in the following form

Ceff
9 = ξ1 + λuξ2 , (2)
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where

λu =
VubV

∗
ud

VtbV
∗
td

,

and

ξ1 = 4.128 + 0.138ω(ŝ) + g(m̂c, ŝ)C0(m̂b)−
1

2
g(m̂d, ŝ)(C3 + C4)

− 1

2
g(m̂b, ŝ)(4C3 + 4C4 + 3C5 + C6) +

2

9
(3C3 + C4 + 3C5 + C6) ,

ξ2 = [g(m̂c, ŝ)− g(m̂u, ŝ)](3C1 + C2) , (3)

where m̂q = mq/mb, ŝ = q2, C0(µ) = 3C1 + C2 + 3C3 + C4 + 3C5 + C6, and

ω(ŝ) = −2

9
π2 − 4

3
Li2(ŝ)−

2

3
ln(ŝ) ln(1− ŝ)− 5 + 4ŝ

3(1 + 2ŝ)
ln(1− ŝ)

− 2ŝ(1 + ŝ)(1− 2ŝ)

3(1− ŝ)2(1 + 2ŝ)
ln(ŝ) +

5 + 9ŝ− 6ŝ2

3(1− ŝ)(1 + 2ŝ)
, (4)

represents the O(αs) correction coming from one gluon exchange in the matrix element
of the operator O9 [15], while the function g(m̂q, ŝ) represents one–loop corrections to the
four–quark operators O1–O6 [16], whose form is

g(m̂q, ŝ) = −8

9
ln(m̂q) +

8

27
+

4

9
yq −

2

9
(2 + yq)

−
√
|1− yq|

{
θ(1− yq)

[
ln

(
1 +

√
1− yq

1−√
1− yq

)
− iπ

]
+ θ(yq − 1) arctan

(
1√
yq − 1

)}
, (5)

where yq = 4m̂2
q/ŝ.

In addition to the short distance contributions, B → Xdℓ
+ℓ− decay also receives long

distance contributions, which have their origin in the real ūu, d̄d and c̄c intermediate states,
i.e., ρ, ω and J/ψ family. There are four different approaches in taking long distance
contributions into consideration: a) HQET based approach [17], b) AMM approach [18],
c) LSW approach [19], and d) KS approach [20]. In the present work we choose the AMM
approach, in which these resonance contributions are parametrized using the Breit–Wigner
form for the resonant states. The effective coefficient Ceff

9 including the ρ, ω and J/ψ
resonances are defined as

Ceff
9 = C9(µ) + Yres(ŝ) , (6)

where

Yres = −3π

α2

{(
C(0)(µ) + λu [3C1(µ) + C2(µ)]

) ∑

Vi=ψ

Ki
Γ(Vi → ℓ+ℓ−)MVi

M2
Vi
− q2 − iMViΓVi

− λug(m̂u, ŝ) [3C1(µ) + C2(µ)]
∑

Vi=ρ,ω

Γ(Vi → ℓ+ℓ−)MVi

M2
Vi
− q2 − iMViΓVi

}
. (7)
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The phenomenological factor Ki has the universal value for the inclusive B → Xs(d)ℓ
+ℓ−

decay Ki ≃ 2.3 [21], which we use in our calculations.
The decay amplitude for the exclusive B → ρℓ+ℓ− decay is obtained from the matrix

element of the effective Hamiltonian in Eq. (1) over B and ρ meson states, which can be
parametrized in terms of various form factors. It follows from (1) that, the following matrix
elements

〈
ρ
∣∣∣d̄γµ(1± γ5)b

∣∣∣B
〉
,

〈
ρ
∣∣∣d̄iσµνqν(1± γ5)b

∣∣∣B
〉
,

〈
ρ
∣∣∣d̄(1± γ5)b

∣∣∣B
〉
,

〈
ρ
∣∣∣d̄σµνb

∣∣∣B
〉
,

are needed in obtaining the decay amplitude of the B → ρℓ+ℓ− decay. These matrix
elements are defined as follows:

〈
ρ(pρ, ε)

∣∣∣d̄γµ(1± γ5)b
∣∣∣B(pB)

〉
=

−ǫµνλσε∗νpλρqσ
2V (q2)

mB +mρ

± iε∗µ(mB +mρ)A1(q
2) (8)

∓i(pB + pρ)µ(ε
∗q)

A2(q
2)

mB +mρ
∓ iqµ

2mρ

q2
(ε∗q)

[
A3(q

2)−A0(q
2)
]
,

〈
ρ(pρ, ε)

∣∣∣d̄iσµνqν(1± γ5)b
∣∣∣B(pB)

〉
=

4ǫµνλσε
∗νpλρq

σT1(q
2)± 2i

[
ε∗µ(m

2
B −m2

ρ)− (pB + pρ)µ(ε
∗q)
]
T2(q

2) (9)

±2i(ε∗q)

[
qµ − (pB + pρ)µ

q2

m2
B −m2

ρ

]
T3(q

2) ,

〈
ρ(pρ, ε)

∣∣∣d̄σµνb
∣∣∣B(pB)

〉
=

iǫµνλσ

{
− 2T1(q

2)ε∗λ(pB + pρ)
σ +

2

q2
(m2

B −m2
ρ)
[
T1(q

2)− T2(q
2)
]
ε∗λqσ (10)

− 4

q2

[
T1(q

2)− T2(q
2)− q2

m2
B −m2

ρ

T3(q
2)

]
(ε∗q)pλρq

σ

}
.

where q = pB − pρ is the momentum transfer and ε is the polarization vector of ρ meson.
Note that the matrix element

〈
ρ(pρ, ε)

∣∣∣d̄σµνγ5b
∣∣∣B(pB)

〉

can easily be obtained from (10)by using the identity

σαβ = − i

2
ǫαβρσσ

ρσγ5 .

In order to ensure finiteness of (8) and (10) at q2 = 0, we assume that A3(q
2 = 0) = A0(q

2 =

0) and T1(q
2 = 0) = T2(q

2 = 0). The matrix element
〈
ρ
∣∣∣d̄(1± γ5)b

∣∣∣B
〉
can be calculated
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by contracting both sides of Eq. (8) with qµ and using equation of motion. Neglecting the
mass of the d quark we get

〈
ρ(pρ, ε)

∣∣∣d̄(1± γ5)b
∣∣∣B(pB)

〉
=

1

mb

[
∓ 2imρ(ε

∗q)A0(q
2)
]
. (11)

In deriving Eq. (11) we have used the relationship

2mρA3(q
2) = (mB +mρ)A1(q

2)− (mB −mρ)A2(q
2) ,

which follows from the equations of motion.
Using the definition of the form factors, as given above, the amplitude of the B → ρℓ+ℓ−

decay can be written as

M(B → ρℓ+ℓ−) =
Gα

4
√
2π
VtbV

∗
td

×
{
ℓ̄γµ(1− γ5)ℓ

[
− 2A1ǫµνλσε

∗νpλρq
σ − iB1ε

∗
µ + iB2(ε

∗q)(pB + pρ)µ + iB3(ε
∗q)qµ

]

