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Abstract

We study the Einstein-Chern-Simons gravity coupled to Yang-Mills-Higgs the-

ory in three dimensional Euclidean space with cosmological constant. The classical

equations reduce to Bogomol’nyi type first order equations in curved space. There

are BPS type gauge theory instanton (monopole) solutions of finite action in a grav-

itational instanton which itself has a finite action. We also discuss gauge theory

instantons in the vacuum (zero action) AdS space. In addition we point out to some

exact solutions which are singular.
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1 Introduction

In recent years there has been a growing interest in the study of three dimensional gravity

[1]. For example the BTZ [2] solution in three dimensions proved to be an extremely useful

toy model to understand microscopic degrees of freedom of a black hole. Quite recently

[3] a black hole with all three Abelian hairs (charge, angular momentum and mass ) was

shown to exist.

On the other hand, since the surprising numerical evidence of BK [4] on the existence

of particle-like solutions (with hair) in four dimensional Einstein-Yang-Mills theory, there

has been a lively research in the theories of gravity coupled to non-Abelian gauge theories.

A nice account of developments and references in the subject is summarized in the review

article [5]. More recently new monopole and dyon solutions were found in [6].

In this paper our intention is to study three dimensional Euclidean gravity coupled

to Yang-Mills-Higgs theory. Deser’s [7] earlier work in the study of Einstein-Yang-Mills

theory (no Higgs) shows that there are no static solutions in this theory. In this paper we

add a Higgs field in the adjoint representation of the group SO(3) which is spontaneously

broken down to U(1) and we study the effect of gravity on the ’t Hooft-Polyakov instantons

in the BPS limit (the limit of vanishing self-interaction for the Higgs field). We show that

one obtains the Bogomol’nyi type first order equations for the Higgs and the gauge field

as in the flat space limit. There are exact solutions to the equations of motion which do

not have flat space analogs (limits) but these solutions are not of finite action. We find the

numerical solutions of finite action which reduce to the BPS instantons in flat space. The

most interesting thing that we found is that gauge theory instantons exist in gravitational

instantons. Gravitational instantons are not disturbed by the the gauge theory instantons.

The reader might wonder if a spontaneously broken, SO(3) down to U(1), gauge

theory is expected to be any different from the Einstein-Maxwell theory in which a BTZ

solution was found. In the four dimensional context it [8] was shown that, on the contrary

to the initial expectation, the spontaneously broken gauge theory allowed black holes with

“non-trivial” hair which do not exist in Einstein-Maxwell theory. So, in principle, we
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do not have a strong reason to believe that the spontaneously broken theory, in three

dimensions, will only have a BTZ type solution with only three types of hair. Although

this question along with the question of non-Abelian hair of a BTZ black hole are extremely

interesting we do not attempt these in this paper. Our immediate interest, as stated in the

previous paragraph, is to explore what happens to the gauge theory instantons if gravity

( with cosmological constant) is turned on. And more specifically we will explore what

happens to the gauge theory instantons in the case that the space-time is a gravitational

instanton. In section 2 we present the model in which we will search for an answer to this

problem. In section 3 we will begin to solve the equations of motion, discuss some of the

remaining symmetries, and show that the action does not depend on a specific choice of

the coordinates. In section 4 we will find numerical solutions. In section 5 we will present

an exact, singular solution to the equations of motion and finally in Section 6 we will make

some concluding remarks.

2 The Model

We will work in the Euclidean space and in the first order formalism of gravity in terms

of the dreibein and the spin connection. Achúcarro-Townsend [9] and Witten [10] showed

that three dimensional Einstein-Hilbert action with zero cosmological constant is equivalent

to Chern-Simons theory with the gauge group ISO(3). In the theories with non-zero

cosmological constant one can simply generalize this to SO(4) or SO(3, 1) depending on

the sign of the cosmological constant. Witten also realized that depending on the choice

of the quadratic Killing-form one obtains two classically equivalent actions for gravity.

