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Abstract

We solve the Landau problem for charged particles on odd-dimensional spheres

S2k−1 in the background of constant SO(2k − 1) gauge fields carrying the irre-

ducible representation
(
I
2 ,

I
2 , · · · ,

I
2

)
. We determine the spectrum of the Hamilto-

nian, the degeneracy of the Landau levels and give the eigenstates in terms of the

Wigner D-functions, and for odd values of I the explicit local form of the wave

functions in the lowest Landau level (LLL). Spectrum of the Dirac operator on

S2k−1 in the same gauge field background together with its degeneracies is also

determined and in particular the number of zero modes is found. We show how

the essential differential geometric structure of the Landau problem on the equa-

torial S2k−2 is captured by constructing the relevant projective modules. For

the Landau problem on S5, we demonstrate an exact correspondence between

the union of Hilbert spaces of LLL’s with I ranging from 0 to Imax = 2K or

Imax = 2K +1 to the Hilbert spaces of the fuzzy CP 3 or that of winding number

±1 line bundles over CP 3 at level K, respectively.

http://arxiv.org/abs/1612.03855v1


1 Introduction

In a recent article [1], relation between the A-class topological insulators (TIs) and the

quantum Hall effect (QHE) on even dimensional spaces has been explored and it has been

recognized that A-class TIs can be realized as QHE in even dimensions [1, 2]. A-class TIs are

not time-reversal invariant, appear in even dimension and can be charaterized via an integer

topological invariant, while AIII-class are also not time reversal invariant, carry an integer

topological invariant but appear in odd dimensions. In addition, AIII-class TIs have chiral

symmetry, whereas the A-class TIs do not [3]. Focusing on these connections between the

A-class TIs and AIII-class TIs, in a subsequent article Hasebe [4] considered the possibility of

realizing the latter type in terms of a quantum Hall system in odd dimensions. Elaborating

on the formulation of QHE on the three sphere S3, given by Nair & Daemi[5], Hasebe found

that Nambu 3-algebraic geometry is crucial for realizing the chirial symmetry of the TI in

this setting and modelled the chiral TI as a superposition of two three spheres embedded in

S4 with the SU(2) background monopole fluxes, i.e. in the four-dimensional QHE of Hu and

Zhang [6].

Motivated by these developments, in this paper our aim is to investigate QHE on all odd-

dimensional spheres S2k−1. As we have already noted, QHE problem on S3 is solved by Nair

& Daemi [5] and a complementary treatment is recently given in Hasebe’s work [4]1. The

clear path for the construction of QHE over compact higher dimensional manifolds appear to

be closely linked to the coset space realization of such spaces. Indeed odd spheres can also be

realized as coset manifolds as S2k−1 ≡ SO(2k)
SO(2k−1) ≡

Spin(2k)
Spin(2k−1) . In their approach Nair & Daemi

took advantage of the fact that S3 can also be realized as S3 ≡ SU(2)×SU(2)
SU(2)D

owing to the

isomorphisms SU(2)×SU(2)
Z2

= SO(4) and SU(2)
Z2

= SO(3), and they subsequently constructed

the Landau problem for a charged particle on S3 under the influence of a constant SU(2)D
gauge field background carrying an irreducible representation (IRR) of the latter. This quick

approach is not immediately applicable to higher dimensional odd spheres. Nevertheless,

coset space generalization of S2k−1 in terms of the SO(2k + 1) can be used to handle this

problem.

A brief summary of our results and their organization in the present article is in order. In

section 2, we set up and solve the Landau problem for charged particles on odd-dimensional

spheres S2k−1 in the background of constant SO(2k−1) gauge fields carrying the irreducible

representation
(
I
2 ,

I
2 , · · · ,

I
2

)
. In particular, we determine the spectrum of the Hamiltonian,

the degeneracy of the Landau levels and give the eigenstates in terms of the Wigner D-

functions, and for odd values of I the explicit local form of the wave functions in the lowest

Landau level In this section, we demonstrate in detail how the essential differential geometric

structure of the Landau problem on the equatorial S2k−2 is captured by constructing the

relevant projective modules and the related SO(2k − 2) valued curvature two-forms. We

illustrate our general results on the examples of S3 and S5 for concreteness and in the

latter case identify an exact correspondence between the union of Hilbert spaces of LLL’s

with I ranging from 0 to Imax = 2K or Imax = 2K + 1 to the Hilbert spaces of the fuzzy

1Other recent developments in solving Landau problem and Dirac-Landau problem in flat higher dimen-

sional spaces are reported in [7, 8, 9].
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CP 3 or that of winding number ±1 line bundles over CP 3 at level K, respectively. In

section 3 we determine the spectrum of the Dirac operator on S2k−1 in the same gauge field

background together with its degeneracies and also compute the number of its zero modes.

Some relevant formulas from the representation theory of groups is given in a short appendix

for completeness.

2 Landau Problem on Odd Spheres S2k−1

2.1. Basic set-up and the solution

In this section we aim to set up and solve the Schrödinger equation for charged particles

on odd spheres, S2k−1, under the influence of a constant background field. We will give

the spectrum of the appropriate Hamiltonian for the problem and determine the associated

wave-functions. In order to pose the problem in sufficient detail we start with laying out

some definitions and conventions that are going to be used throughout the paper.