+ℓ̄γµ(1 + γ5)ℓ
[
− 2C1ǫµνλσε

∗νpλρq
σ − iD1ε

∗
µ + iD2(ε

∗q)(pB + pρ)µ + iD3(ε
∗q)qµ

]

+ℓ̄(1− γ5)ℓ
[
iB4(ε

∗q)
]
+ ℓ̄(1 + γ5)ℓ

[
iB5(ε

∗q)
]

+4ℓ̄σµνℓ
(
iCT ǫµνλσ

)[
− 2T1ε

∗λ(pB + pρ)
σ +B6ε

∗λqσ − B7(ε
∗q)pρ

λqσ
]

+16CTE ℓ̄σµνℓ
[
− 2T1ε

∗µ(pB + pρ)
ν +B6ε

∗µqν − B7(ε
∗q)pρ

µqν
}
, (12)

where

A1 = (Ctot
LL + CRL)

V

mB +mρ
− 2(CBR + CSL)

T1
q2

,

B1 = (Ctot
LL − CRL)(mB +mρ)A1 − 2(CBR − CSL)(m

2
B −m2

ρ)
T2
q2

,

B2 =
Ctot
LL − CRL
mB +mρ

A2 − 2(CBR − CSL)
1

q2

[
T2 +

q2

m2
B −m2

ρ

T3

]
,

B3 = 2(Ctot
LL − CRL)mρ

A3 − A0

q2
+ 2(CBR − CSL)

T3
q2

,

C1 = A1(C
tot
LL → Ctot

LR , CRL → CRR) ,

D1 = B1(C
tot
LL → Ctot

LR , CRL → CRR) ,

D2 = B2(C
tot
LL → Ctot

LR , CRL → CRR) ,

D3 = B3(C
tot
LL → Ctot

LR , CRL → CRR) ,

B4 = −2(CLRRL − CRLRL)
mρ

mb
A0 ,

B5 = −2(CLRLR − CRLLR)
mρ

mb
A0 ,

B6 = 2(m2
B −m2

ρ)
T1 − T2
q2

,

B7 =
4

q2

(
T1 − T2 −

q2

m2
B −m2

ρ

T3

)
. (13)
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From this expression of the decay amplitude, for the unpolarized differential decay width
we get the following result:

dΓ

dŝ
(B → ρℓ+ℓ−) =

G2α2mB

214π5
|VtbV ∗

td|2 λ1/2(1, r̂, ŝ)v∆(ŝ) , (14)

with

∆ =
2m2

B

3r̂ρŝ
Re
{
− 6mBm̂ℓŝλ(B1 −D1)(B

∗
4 − B∗

5)

− 12m2
Bm̂

2
ℓ ŝλ

[
B4B

∗
5 + (B3 −D2 −D3)B

∗
1 − (B2 +B3 −D3)D

∗
1

]

+ 6m3
Bm̂ℓŝ(1− r̂ρ)λ(B2 −D2)(B

∗
4 −B∗

5)

+ 12m4
Bm̂

2
ℓ ŝ(1− r̂ρ)λ(B2 −D2)(B

∗
3 −D∗

3)

+ 6m3
Bm̂ℓλŝ

2(B4 −B5)(B
∗
3 −D∗

3)

+ 48m̂2
ℓ r̂ρŝ

(
3B1D

∗
1 + 2m4

BλA1C
∗
1

)

+ 48m5
Bm̂ℓŝλ

2(B2 +D2)B
∗
7C

∗
TE

− 16m4
B r̂ρŝ(m̂

2
ℓ − ŝ)λ

(
|A1|2 + |C1|2

)

− m2
B ŝ(2m̂

2
ℓ − ŝ)λ

(
|B4|2 + |B5|2

)

− 48m3
Bm̂ℓŝ(1− r̂ρ − ŝ)λ

[
(B1 +D1)B

∗
7C

∗
TE + 2(B2 +D2)B

∗
6C

∗
TE

]

− 6m4
Bm̂

2
ℓ ŝλ

[
2(2 + 2r̂ρ − ŝ)B2D

∗
2 − ŝ |(B3 −D3)|2

]

+ 96mBm̂ℓŝ(λ+ 12r̂ρŝ)(B1 +D1)B
∗
6C

∗
TE

+ 8m2
B ŝ

2
[
v2 |CT |2 + 4(3− 2v2) |CTE|2

][
4(λ+ 12r̂ρŝ) |B6|2

− 4m2
Bλ(1− r̂ρ − ŝ)B6B

∗
7 +m4

Bλ
2 |B7|2

]

− 4m2
Bλ
[
m̂2
ℓ(2− 2r̂ρ + ŝ) + ŝ(1− r̂ρ − ŝ)

]
(B1B

∗
2 +D1D

∗
2)

+ ŝ
[
6r̂ρŝ(3 + v2) + λ(3− v2)

](
|B1|2 + |D1|2

)

− 2m4
Bλ
{
m̂2
ℓ [λ− 3(1− r̂ρ)

2]− λŝ
}(

|B2|2 + |D2|2
)

+ 128m2
B

{
4m̂2

ℓ [20r̂ρλ− 12r̂ρ(1− r̂ρ)
2 − λŝ]

+ ŝ[4r̂ρλ+ 12r̂ρ(1− r̂ρ)
2 + λŝ]

}
|CT |2 |t1|2

+ 512m2
B

{
ŝ[4r̂ρλ + 12r̂ρ(1− r̂ρ)

2 + λŝ]

+ 8m̂2
ℓ [12r̂ρ(1− r̂ρ)

2 + λ(ŝ− 8r̂ρ)]
}
|CTE|2 |t1|2

− 64m2
Bŝ

2
[
v2 |CT |2 + 4(3− 2v2) |CTE|2

]{
2[λ+ 12r̂ρ(1− r̂ρ)]B6t

∗
1

− m2
Bλ(1 + 3r̂ρ − ŝ)B7t

∗
1

}

+ 768m3
Bm̂ℓr̂ρŝλ(A1 + C1)C

∗
T t

∗
1

− 192mBm̂ℓŝ[λ+ 12r̂ρ(1− r̂ρ)](B1 +D1)C
∗
TEt

∗
1

+ 192m3
Bm̂ℓŝλ(1 + 3r̂ρ − ŝ)λ(B2 +D2)C

∗
TEt

∗
1

}
, (15)
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where ŝ = q2/m2
B, r̂ρ = m2

ρ/m
2
B and λ(a, b, c) = a2+ b2+ c2−2ab−2ac−2bc, m̂ℓ = mℓ/mB,

v =
√
1− 4m̂2

ℓ/ŝ is the final lepton velocity.