The standard action is the following 2

SG = − 1

16πG

∫

M

d3xǫijk
{

2 ea i ∂j ω
a
k + ǫabc ea i ω

b
j ω

c
k +

λ

3
ǫabc ea i e

b
j e

c
k

}

(1)

This action is real in the Euclidean space and is equivalent to Einstein-Hilbert theory if

the dreibein is invertible. Another action, which in Minkowski space is equivalent to the

2In our conventions the integrand of the Euclidean path integral is e+S .
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Einstein-Hilbert action, often coined as ”exotic action” is:

SCS = − ik

8πG

∫

M

d3xǫijk
{

ωa
i ∂j ω

a
k +

1

3
ǫabc ωa

i ω
b
j ω

c
k + λ(ea i∂j e

a
k

+ǫabc ωa
i e

b
j e

c
k)

}

(2)

Assuming that the fields are real, which we do for our analysis, this action is completely

imaginary because it is Wick rotated from Minkowski space. Both of these actions are con-

sidered in the path integral formulation of gravity. These actions are important geometric

invariants of three manifolds; namely, they are the ”volume” and the ”Chern-Simons” in-

variants respectively. In this paper we consider both of them together. So including the

Higgs and the Yang-Mills terms our full action becomes

S = SG + SCS + SYM + SH (3)

where the Yang-Mills and the Higgs actions are

SYM = − 1

4e2

∫

d3x
√

|g|gijgklF a
ikF

a
jl (4)

SH = − 1

e2

∫

d3x
√

|g|{1
2
gijDih

aDjh
a +

ν

6!
(h2 − h20)

3} (5)

The Higgs field is in the adjoint representation of SO(3) and the covariant derivative

is Dih
a = ∂ih

a + ǫabcAb
ih

c. Hence, F a
ij has no gauge coupling in it.

Let us denote the dimensions of the fields and the parameters in the theory.

[e2] =M, [G] =M−1, [λ] =M2, [k] =M−1

[ea j ] =M0, [h] =M, [ωa
j] =M, [ν] =M−2 (6)

We will exclusively work in the BPS limit where ν = 0. The indices (a, b, c) denote the

tangent space and (i, j, k) denote the manifold coordinates. The metrics , ηab and gij have

Euclidean signature. λ < 0 corresponds to the de-Sitter and λ > 0 to the anti-de-Sitter

space. The “dual” Riemann tensor can be defined to beRa
kj = ∂kω

a
j−∂jωa

k+ǫ
a
bcω

b
kω

c
j .
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The relation between the Ricci tensor and the dual Riemann tensor is Rij = eaiE
k
b ǫabcR

c
jk,

where Ek
b is the inverse of the dreibein. In the absence of gauge fields Einsteins equations

Rij = −2λgij imply the scalar curvature to be R = −6λ.

We employ the well known spherically symmetric ansatz for all the fields in the theory.

ea j(~x) =
G

r

[

−ǫa jk x̂
k φ1 + δa j φ2 + (rA− φ2) x̂

ax̂j
]

(7)

wa
j(~x) =

1

r

[

ǫa jk x̂
k (1− ψ1) + δa jψ2 + (rB − ψ2)x̂

ax̂j
]

(8)

Aa
j (~x) =

1

r

[

ǫa jk x̂
k (1− ϕ1) + δa jϕ2 + (rD − ϕ2)x̂

ax̂j
]

(9)

ha(~x) = x̂ah(r) (10)

The functions A, B, φα ,D, ϕα and ψα depend on r only. The meaning of r should

be clear from r2 = ηijx
ixj and we define x̂j = xj/r. We have chosen the dreibein to be

dimensionless and the first term of the dreibein is chosen in a way which will yield more

transparent equations.

The metric on the manifold can be recovered from the dreibein through the relation

gij = ηabe
a
ie

b
j which yields;

gij =
G2

r2

{

(φ2
1 + φ2

2)(δij − x̂ix̂j) + r2A2x̂ix̂j

}

(11)

The flat space limit (gij = δij) corresponds to G
2(φ2

1 + φ2
2) = r2 and A(r)G = 1.

The dual Riemann tensor and the non-Abelian field strength tensor can be obtained

from a tedious but straightforward computation. Clearly both of them are of the same

form.

Ra
ij =

1

r2
ǫijb x̂

ax̂b (ψ2
1 + ψ2

2 − 1) +
1

r
(ǫa ij − ǫijbx̂

ax̂b)(ψ′

1 +Bψ2)

+(δa j x̂i − δa ix̂j)
1

r
(ψ′

2 −Bψ1) (12)

F a
ij =

1

r2
ǫijb x̂

ax̂b (ϕ2
1 + ϕ2

2 − 1) +
1

r
(ǫa ij − ǫijbx̂

ax̂b)(ϕ′

1 +Dϕ2)
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+(δa j x̂i − δa ix̂j)
1

r
(ϕ′

2 −Dϕ1) (13)

Before we write down the reduced form of the action let us denote the determinant of the

metric

det e =
√

|g| = G3

r2
|A|(φ2

1 + φ2
2) (14)