Using the matrix element for the B → ρℓ+ℓ− decay, our next problem is to calculate the
nine double–lepton polarization asymmetries. For this aim we introduce the spin projection
operators

Λ1 =
1

2
(1 + γ5 6s−i ) ,

Λ2 =
1

2
(1 + γ5 6s+i )

for the lepton ℓ− and anti–lepton ℓ+, where i = L,N, T correspond to the longitudinal, nor-
mal and transversal polarizations, respectively. Firstly we define the following orthogonal
unit vectors s±µi in the rest frame of ℓ± (see also [1, 3, 22, 23]),

s−µL =
(
0, ~e−L

)
=

(
0,

~p−
|~p−|

)
,

s−µN =
(
0, ~e−N

)
=

(
0,

~pρ × ~p−
|~pρ × ~p−|

)
,

s−µT =
(
0, ~e−T

)
=
(
0, ~e−N × ~e−L

)
,

s+µL =
(
0, ~e+L

)
=

(
0,

~p+
|~p+|

)
,

s+µN =
(
0, ~e+N

)
=

(
0,

~pρ × ~p+
|~pρ × ~p+|

)
,

s+µT =
(
0, ~e+T

)
=
(
0, ~e+N × ~e+L

)
, (16)

where ~p∓ and ~pρ are the three–momenta of the leptons ℓ∓ and ρ meson in the center of
mass frame (CM) of ℓ− ℓ+ system, respectively. Transformation of unit vectors from the rest
frame of the leptons to CM frame of leptons can be done by the Lorentz boost. Boosting
of the longitudinal unit vectors s±µL leads to

(
s∓µL

)

CM
=

(
|~p∓|
mℓ

,
Eℓ~p∓
mℓ |~p∓|

)
, (17)

where ~p+ = −~p−, Eℓ and mℓ are the energy and mass of leptons in the CM frame, respec-
tively. The remaining two unit vectors s±µN , s±µT are unchanged under Lorentz boost.

We can now define the double–lepton polarization asymmetries as in [8]:

Pij(ŝ) =

(
dΓ

dŝ
(~s−i , ~s

+
j )−

dΓ

dŝ
(−~s−i , ~s+j )

)
−
(
dΓ

dŝ
(~s−i ,−~s+j )−

dΓ

dŝ
(−~s−i ,−~s+j )

)

(
dΓ

dŝ
(~s−i , ~s

+
j ) +

dΓ

dŝ
(−~s−i , ~s+j )

)
+

(
dΓ

dŝ
(~s−i ,−~s+j ) +

dΓ

dŝ
(−~s−i ,−~s+j )

) , (18)

where i, j = L, N, T , and the first subindex i corresponds lepton while the second subindex
j corresponds to antilepton, respectively.
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After lengthy calculations we get the following results for the double–polarization asym-
metries.

PLL =
m2
B

3r̂ρŝ∆
Re
{
− 12mBm̂ℓŝλ(B1 −D1)(B

∗
4 − B∗

5)

− 24m2
Bm̂

2
ℓ ŝλ

[
B4B

∗
5 + (B1 −D1)(B

∗
3 −D∗

3)
]

+ 12m3
Bm̂ℓŝλ(1− r̂ρ)

[
(B2 −D2)(B

∗
4 − B∗

5) + 2mBm̂ℓ(B2 −D2)(B
∗
3 −D∗

3)
]

− 32m5
Bm̂ℓŝλ

2(B2 +D2)B
∗
7C

∗
TE

+ 3m2
B ŝ

2λ(1 + v2)(|B4|2 + |B5|2)
− 8m4

B r̂ρŝ
2λ(1 + 3v2)(|A1|2 + |C1|2)

+ 12m3
Bm̂ℓŝ

2λ(B3 −D3)(B
∗
4 − B∗

5)

+ 12m4
Bm̂

2
ℓ ŝ

2λ |B3 −D3|2

+ 32m3
Bm̂ℓŝλ(1− r̂ρ − ŝ)

[
(B1 +D1)B

∗
7C

∗
TE + 2(B2 +D2)B

∗
6C

∗
TE

]

+ 8m2
Bm̂

2
ℓλ(4− 4r̂ρ − ŝ)(B1D

∗
2 +B2D

∗
1)

− 64mBm̂ℓŝ(λ+ 12r̂ρŝ)(B1 +D1)B
∗
6C

∗
TE

− 16m2
B ŝ
[
4m̂2

ℓ(|CT |2 + 8 |CTE|2)− ŝ(|CT |2 + 4 |CTE|2)
][
m4
Bλ

2 |B7|2 + 4(λ+ 12r̂ρŝ) |B6|2
]

− 32m̂2
ℓ(λ+ 3r̂ρŝ)B1D

∗
1

− 8m4
Bm̂

2
ℓλ[λ+ 3(1− r̂ρ)

2]B2D
∗
2

+ 8m2
Bλ[ŝ− ŝ(r̂ρ + ŝ)− 3m̂2

ℓ(2− 2r̂ρ − ŝ)](B1B
∗
2 +D1D

∗
2)

− 64m4
B ŝ

2λ(1− r̂ρ − ŝ)
[
v2 |CT |2 − 4(1− 2v2) |CTE|2

]
B6B

∗
7

− m4
B ŝλ[λ(1 + 3v2)− 3(1− r̂ρ)

2(1− v2)](|B2|2 + |D2|2)
+ 4[6m̂2

ℓ(λ+ 6r̂ρŝ)− ŝ(λ+ 12r̂ρŝ)](|B1|2 + |D1|2)
− 1024m2

B{12r̂ρŝ(1− r̂ρ)
2(1− 2v2)− λŝ[4r̂ρ − ŝ(1− 2v2)]} |t1|2 |CTE |2

+ 256m2
Bŝ{λ(ŝv2 − 8r̂ρ) + 12r̂ρv

2[λ+ (1− r̂ρ)
2]} |t1|2 |CT |2

− 256m2
Bŝ

2[λ+ 12r̂ρ(1− r̂ρ)]
[
v2 |CT |2 − 4(1− 2v2) |CTE |2

]
B6t

∗
1

+ 128m4
Bŝ

2λ(1 + 3r̂ρ − ŝ)
[
v2 |CT |2 − 4(1− 2v2) |CTE|2

]
B7t

∗
1

+ 128mBm̂ℓŝ[λ+ 12r̂ρ(1− r̂ρ)](B1 +D1)t
∗
1C

∗
TE

− 128m3
Bm̂ℓŝλ(1 + 3r̂ρ − ŝ)(B2 +D2)t

∗
1C

∗
TE

− 512m3
Bm̂ℓr̂ρŝλ(A1 + C1)t

∗
1C

∗
T

− 64m4
Bm̂

2
ℓ r̂ρŝλA1C

∗
1

}
, (19)

PLN =
πm2

B

2r̂ρ∆

√
λ

ŝ
Im
{
4m2

Bm̂
2
ℓλ
[
B2B

∗
4 +B5D

∗
2 + 8(B1 −D1)B

∗
7C

∗
TE

]

− 4m4
Bm̂ℓλ(1− r̂ρ)

[
B2D

∗
2 + 8mBm̂ℓ(B2 −D2)B

∗
7C

∗
TE

]

+ 2m4
Bm̂ℓŝλ

[
B2B

∗
3 − 8(B4 −B5)B

∗
7C

∗
TE − 16mBm̂ℓ(B3 −D3)B

∗
7C

∗
TE

]
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− 2m4
Bm̂ℓŝλ

[
B3D

∗
2 + (B2 +D2)D

∗
3

]

− 2m2
Bm̂ℓŝ(1 + 3r̂ρ − ŝ)

(
B1B

∗
2 −D1D

∗
2 − 32B5C

∗
TEt

∗
1

)

+ 32m3
B r̂ρŝ

2v2
[
(A1 − C1)B

∗
6C

∗
T − 2(A1 + C1)B

∗
6C

∗
TE

]

− m3
B ŝλ(1 + v2)

(
B2B

∗
5 +B4D

∗
2

)

− 4m̂ℓ(1− r̂ρ − ŝ)
{
B1D

∗
1 +mBm̂ℓ

[
B1(B

∗
4 + 16B∗

6C
∗
TE)−D1(B

∗
5 + 16B∗

6C
∗
TE)

]}

+ 64m3
Bm̂

2
ℓ(1− r̂ρ)(1− r̂ρ − ŝ)(B2 −D2)B

∗
6C

∗
TE

− 2m2
Bm̂ℓŝ(1− r̂ρ − ŝ)(B1 +D1)(B

∗
3 −D∗

3)

+ 32m2
Bm̂ℓŝ(1− r̂ρ − ŝ)

[
(B4 − B5)B

∗
6C

∗
TE + 2mBm̂ℓ(B3 −D3)B

∗
6C

∗
TE

]

+ mB ŝ(1− r̂ρ − ŝ)(1 + v2)
(
B1B

∗
5 +B4D

∗
1

)

+ 2m2
Bm̂ℓ[λ+ (1− r̂ρ)(1− r̂ρ − ŝ)]

(
B2D

∗
1 +B1D

∗
2

)

− 128m3
Bm̂

2
ℓ(1− r̂ρ)(1 + 3r̂ρ − ŝ)(B2 −D2)t

∗
1C

∗
TE

− 64m2
Bm̂ℓŝ(1 + 3r̂ρ − ŝ)

[
B4C

∗
TEt

∗
1 + 2mBm̂ℓ(B3 −D3)C

∗
TEt

∗
1

]

− 64m3
B r̂ρŝ(1− r̂ρ)v

2
[
A1(C

∗
T − 2C∗

TE)t
∗
1 − C1(C

∗
T + 2C∗

TE)t
∗
1

]

− 32mB ŝ
[
(1 + 3r̂ρ − ŝ)D1C

∗
TEt

∗
1 + 2r̂ρv

2D1C
∗
T t

∗
1 − (1− r̂ρ − ŝ)v2D1C

∗
TEt

∗
1

]

+ 32mB ŝ
[
(1 + 3r̂ρ − ŝ)B1C

∗
TEt

∗
1 − 2r̂ρv

2B1C
∗
T t

∗
1 − (1− r̂ρ − ŝ)v2B1C

∗
TEt

∗
1

]}
, (20)

PNL =
πm2

B

2r̂ρ∆

√
λ

ŝ
Im
{
4m3

Bm̂
2
ℓλ
[
B2B

∗
5 +B4D

∗
2 − 8(B1 −D1)B

∗
7C

∗
TE

]

+ 4m4
Bm̂ℓλ(1− r̂ρ)

[
B2D

∗
2 + 8mBm̂ℓ(B2 −D2)B

∗
7C

∗
TE

]

− 2m4
Bm̂ℓŝλ

[
B2B

∗
3 − 8(B4 −B5)B

∗
7C

∗
TE − 16mBm̂ℓ(B3 −D3)B

∗
7C

∗
TE

]

+ 2m4
Bm̂ℓŝλ

[
B3D

∗
2 + (B2 +D2)D

∗
3

]

+ 2m2
Bm̂ℓŝ(1 + 3r̂ρ − ŝ)

(
B1B

∗
2 −D1D

∗
2 − 32B5C

∗
TEt

∗
1

)

− 32m3
B r̂ρŝ

2v2
[
(A1 − C1)B

∗
6C

∗
T + 2(A1 + C1)B

∗
6C

∗
TE

]

− m3
B ŝλ(1 + v2)

(
B2B

∗
4 +B5D

∗
2

)

+ 4m̂ℓ(1− r̂ρ − ŝ)
{
B1D

∗
1 −mBm̂ℓ

[
B1(B

∗
5 − 16B∗

6C
∗
TE)−D1(B

∗
4 − 16B∗

6C
∗
TE)

]}

+ 64m3
Bm̂

2
ℓ(1− r̂ρ)(1− r̂ρ − ŝ)(B2 −D2)B

∗
6C

∗
TE

+ 2m2
Bm̂ℓŝ(1− r̂ρ − ŝ)(B1 +D1)(B

∗
3 −D∗

3)

− 32m2
Bm̂ℓŝ(1− r̂ρ − ŝ)

[
(B4 − B5)B

∗
6C

∗
TE + 2mBm̂ℓ(B3 −D3)B

∗
6C

∗
TE

]

+ mB ŝ(1− r̂ρ − ŝ)(1 + v2)
(
B1B

∗
4 +B5D

∗
1

)

− 2m2
Bm̂ℓ[λ+ (1− r̂ρ)(1− r̂ρ − ŝ)]

(
B2D

∗
1 +B1D

∗
2

)

+ 128m3
Bm̂

2
ℓ(1− r̂ρ)(1 + 3r̂ρ − ŝ)(B2 −D2)t

∗
1C

∗
TE

+ 64m2
Bm̂ℓŝ(1 + 3r̂ρ − ŝ)

[
B4C

∗
TEt

∗
1 + 2mBm̂ℓ(B3 −D3)C

∗
TEt

∗
1

]
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+ 64m3
B r̂ρŝ(1− r̂ρ)v

2
[
A1(C

∗
T + 2C∗

TE)t
∗
1 − C1(C

∗
T − 2C∗

TE)t
∗
1

]

− 32mB ŝ
[
(1 + 3r̂ρ − ŝ)B1C

∗
TEt

∗
1 + 2r̂ρv

2B1C
∗
T t

∗
1 − (1− r̂ρ − ŝ)v2B1C

∗
TEt

∗
1

]

+ 32mB ŝ
[
(1 + 3r̂ρ − ŝ)D1C

∗
TEt

∗
1 − 2r̂ρv

2D1C
∗
T t

∗
1 − (1− r̂ρ − ŝ)v2D1C

∗
TEt

∗
1

]}
, (21)

PLT =
πm2

Bv

r̂ρ∆

√
λ

ŝ
Re
{
m4
Bm̂ℓλ(1− r̂ρ) |B2 −D2|2

− 8m2
Bm̂ℓr̂ρŝ

(
A1B

∗
1 − C1D

∗
1

)

− m3
B ŝλ

(
B2B

∗
5 +B4D

∗
2 −mBm̂ℓB2B

∗
3

)

− 8m4
Bm̂ℓŝλ(B4 +B5)B

∗
7C

∗
TE

− m4
Bm̂ℓŝλ

(
B2D

∗
3 +B3D

∗
2 −D2D

∗
3

)

+ 16m3
B r̂ρŝ

2
[
A1B

∗
6(C

∗
T − 2C∗

TE) + C1B
∗
6(C

∗
T + 2C∗

TE)
]

+ m̂ℓ(1− r̂ρ − ŝ) |B1 −D1|2

+ mB ŝ(1− r̂ρ − ŝ)
[
B1B

∗
5 +B4D

∗
1 + 16mBm̂ℓ(B4 +B5)B

∗
6C

∗
TE

− mBm̂ℓ(B1 −D1)(B
∗
3 −D∗

3)
]