The actions reduce to the following one dimensional forms (here the repeated greek

indices take values of (1, 2) and a summation is implied). The Einstein-Hilbert action is

SG = −
∫

∞

0
dr

{

ψ′

αǫαβφβ +Bψαφα +
A

2
(ψαψα + λG2φαφα − 1)

}

(15)

The Chern-Simons action is

SCS = −i k
G

∫

∞

0
dr

{

ψ′

αǫαβψβ + ψ′

2 +B(ψαψα + λG2φαφα − 1)

+λG2(φ′

αǫαβφβ + 2Aφαψα)

}

(16)

SYM = − 2π

e2G

∫

∞

0
dr

1

|A|φδφδ

{

A2(ϕαϕα − 1)2 + 2φγφγ(ϕ
′

βϕ
′

β

+2Dǫαβϕ
′

αϕβ +D2ϕαϕα)

}

(17)

In the BPS limit (ν = 0) and the broken phase (h0 6= 0) the Higgs term is

SH = −2πG

e2

∫

∞

0
dr

{

1

|A|φαφαh
′2 + 2h2|A|ϕαϕα

}

(18)

From here we will assume that A(r) is positive so that we may drop the absolute value

sign. We will see that this requirement is satisfied in our solution.

We are interested both in the singular and the non-singular solutions. For the case of

finite action and non-singular solutions the boundary conditions for the gauge and Higgs

sector follow as

6



ϕ1(0) = 1, ϕ2(0) = 0 ϕ1(∞) = ϕ2(∞) = 0 (19)

h(0) = 0 h(∞) = h0 D(∞) = 0 (20)

The equations of motion of the full theory are

δB : ψαφα + i
k

G
(ψαψα + λG2φαφα − 1) = 0 (21)

δψ : ǫαβφ
′

β − Bφα − Aψα + i
k

G
(2ǫαβψ

′

α + 2Bψβ + 2AλG2φβ) = 0 (22)

δD : ǫαβϕ
′

αϕβ +Dϕαϕα = 0 (23)

δh :

{

φαφαh
′

A

}′

− 2hAϕαϕα = 0 (24)

δφ : ǫαβψ
′

α +Bψβ + AλG2φβ − i
k

G
λG2(2ǫαβφ

′

α − 2Bφβ − 2Aψβ) (25)

− 4π

e2G

φβA

(φγφγ)2
(ϕαϕα − 1)2 +

4πG

e2
φβh

′2

A
= 0

δϕ :

{

ϕ′
α +Dǫαβϕβ

A

}′

− ϕαA

φγφγ

(ϕβϕβ − 1)− D

A
(Dϕα + ǫβαϕ

′

β)−G2h2Aϕα = 0 (26)

δA : ψαψα + λG2φαφα − 1 + 4ikλGφαψα +
8πG

e2
h2ϕαϕα +

4π

Ge2
(ϕαϕα − 1)2

φγφγ

− 4π

Ge2
1

A2

{

2ϕ′

αϕ
′

α + 4Dϕ′

αǫαβϕβ + 2D2ϕαϕα +G2h′2φαφα

}

= 0 (27)

In general, because of the Chern-Simons term, solutions to the equations of motion

will be complex. Complex dreibein and spin connection, however, will change the geometry
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drastically. For example, the notion of a positive definite metric will be lost. Hence, we

restrict ourselves to the real solutions only. This means that the Chern-Simons term

decouples from the rest. The equations of motion for the Chern-Simons gravity are exactly

the equations one gets for Einstein-Hilbert gravity without the matter fields. This fact is

no secret because we know that at the classical level Einstein-Hilbert theory is equivalent

to Chern-Simons theory of gravity. In this way we have obtained a nice system where we

can try to analyze the effect of gravity on three dimensional ’t Hooft-Polyakov Instantons.

It is clear that gravity itself is not disturbed by the instantons because of the Chern-Simons

term. A similar situation arises in four dimensional Euclidean Einstein-Yang-Mills theory

[11]. Charap and Duff showed that in the 4D theory gauge theory instantons, having a

vanishing energy momentum tensor, do not disturb the geometry. But the effect of gravity

on the instantons is quite drastic. Using these facts we take on the job of obtaining solutions

to the equations in the next section.