− m2
Bm̂ℓ[λ + (1− r̂ρ)(1− r̂ρ − ŝ)](B1 −D1)(B

∗
2 −D∗

2)

− 1024m2
Bm̂ℓr̂ρ(1− r̂ρ)

(
|CT |2 + 4 |CTE |2

)
|t1|2

+ 512m2
Bm̂ℓr̂ρŝ

(
|CT |2 + 4 |CTE|2

)
B6t

∗
1

− 32m2
Bm̂ℓŝ(1 + 3r̂ρ − ŝ)(B4 +B5)C

∗
TEt

∗
1

− 32m3
B r̂ρŝ(1− r̂ρ)

[
A1(C

∗
T − 2C∗

TE)t
∗
1 + C1(C

∗
T + 2C∗

TE)t
∗
1

]

− 32mB r̂ρŝ
[
B1(C

∗
T − 2C∗

TE)t
∗
1 −D1(C

∗
T + 2C∗

TE)t
∗
1

]}
, (22)

PTL =
πm2

Bv

r̂ρ∆

√
λ

ŝ
Re
{
m4
Bm̂ℓλ(1− r̂ρ) |B2 −D2|2

+ 8m2
Bm̂ℓr̂ρŝ

(
A1B

∗
1 − C1D

∗
1

)

+ m3
B ŝλ

(
B2B

∗
4 +B5D

∗
2 +mBm̂ℓB2B

∗
3

)

+ 8m4
Bm̂ℓŝλ(B4 +B5)B

∗
7C

∗
TE

− m4
Bm̂ℓŝλ

(
B2D

∗
3 +B3D

∗
2 −D2D

∗
3

)

+ 16m3
B r̂ρŝ

2
[
A1B

∗
6(C

∗
T + 2C∗

TE) + C1B
∗
6(C

∗
T − 2C∗

TE)
]

+ m̂ℓ(1− r̂ρ − ŝ) |B1 −D1|2

− mB ŝ(1− r̂ρ − ŝ)
[
B1B

∗
4 +B5D

∗
1 + 16mBm̂ℓ(B4 +B5)B

∗
6C

∗
TE

+ mBm̂ℓ(B1 −D1)(B
∗
3 −D∗

3)
]

− m2
Bm̂ℓ[λ + (1− r̂ρ)(1− r̂ρ − ŝ)](B1 −D1)(B

∗
2 −D∗

2)
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− 1024m2
Bm̂ℓr̂ρ(1− r̂ρ)

(
|CT |2 + 4 |CTE |2

)
|t1|2

+ 512m2
Bm̂ℓr̂ρŝ

(
|CT |2 + 4 |CTE|2

)
B6t

∗
1

+ 32m2
Bm̂ℓŝ(1 + 3r̂ρ − ŝ)(B4 +B5)C

∗
TEt

∗
1

− 32m3
B r̂ρŝ(1− r̂ρ)

[
A1(C

∗
T + 2C∗

TE)t
∗
1 + C1(C

∗
T − 2C∗

TE)t
∗
1

]

+ 32mB r̂ρŝ
[
B1(C

∗
T + 2C∗

TE)t
∗
1 −D1(C

∗
T − 2C∗

TE)t
∗
1

]}
, (23)

PNT =
2m2

Bv

3r̂ρ∆
Im
{
4λ
{
B1D

∗
1 +m4

Bλ
[
B2D

∗
2 − 2mBm̂ℓB2B

∗
7(C

∗
T − 4C∗

TE)

− 2mBm̂ℓD2B
∗
7(C

∗
T + 4C∗

TE)
]}

− 6mBm̂ℓλ(B1 −D1)(B
∗
4 +B∗

5)

+ 6m3
Bm̂ℓλ(1− r̂ρ)(B2 −D2)(B

∗
4 +B∗

5)

+ 6m3
Bm̂ℓŝλ(B3 −D3)(B

∗
4 +B∗

5)

− 4m2
Bλ(1− r̂ρ − ŝ)

[
B1D

∗
2 +B2D

∗
1 + 32m2

B ŝRe[B6B
∗
7 ]CTC

∗
TE

]

+ 8m3
Bm̂ℓλ(1− r̂ρ − ŝ)

[
(B1B

∗
7 + 2B2B

∗
6)(C

∗
T − 4C∗

TE)

+ (B∗
7D1 + 2B∗

6D2)(C
∗
T + 4C∗

TE)
]

+ 32m2
B ŝ
[
4(λ+ 12r̂ρŝ) |B6|2 + λ2m4

B |B7|2
]
CTC

∗
TE

+ 2m2
B ŝλ

(
3B4B

∗
5 − 8m2

B r̂ρA1C
∗
1

)

− 16mBm̂ℓ

{
λ
[
B1B

∗
6(C

∗
T − 4C∗

TE) +D1B
∗
6(C

∗
T + 4C∗

TE)
]
+ 12r̂ρŝ(B1 +D1)B

∗
6C

∗
T

}

+ 32mBm̂ℓ

{
12r̂ρ(1− r̂ρ)(B1 +D1)C

∗
T t

∗
1 + λ

[
B1(C

∗
T − 4C∗

TE)t
∗
1 +D1(C

∗
T + 4C∗

TE)t
∗
1

]}

− 256m3
Bm̂ℓr̂ρλ

[
A1(C

∗
T + 2C∗

TE)t
∗
1 − C1(C

∗
T − 2C∗

TE)t
∗
1

]

− 32m3
Bm̂ℓλ(1 + 3r̂ρ − ŝ)

[
B2(C

∗
T − 4C∗

TE)t
∗
1 +D2(C

∗
T + 4C∗

TE)t
∗
1

]

+ 256m2
Bŝ
{
2[λ+ 12r̂ρ(2 + 2r̂ρ − ŝ)] |t1|2 − 2[λ+ 12r̂ρ(1− r̂ρ)]Re[B6t

∗
1]

+ m2
Bλ(1 + 3r̂ρ − ŝ)Re[B7t

∗
1]
}
CTC

∗
TE

}
, (24)

PTN =
2m2

Bv

3r̂ρ∆
Im
{
− 4λ

{
B1D

∗
1 +m4

Bλ
[
B2D

∗
2 + 2mBm̂ℓB2B

∗
7(C

∗
T + 4C∗

TE)

+ 2mBm̂ℓD2B
∗
7(C

∗
T − 4C∗

TE)
]}

− 6mBm̂ℓλ(B1 −D1)(B
∗
4 +B∗

5)

+ 6m3
Bm̂ℓλ(1− r̂ρ)(B2 −D2)(B

∗
4 +B∗

5)

+ 6m3
Bm̂ℓŝλ(B3 −D3)(B

∗
4 +B∗

5)

+ 4m2
Bλ(1− r̂ρ − ŝ)

[
B1D

∗
2 +B2D

∗
1 − 32m2

BŝRe[B6B
∗
7 ]CTC

∗
TE

]

+ 8m3
Bm̂ℓλ(1− r̂ρ − ŝ)

[
(B1B

∗
7 + 2B2B

∗
6)(C

∗
T + 4C∗

TE)