3 Solutions of the Equations of Motion

As already stated, we are only looking for real solutions, hence the Chern-Simons term

yields the following equations:

ǫαβφ
′

β − Aψα − Bφα = 0 (28)

ǫαβψ
′

β − Bψα − λG2Aφα = 0 (29)

ψαψα + λG2φαφα − 1 = 0 (30)

φαψα = 0 (31)

The general solutions of these equations, compatible with the regularity conditions at the

origin, were given in [12]

ψ1 =
1

√

1 + λG2f 2(r)
cos Ω(r) ψ2 =

1
√

1 + λG2f 2(r)
sin Ω(r) (32)

φ1 = f(r)
1

√

1 + λG2f 2(r)
sin Ω(r) φ2 = −f(r) 1

√

1 + λG2f 2(r)
cos Ω(r) (33)

A = − f(r)′

1 + λG2f 2(r)
B = Ω′(r) (34)
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f(r) and Ω(r) are arbitrary functions at this point. At the level of the classical equations

of motions one can pick any functions. When we compute the actions for the gravity sector

we will see that their boundary values, namely f(0), f(∞), Ω(0), Ω(∞) are of extreme

importance for the quantum theory.

We have postponed the issue of gauge fixing up until now. We need to see “how

arbitrary” f(r) and Ω(r) are and whether we can gauge-fix any of them. A look at the

equations of motion will reveal that there is a remaining U(1) symmetry which is not

broken by the instanton ansatz. Under this symmetry the fields transform in the following

way

φ̃1 = φ1 cos θ(r) + φ2 sin θ(r)

φ̃2 = −φ1 sin θ(r) + φ2 cos θ(r)

ψ̃1 = ψ1 cos θ(r) + ψ2 sin θ(r)

ψ̃2 = −ψ1 sin θ(r) + ψ2 cos θ(r)

B̃ = B − θ′(r) Ã = A (35)

So f(r) is intact under this symmetry but Ω(r) is transformed. 3 θ(r) is the gauge param-

eter. Choosing θ(r) = Ω(r) one can work with the following gauge equivalent fields

ψ̃1 =
1

√

1 + λG2f 2(r)
, ψ̃2 = 0

φ̃2 = −f(r) 1
√

1 + λG2f 2(r)
, φ̃1 = 0

A = − f(r)′

1 + λG2f 2(r)
, B̃ = 0 (36)

The line element in the polar coordinates takes the following form.

(ds)2 =
G2

1 + λG2f 2

{

f 2dΩ2 +
1

1 + λG2f 2
(df)2

}

(37)

3 All the actions except the Chern-Simons term is invariant under these transformations. Chern-Simons
term transforms like δSCS = − ik

G
(γ(∞)− γ(0)). As a compact subgroup of SO(3) the remaining U(1) can

be parameterized g(~x) = eiγ(r)x
iσi

. Where σi are the Pauli matrices. If one is working in a compact space,
like S3, for the gauge invariance of the path integral k/G will be quantized. This is because (γ(∞)− γ(0))
is the winding number of g(~x). On the other hand in an open ball like the one we deal with in this paper
the Chern-Simons coefficient is not quantized. In this case (γ(∞)− γ(0)) becomes a collective coordinate
which should be summed over in the path integral. See the discussion in [13].
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Once again we should emphasize that the spaces that are described by this metric are

constant curvature spaces which satisfy Ra
ij = −λǫabcebiecj and R = −6λ. These are local

properties of the space times. In the quantum theory global properties of the space time

are needed. Below we will show that the above metric describes many global-y inequivalent

space-times depending on the choice of the boundary values of f(r). In terms of the gauge

theory language: the space of f(r) functions have a non-trivial topology. Before we start

the discussion of the actions in the gravity sector let us find the simplified equations of the

gauge sector.

Using the solutions of the Chern-Simons equations of motion to simplify the equations

for the Higgs and Yang-Mills fields, we can see that the resulting relations are still somewhat

complicated. To see the solution more clearly one can make certain choices of gauges. For

example a look at the action will reveal that the unbroken U(1) acts in a way that keeps

the following complex function invariant

η(r) = (ϕ1 + iϕ2)e
−i

∫

r

D(r′)dr′ (38)

If the Yang-Mills action is written in terms of η(r) obviously none of the functions

(ϕ1, ϕ2, D) will appear in the action. So we can choose a gauge ( the singular gauge )

in which ϕ2 = D = 0. Denoting ϕ1 = ϕ, the remaining independent equations read as

h′ = − A

G(φαφα)
(ϕ2 − 1) (39)

h = − 1

GA

ϕ′

ϕ
(40)

These are the Bogomol’nyi type first order equations for the gravitating instanton.