+ (B∗
7D1 + 2B∗

6D2)(C
∗
T − 4C∗

TE)
]
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+ 32m2
B ŝ
[
4(λ+ 12r̂ρŝ) |B6|2 + λ2m4

B |B7|2
]
CTC

∗
TE

+ 2m2
B ŝλ

(
3B4B

∗
5 + 8m2

B r̂ρA1C
∗
1

)

− 16mBm̂ℓ

{
λ
[
B1B

∗
6(C

∗
T + 4C∗

TE) +D1B
∗
6(C

∗
T − 4C∗

TE)
]
+ 12r̂ρŝ(B1 +D1)B

∗
6C

∗
T

}

+ 32mBm̂ℓ

{
12r̂ρ(1− r̂ρ)(B1 +D1)C

∗
T t

∗
1 + λ

[
B1(C

∗
T + 4C∗

TE)t
∗
1 +D1(C

∗
T − 4C∗

TE)t
∗
1

]}

+ 256m3
Bm̂ℓr̂ρλ

[
A1(C

∗
T − 2C∗

TE)t
∗
1 − C1(C

∗
T + 2C∗

TE)t
∗
1

]

− 32m3
Bm̂ℓλ(1 + 3r̂ρ − ŝ)

[
B2(C

∗
T + 4C∗

TE)t
∗
1 +D2(C

∗
T − 4C∗

TE)t
∗
1

]

+ 256m2
Bŝ
{
2[λ+ 12r̂ρ(2 + 2r̂ρ − ŝ)] |t1|2 − 2[λ+ 12r̂ρ(1− r̂ρ)]Re[B6t

∗
1]

+ m2
Bλ(1 + 3r̂ρ − ŝ)Re[B7t

∗
1]
}
CTC

∗
TE

}
, (25)

PNN =
2m2

B

3r̂ρ∆
Re
{
− 24m̂2

ℓ r̂ρ(|B1|2 + |D1|2)

− 6mBm̂ℓλ(B1 −D1)(B
∗
4 − B∗

5)

− 48m5
Bm̂ℓλ

2(B2 +D2)B
∗
7C

∗
TE

+ 6m2
Bm̂

2
ℓλ
[
|B4|2 + |B5|2 − 2B1(B

∗
2 +B∗

3 −D∗
3) + 2D1(B

∗
3 −D∗

2 −D∗
3)
]

+ 6m3
Bm̂ℓλ(1− r̂ρ)

[
(B2 −D2)(B

∗
4 − B∗

5) + 2mBm̂ℓ(B2 −D2)(B
∗
3 −D∗

3)
]

+ m2
B ŝλ

[
16m2

B r̂ρv
2A1C

∗
1 − 3(1 + v2)B4B

∗
5 ]

+ 6m4
Bm̂

2
ℓλ(2 + 2r̂ρ − ŝ)(|B2|2 + |D2|2)

+ 6m3
Bm̂ℓŝλ(B3 −D3)(B

∗
4 − B∗

5)

+ 6m4
Bm̂

2
ℓ ŝλ |B3 −D3|2

+ 48m3
Bm̂ℓλ(1− r̂ρ − ŝ)

[
(B1 +D1)B

∗
7C

∗
TE + 2(B2 +D2)B

∗
6C

∗
TE

]

− 96mBm̂ℓ(1− r̂ρ − ŝ)2(B1 +D1)B
∗
6C

∗
TE

+ 8m4
B ŝλ

[
λm2

B |B7|2 − 4(1− r̂ρ − ŝ)B6B
∗
7

][
v2 |CT |2 − 4(3− 2v2) |CTE|2

]

+ m2
Bλ[3(2− 2r̂ρ − ŝ)− v2(2− 2r̂ρ + ŝ)](B1D

∗
2 +B2D

∗
1)

− m4
Bλ
[
(3 + v2)λ+ 3(1− v2)(1− r̂ρ)

2
]
B2D

∗
2

− 2[6r̂ρŝ(1− v2) + λ(3− v2)]B1D
∗
1

+ 32m2
B ŝ
{
(λ+ 12r̂ρŝ)v

2 |CT |2 − 4[λ(3− 2v2) + 12r̂ρŝ] |CTE|2
}
|B6|2

− 192m3
Bm̂ℓλ(1 + 3r̂ρ − ŝ)(B2 +D2)C

∗
TEt

∗
1

+ 192mBm̂ℓ[λ+ 4r̂ρ(1− r̂ρ)](B1 +D1)C
∗
TEt

∗
1

+ 128m2
Bŝv

2[λ+ 12r̂ρ(2 + 2r̂ρ − ŝ)] |CT |2 |t1|2

− 512m2
Bŝ[λ(3− 2v2) + 12r̂ρ(2 + 2r̂ρ − ŝ)] |CTE|2 |t1|2

− 128m2
Bŝ
{
[λ+ 12r̂ρ(1− r̂ρ)]v

2 |CT |2 − 4[λ(3− 2v2) + 12r̂ρ(1− r̂ρ)] |CTE|2
}
B6t

∗
1

+ 64m4
B(1 + 3r̂ρ − ŝ)ŝ

[
v2 |CT |2 − 4(3− 2v2) |CTE|2

]
B7t

∗
1

}
, (26)
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PTT =
2m2

B

3r̂ρŝ∆
Re
{
8m4

B r̂ρŝλ
[
4m̂2

ℓ(|A1|2 + |C1|2) + 2ŝA1C
∗
1

]

+ 6mBm̂ℓŝλ(B1 −D1)(B
∗
4 − B∗

5)

− 16m5
Bm̂ℓŝλ

2(B2 +D2)B
∗
7C

∗
TE

− 6m2
Bm̂

2
ℓ ŝλ

[
|B4|2 + |B5|2 − 2(B1 −D1)(B

∗
3 −D∗

3)
]

− 6m3
Bm̂ℓŝλ(1− r̂ρ)

[
(B2 −D2)(B

∗
4 − B∗

5) + 2mBm̂ℓ(B2 −D2)(B
∗
3 −D∗

3)
]

− 6m3
Bm̂ℓŝ

2λ(B3 −D3)(B
∗
4 −B∗

5)

− 6m4
Bm̂

2
ℓ ŝ

2λ |B3 −D3|2

+ 16m3
Bm̂ℓŝλ(1− r̂ρ − ŝ)

[
(B1 +D1)B

∗
7C

∗
TE + 2(B2 +D2)B

∗
6C

∗
TE

]

+ 4m2
Bm̂

2
ℓλ(4− 4r̂ρ − ŝ)(B1B

∗
2 +D1D

∗
2)

+ 2ŝ[6r̂ρŝ(1− v2) + λ(1− 3v2)]B1D
∗
1

− 2m4
Bm̂

2
ℓλ[λ+ 3(1− r̂ρ)

2](|B2|2 + |D2|2)
− m2

B ŝλ[2− 2r̂ρ + ŝ− 3v2(2− 2r̂ρ − ŝ)](B1D
∗
2 +B2D

∗
1)

− 8m̂2
ℓ(λ− 3r̂ρŝ)(|B1|2 + |D1|2)

− 32mBm̂ℓŝ(λ− 12r̂ρŝ)(B1 +D1)B
∗
6C

∗
TE

− 8m4
B ŝ

2λ
[
λm2

B |B7|2 − 4(1− r̂ρ − ŝ)B6B
∗
7

][
v2 |CT |2 + 4(1− 2v2) |CTE|2

]

+ 3m2
B ŝ

2λ(1 + v2)B4B
∗
5

− m4
B ŝλ

[
(1 + 3v2)λ− 3(1− v2)(1− r̂ρ)

2
]
B2D

∗
2

− 32m2
B ŝ

2
{
(λ+ 12r̂ρŝ)v

2 |CT |2 + 4[λ(1− 2v2)− 12r̂ρŝ] |CTE|2
}
|B6|2

− 128m2
B

{
4λ[λ− (1− r̂ρ)

2] + 8ŝ(1− r̂ρ)[λ− 6r̂ρ(1− r̂ρ)] + 8λŝv2(8r̂ρ − ŝ)
}
|CTE|2 |t1|2

+ 128m2
B

{
16λr̂ρŝ− λ[λ− (1− r̂ρ)

2]v2 − 2ŝv2[λ(1 + 3r̂ρ) + 6r̂ρ(1− r̂ρ)
2]
}
|CT |2 |t1|2

+ 128m2
Bŝ

2
{
[λ+ 12r̂ρ(1− r̂ρ)]v

2 |CT |2 + 4[λ(1− 2v2)− 12r̂ρ(1− r̂ρ)]
}
B6t

∗
1

− 64m4
B ŝ

2λ(1 + 3r̂ρ − ŝ)
[
v2 |CT |2 + 4(1− 2v2) |CTE|2

]
B7t

∗
1

+ 64mBm̂ℓŝ[λ− 12r̂ρ(1− r̂ρ)](B1 +D1)C
∗
TEt

∗
1

+ 512m3
Bm̂ℓr̂ρŝλ(A1 + C1)C

∗
T t

∗
1

− 64m3
Bm̂ℓŝλ(1 + 3r̂ρ − ŝ)(B2 +D2)C

∗
TEt

∗
1

}
, (27)

3 Numerical analysis

In this section we analyze the effects of the Wilson coefficients on the polarized FB asymme-
try. The input parameters we use in our numerical calculations are: mρ = 0.77 GeV , mτ =
1.77 GeV , mµ = 0.106 GeV , mb = 4.8 GeV , mB = 5.26 GeV and ΓB = 4.22× 10−13 GeV .
For the values of the Wilson coefficients we use CSM

7 = −0.313, CSM
9 = 4.344 and

CSM
10 = −4.669. It should be noted that the above–presented value for CSM

9 corresponds
only to short distance contributions. In addition to the short distance contributions, it
receives long distance contributions which result from the conversion of ūu, d̄d and c̄c to
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the lepton pair. In order to minimize the hadronic uncertainties we will discard the regions
around low lying resonances ρ, w, J/ψ, ψ′, ψ′′, by dividing the q2 region to low and high
dilepton mass intervals:

Region I: 1 GeV 2 ≤ q2 ≤ 8 GeV 2 ,
Region II: 14.5 GeV 2 ≤ q2 ≤ (mB −mρ)

2 GeV 2 ,

where the contributions of the higher ψ resonances do still exist in the second region. The
form factors we have used in the present work are more refined ones predicted by the light
cone QCD sum rules [24]. The q2 dependence of the form factors for the B → ρ transition
can be represented in the following form:

F (q2) =
r1

1− q2/m2
res

+
r2

1− q2/m2
fit

, (28)

F (q2) =
r2

1− q2/m2
fit

, (29)

F (q2) =
r1

1− q2/m2
fit

+
r2

(1− q2/m2
fit)

2
, (30)

with the three independent parameters r1, r2 and mfit being listed listed in Table 1. The
dominant poles at q2 = m2

res correspond to the resonances

JP =





1− for V ,
0− for A0 ,
1+ for A1, A2, A3 and T2, T3 .

The values of the parameters r1, r2 andmfit for various form factors are presented in Table-1.

r1 m2
res (GeV

2) r2 m2
fit (GeV

2) Fit Eq.
V Bq→ρ 1.045 5.322 −0.721 38.34 (28)

A
Bq→ρ
0 1.527 5.282 −1.220 33.36 (28)

A
Bq→ρ
1 − − 0.240 37.51 (29)

A
Bq→ρ
2 0.009 − 0.212 40.82 (30)

T
Bq→ρ
1 0.897 5.322 −0.629 38.04 (28)

T
Bq→ρ
2 − − 0.267 38.59 (29)

T̃
Bq→ρ
3 0.022 − 0.246 40.88 (30)

Table 1: B → ρ decay form factors in a three-parameter r1, r2 and mfit fit.

Note that T3 entering into Eqs. (9) and (10) is related to T̃3 as follows::

T3 =
m2
B −m2

ρ

q2
(T̃3 − T2) .

In the numerical analysis the values of the new Wilson coefficients which describe the
new physics beyond the SM are needed. In our calculations the new Wilson coefficients are
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varied in the range −|CSM
10 | ≤ |CX | ≤ |CSM

10 |. The experimental results on the branching
ratio of the B → K∗(K)ℓ+ℓ− decay [25, 26] and the upper limit on the branching ratio of
B → µ+µ− [27] suggests that that this is the right order of magnitude for the new Wilson
coefficients.

It follows from the expressions of all nine double–lepton polarization asymmetries that
depend both on q2 and the new Wilson coefficients CX . Therefore, it may experimentally
be difficult to study these dependencies at the same time. For this reason, we eliminate q2

dependence by performing integration over q2 in the allowed region, i.e., we consider the
averaged double–lepton polarization asymmetries. The averaging over q2 is defined as

〈Pij〉 =

∫

Ri

Pij
dB
dŝ
dŝ

∫

Ri

dB
dŝ
dŝ

,

where Ri = Regions I or II, over which the integrations are calculated. We present our
analysis in a series of figures.

In Figs. (1) and (2) we present the dependence of 〈PLL〉 on CX for the B → ρµ+µ−

decay in the regions I and II, respectively. The intersection of all curves corresponds to
the SM case. From these figures we see that 〈PLL〉 exhibits strong dependence only on the
tensor interactions CT and CTE, and has practically symmetric behavior in regard to its
dependence on CT and CTE with respect to zero position. Furthermore, 〈PLL〉 seems to be
independent of all remaining new Wilson coefficients.

We depict from Figs. (3) and (4) the dependence of 〈PLT 〉 on CX for the B → ρµ+µ−

decay in the regions I and II, respectively.We observe from these figures that 〈PLT 〉 is
sensitive to to the existence of scalar CLRLR, CRLLR and tensor interactions CT , CTE and it
shows weak dependence on all remaining coefficients. A striking feature of its behavior is
that 〈PLT 〉 changes its sign in the above–mentioned region of the new Wilson coefficients,
while in the SM case its sign never changes. For this reason study of the magnitude and
sign of 〈PLT 〉 can serve as a good test for looking new physics beyond the SM.