These equations reduce to the well known exactly solvable equations in the flat space

limit. Writing the above equations explicitly in terms of the solutions of the gravity part

one obtains

h′ = − |f ′(r)|
Gf(r)2

(ϕ2 − 1) (41)

10



h = −
(

1 + λG2f(r)2
)

G|f ′(r)|
ϕ′

ϕ
(42)

The coordinate function f(r) explicitly enters in the equations so one should make

sure that the existence of the solutions does not depend on the local coordinates. But the

global properties of the space time will be important as it should be expected. For generic

f(r) there are exact solutions which will be depicted in the next section. But these are all

infinite action. Finite actions solutions will be found numerically. But first one needs to

make a choice of f(r)

We write the gauge sector action in the following form

SYM + SH = − 4π

e2G

∫

dr

{

1

A

(

ϕ′ +GAhϕ
)2 − 2Gϕ′ϕh

+
G2

2A
φαφα

(

h′ +
A

Gφγφγ(ϕ2 − 1)

)2 −Gh′(ϕ2 − 1)

}

(43)

If the equations of motion are satisfied the integrand becomes a full derivative and after

integration one obtains

SInstanton = −4πh(∞)

e2
(44)

The result does not explicitly dependent on the cosmological constant. It, however, can be

seen from the numerical solutions that h(∞) depends on the cosmological constant.

Einstein-Hilbert action can be computed to be

SG = −λG2
∫

∞

0
dr

|f ′(r)|f(r)2
(1 + λG2f(r)2)2

(45)

Observe that the integrand is a total derivative which can integrated to give

SG =
1

2G
√
λ

{

−G
√
λ|f(∞)|

1 +G2λf 2(∞)
+

G
√
λ|f(0)|

1 +G2λf 2(0)
+ arctan [G

√
λ|f(∞)|]− arctan [G

√
λ|f(0)|]

}

(46)

It is clear that homotopically inequivalent f(r)’s characterize different spaces. In what

follows we will work on two different spaces. The first one is given by f(r) = −r/G. The
gravitational action reads as 4

SG = − π

4
√
λG

(47)

4 The Chern-Simons action will be SCS = − ik
G
(Ω(∞) − Ω(0)) which is exactly equal to the gauge

non-invariant part.
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This solution is a gravitational instanton ( of course it is not self-dual) and it is not a

gauge copy of the AdS space which has a zero action. The trivial vacuum AdS solution is

Gf(r) = −r/(1− λ

4
r2) (48)

which has a zero action.

4 Numerical Computations

For the gravitational instanton solution where Gf(r) = −r the curved space BPS equations

become

h′(r) = − 1

r2
(ϕ2(r)− 1) (49)

ϕ′(r) = − 1

(1 + λr2)
h(r)ϕ(r) (50)

and the line element becomes

(ds)2 =
1

1 + λ
4
r2

{

r2dΩ2 +
(dr)2

1 + λr2

}

(51)

In the flat space limit (λ = 0) one has the well-known BPS solution

ϕ(r) =
h0r

sinh(h0r)
; h(r) = −1

r
+ h0 coth(h0r) (52)

where h(∞) = h0. For non-zero λ the solutions can be obtained numerically and they are

plotted in figure 1 and figure 2. For any positive value of λ there is a solution. Non-zero

λ solutions take values between the BPS instanton solution, (52), and the trivial vacuum

solution (h(r) = 0, ϕ(r) = 1). For very large values of λ the solution approaches the trivial

vacuum solution. For negative values of λ (i.e. the de Sitter case with our conventions) the

existence of the horizon introduces singularities and there are no finite action solutions.

As another example of a coordinate choice, let Gf(r) = −r/(1− λ
4
r2) which gives the

AdS space. Then the curved BPS equations become:

h′(r) = −(1 + λ
4
r2)

r2
(ϕ2(r)− 1) (53)

12
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0.4
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Figure 1: Higgs field h(x) is shown for various values of λ in the choice Gf = −r. h(∞)
approaches to zero (vacuum solution) if λ is increased. The above values, starting from
the top correspond to λ = 0, 4.10−3 ,λ = 0.1, λ = 0.5, λ = 0.8, λ = 1 and λ = 10 in units
of h20.
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0
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0.6

0.8

1

z

Figure 2: Non-zero component of the gauge field z(x) is shown for various values of λ in
the choice Gf = −r. z(∞) approaches to 1 (vacuum solution) if λ is increased. The above
values, starting from the bottom correspond to λ = 0, 4.10−3 ,λ = 0.1, λ = 0.5, λ = 0.8,
λ = 1 and λ = 10 in units of h20.
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Figure 3: Non-zero component of the gauge field z(x) is shown for various values of λ for
the choice Gf(r) = −r/(1− λ

4
r2). The above values, starting from the bottom correspond

to λ = 0, 4.10−3 ,λ = 0.1, λ = 0.5, λ = 0.8, λ = 1 and λ = 10 in units of h20.

ϕ′(r) = − 1

(1 + λ
4
r2)

h(r)ϕ(r) (54)

With this choice of coordinate, the line element becomes

(ds)2 =
1

(1 + λ
4
r2)2

{

r2dΩ2 + (dr)2
}

(55)

The numerical solutions to these equations are shown in 3 and 4. The gauge field

behaves more or like the previous case but it approaches rather slowly to the vacuum

solution, (h(r) = 0, ϕ(r) = 1), when the cosmological constant is increased. The Higgs

field does not approach to the vacuum solution and it diverges when the cosmological

constant is increased.

5 Singular Solutions

In this section we would like to point out an exact solution to equations of motion . These

solutions are singular and have no non-trivial limits in the flat space.

ϕ(r) = −
√
λGf(r), h(r) =

1 + λG2f(r)2

f(r)G
(56)
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x

0

1

2
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h

Figure 4: Higgs field h(x) is shown for various values of λ in the choice Gf(r) = −r/(1−
λ
4
r2). h(∞) approaches grows unbounded if λ is increased. The above values, starting from

the top correspond to λ = 0, 4.10−3 ,λ = 0.1, λ = 0.5, λ = 0.8, λ = 1 and λ = 10 in units
of h20.

For any choice of f(r) it is not possible to meet the finite action conditions for the gauge

theory instantons. So these solutions are singular.

For definiteness let us rewrite these solutions in the both coordinate examples chosen

above. For Gf = −r we have

ϕ(r) =
√
λr, h(r) = −(

1

r
+ λr) (57)

For the choice Gf(r) = −r/(1− λ
4
r2)

ϕ(r) =
√
λ

r

(1− λ
4
r2)

, h(r) = − (1 + λ
4
r2)2

r(1− λ
4
r2)

(58)

These solutions are not gauge copies of the trivial vacuum solutions

6 Conclusion

We have shown that when three dimensional Euclidean gravity is coupled to Yang-Mills

and Higgs fields the equations of motion reduce to first order equations of the Bogomol’nyi

type. We found singular and regular solutions. Our main result is that, if the three

dimensional space is a gravitational instanton, there are finite action solutions for any
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positive semi-definite value of the cosmological constant. Depending on the numerical

value of the cosmological constant these solutions take values between the BPS solution

and the trivial vacuum solution. The action can be calculated exactly and is given by (44)

and the gravitational instanton action is (47). Finite actions solutions are stable and one

can define a topological charge which is the magnetic charge. This can be done following

’t Hooft’s definition of an Abelian field strength outside the instanton core.

We have also showed that there if the cosmological constant is small (λ ≤ 0.8h20 see

fig 3 and 4) there are finite action solutions in the AdS space. The space itself has zero

action.

In addition to the Yang-Mills term, if a Chern-Simons term is added for the gauge

sector one should look at the complex gauge configurations as it was pointed out in [13].

In this case one cannot use a singular gauge as the Chern-Simons term trivially vanishes.

The theory will have the following additional action

S = −iκ
e2

∫

d3xǫµνλtr
(

Aµ∂νAλ +
2

3
AµAνAλ

)

(59)

Using the symmetric ansatz one gets

S =
4iπκ

e2

∫

∞

0

[

ǫαβϕ
′

αϕβ +D(ϕαϕα − 1)− ϕ′

2

]

(60)

Clearly this term vanishes for the singular gauge which is too restrictive. In some other

gauges (i.e D = 0 and ϕ2 6= 0) we expect complex solutions. For the case of Einstein-

Maxwell-Chern-Simons theory with a Lorentzian metric we refer the reader to [14, 15].

In the context of a non-supersymmetric theory (like the one we dealt with in this

paper) h0 and λ are given to define the theory. So one changes the theory if these parameters

are changed at the classical level. So our results mainly mean that there are finite action

instanton solutions for those theories which have suitable pairs of λ and h0. On the other

hand if our theory is considered as a bosonic part of a Supergravity theory where a moduli

space (for the Higgs field) exists then for given λ there are many solutions.
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