The dependence of 〈PTL〉 on CX for the B → ρµ+µ− decay is presented in Fig. (5)
in Region I and Fig. (6) in Region II, respectively. In both regions 〈PTL〉 exhibits strong
dependence on scalar CRLRL and CLRRL and tensor interaction coefficients. Moreover, when
CRLRL(CLRRL) is negative (positive), 〈PTL〉 is positive (negative). When CTE < −0.8(> 0)
and CT < 0(> 2), 〈PTL〉 is negative and positive otherwise. Hence determination of the
magnitude and sign of 〈PTL〉 gives unambiguous confirmation of the existence of new physics
due to scalar and tensor interactions.

In Figs. (7) and (8) we present the dependence of 〈PTT 〉 on CX for the B → ρµ+µ−

decay. In region I (see Fig. (7)) 〈PTT 〉 is strongly dependent on vector type interactions
CLR, CRR and for the negative values of CLL and CT . On the other hand, in Region II, 〈PTT 〉
is strongly dependent only on tensor interaction. In Region I 〈PTT 〉 is positive (negative)
for negative values of CLR(CRR) and it attains at negative (positive) values for positive
values of CLR(CRR). In the second region the sign of 〈PTT 〉 changes only for the vector
interaction CRR.

Depicted in Figs. (9) and (10) are the dependence of 〈PNN〉 on the new Wilson coeffi-
cients. The situation is quite similar to the previous case for the 〈PTT 〉. The only difference
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being, 〈PNN〉 in Region I depends strongly on CTE rather than CT , for their negative values,
compared to that for the 〈PTT 〉 case.

All remaining double–lepton polarization asymmetries for the B → ρµ+µ− decay are
very small numerically and therefore we do not present them.

Through Figs. (11)–(14) we study the dependence of Pij on the new Wilson coefficients
for the B → ρτ+τ− decay, which provides richer information about the new physics effects.

In Fig. (11) the dependence of 〈PLL〉 on CX is given. We observe from this figure that
〈PLL〉 is very sensitive to all new Wilson coefficients except CRL. It changes its sign only for
the variations in CT and for all rest of the new Wilson coefficients 〈PLL〉 does not seem to
change its sign. Therefore investigation of the sign of 〈PLL〉 can give important clue about
the existence of the tensor interaction.

In Fig. (12) we present the dependence of of 〈PLT 〉 on the new Wilson coefficients.
Noting that 〈PTL〉 exhibits similar behavior, except several scalar coefficients, 〈PLT 〉 is
sensitive to all remaining Wilson coefficients. Similar to the 〈PLL〉 case, 〈PLT 〉 changes its
sign in the presence of the tensor interaction and therefore this circumstance can be quite
useful in looking for new physics beyond the SM.

The dependence of 〈PLN〉 ≈ − 〈PNL〉 on CX is presented in Fig. (13). We see from this
figure that 〈PLN〉 is very sensitive to all new Wilson coefficients, especially to the vector
interaction coefficients CLL and CLR.

In Fig. (14) we present the dependence of 〈PNN〉 ≈ − 〈PTT 〉 on the new Wilson co-

efficients. We observe from this figure that when CX is negative 〈PNN〉 >
〈
P SM
NN

〉
for

the coefficients CLR, CLL, CLRRL and CT , and 〈PNN 〉 >
〈
P SM
NN

〉
for the coefficients CRL,

CRR, CRLLR and CTE. On the other hand, when CX is positive the situation changes to
the contrary, except for the tensor interaction (neglecting the narrow region for the coeffi-
cient CTE). The numerical analysis for the rest of the remaining double–lepton polarization
asymmetries for the B → ρτ+τ− decay are not presented in this work due to their negligible
smallness.

It follows from the present analysis that few of the double–lepton polarization asym-
metries show considerable departure from the SM predictions and these ones are strongly
dependent on different types of interactions. Hence, the study of these quantities can play
crucial role in establishing new physics beyond the SM.

At the end of this section, we would like to discuss the following problem. Could there
be a case in which the branching ratio coincides with that of the SM result, while double–
lepton polarization asymmetry does not? In order to answer this question we study the
correlation between the 〈Pij〉 and the branching ratio B. We can briefly summarize the
results of our numerical analysis as follows: For the B → ρµ+µ− decay, except for a very
narrow region of CRR, such a region is absent for all new Wilson coefficients for all of the
asymmetries 〈Pij〉.

The B → ρτ+τ− decay is more informative for this aim, which are measurable in the
experiments. In Figs. (15) and (16) we present the dependence of 〈PLL〉 and 〈PLT 〉 on the
branching ratio. It follows from these figures that, there indeed exists certain regions of CX
for which the double–lepton polarization asymmetry differs from the SM prediction, while
the branching ratio coincides with that of the SM result. We also note that, such a region
exists for the remaining double–lepton polarization asymmetries for the tensor interaction
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as well.
In conclusion, in the present work we investigate the double–lepton polarization asym-

metries when both leptons are polarized, using a general, model independent form of the
effective Hamiltonian. We obtain that various double–lepton polarization asymmetries can
serve as a good test in looking for new physics beyond the SM. We also study the correlation
between 〈Pij〉 and the branching ratio for the B → ρτ+τ− decay and find out that there
exist regions of the new Wilson coefficients for which the double–lepton polarization asym-
metry differs considerably from the SM prediction, while the branching ratio coincides with
the SM prediction. Therefore in these regions the new physics effects can be established
just by measuring the double–lepton polarizations.
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Figure captions

Fig. (1) The dependence of the averaged double–lepton polarization asymmetry 〈PLL〉 on
the new Wilson coefficients CX , for the B → ρµ+µ− decay, in Region I.

Fig. (2) The same as in Fig. (1), but in Region II.

Fig. (3) The same as in Fig. (1), but for the averaged double–lepton polarization asym-
metry 〈PLT 〉.

Fig. (4) The same as in Fig. (3), but in Region II.

Fig. (5) The same as in Fig. (1), but for the averaged double–lepton polarization asym-
metry 〈PTL〉.

Fig. (6) The same as in Fig. (5), but in Region II.

Fig. (7) The same as in Fig. (1), but for the averaged double–lepton polarization asym-
metry 〈PTT 〉.

Fig. (8) The same as in Fig. (7), but in Region II.

Fig. (9) The same as in Fig. (1), but for the averaged double–lepton polarization asym-
metry 〈PNN〉.

Fig. (10) The same as in Fig. (9), but in Region II.

Fig. (11) The dependence of the averaged double–lepton polarization asymmetry 〈PLL〉
on the new Wilson coefficients CX , for the B → ρτ+τ− decay, in Region II.

Fig. (12) The same as in Fig. (11), but for the 〈PLT 〉.

Fig. (13) The same as in Fig. (11), but for the 〈PLN 〉.

Fig. (14) The same as in Fig. (11), but for the 〈PNN 〉.

Fig. (15) Parametric plot of the correlation between the averaged double–lepton po-
larization asymmetry 〈PLL〉 and the branching ratio for the B → ρτ+τ− decay, in Region
II.

Fig. (16) Parametric plot of the correlation between the averaged double–lepton po-
larization asymmetry 〈PLT 〉 and the branching ratio for the B → ρτ+τ− decay, in Region
II.
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