A convenient way of specifying the coordinates on S2k−1 is to embed it in R
2k. Then,

Xa ∈ R
2n, a = (1, 2, . . . , 2k), satisfying the condition XaXa = R2 gives the coordinates of

S2k−1 with radius R. Splitting of Xa into certain spinorial coordinates is going to of essential

interest in what follows. To see how this comes about, let us first note the well-known fact

that the odd-dimensional spheres can be represented as the coset spaces

S2k−1 = SO(2k)/SO(2k − 1) , (2.1)

and the generators of SO(2k) ≈ Spin(2k) may be given by

Ξab = −
i

4
[Γa ,Γb] , a, b = 1, 2, . . . , 2k (2.2)

where Γa are the generators of the Clifford algebra in 2k-dimensions. These are 2k × 2k

matrices satisfying the anti-commutation relations {Γa ,Γb} = 2δab. We will use the following

representation of Γas in the present article:

Γµ =

(

0 −iγµ
iγµ 0

)

, µ = 1, . . . , 2k − 1

Γ2k =

(

0 12k−1×2k−1

12k−1×2k−1 0

)

, Γ2k+1 =

(

−12k−1×2k−1 0

0 12k−1×2k−1

)

, (2.3)

where γµ’s are the generators of the Clifford algebra in (2k − 1)-dimensions.

SO(2k − 1) is irreducibly generated by

Σµν = −
i

4
[γµ , γν ] . (2.4)

In fact, Σµν specify the irreducible fundamental spinor representation of SO(2k− 1), which

is 2k−1-dimensional. For completeness, let us also indicate that Ξab in (2.2) generates SO(2k)

reducibly; it has the block diagonal form

Ξab =

(

Ξ+
ab 0

0 Ξ−
ab

)

(2.5)
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indicating that there are two irreducible fundamental representations, Ξ±
ab = (Ξ±

µν ,Ξ
±
2kµ) =

(Σµν ,∓
1
2γµ), each of dimension 2k−1, generating SO(2k).

Let us introduce the 2k-component spinor

Ψ =
1

√

2R(R + x2k)
((R + x2k)I2k +XµΓ

µ)φ , Ψ†Ψ = 1 , (2.6)

where I2k stands for a 2k×2k unit matrix and φ = 1√
2

(
φ̃

φ̃

)

, with φ̃ being a normalized 2k−1-

component spinor. It is straightforward to check that Ψ gives us the desired fractionalization

or the “square root” of xa via the Hopf-like projection map

Xa

R
= Ψ†ΓaΨ . (2.7)

Using the spinor introduced in (2.6), we can construct the spin connection over S2k−1, i.e.

the SO(2k − 1) gauge field as

A = Ψ†dΨ , (2.8)

whose components are determined to be

Aµ = −
1

R(R+X2k)
ΣµνXν , A2k = 0 . (2.9)

Using the covariant derivatives Da = ∂a + iAa and (2.9), components of the field strength

Fab = −i[Da,Db] = ∂aAb − ∂bAa + i[Aa, Ab] , (2.10)

are given as

Fµν =
1

R2
(XνAµ −XµAν +Σµν) , F2kµ = −

R+X2k

R2
Aµ . (2.11)

We find that

R4
∑

a<b

F 2
ab =

∑

µ<ν

Σ2
µν . (2.12)

R.h.s of (2.12) is the Casimir of SO(2k−1) and thus proportional to identity in an irreducible

representation. Thus a natural choice for a constant gauge field background is the spinor

representation given by the highest weight labels [10]
(
I

2

)

≡

(
I

2
, ...,

I

2

)

︸ ︷︷ ︸

(k−1) terms

, I ∈ Z , (2.13)

since SO(2k − 1) is of rank k − 1. We observe that
(
I
2 , ...,

I
2

)
can be obtained from the I-

fold symmetric tensor product of the fundamental spinor representation
(
1
2 , ...,

1
2

)
. It should

readily be understood from the context, which IRR of SO(2k − 1) that Σµν carries; thus in

(2.1.) this is the 2k−1-dimensional fundamental spinor representation
(
1
2 , ...,

1
2

)
, while in what

follows we are going to take it to be in the IRR
(
I
2 , ...,

I
2

)
due to the reasons just argued.

We can write down the Hamiltonian for a charge particle on S2k−1 under the influence of

the constant SO(2k − 1) gauge field background introduced in the preceding paragraph as

H =
~

2MR2

∑

a<b

Λ2
ab , (2.14)
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where Λab are the operators given as

Λab = −i(XaDb −XbDa) , (2.15)

which are parallel to the tangent bundle over S2k−1. Commutators of Λab give

[Λab,Λcd] = i(δacΛbd + δbdΛac − δbcΛad − δadΛbc)

− i(XaXcFbd +XbXdFac −XbXcFad −XaXdFbc) , (2.16)

which are not the SO(2k) commutation relations. The reason for Λab failing to satisfy the

SO(2k) commutation relations is that, they just account for the angular momentum of a

charged particle on S2k−1, which is not the total angular momentum in the present problem

since the background gauge field also carries angular momentum. Thus, the total angular

momentum operators, generating the SO(2k) rotations can be constructed by supplementing

Λab with the spin angular momentum of the background gauge field by writing

Lab = Λab +R2Fab , (2.17)

In component form we find

Lµν = L(0)
µν +Σµν , L2kµ = L

(0)
2kµ −RAµ , (2.18)

where L
(0)
ab = −i(Xa∂b −Xb∂a) are the generators of SO(2k) over S2k−1. In the absence of

a magnetic background L
(0)
ab would be the generators of angular momentum for a particle

on S2k−1 and it would be the total angular momentum in that case. In the present case, a

straightforward calculation yields

[Lab, Lcd] = i(δacLbd + δbdLac − δbcLad − δadLbc) , (2.19)

as expected.

Using (2.17) and the fact that Λab and Fab are orthogonal, i.e. ΛabFab = FabΛab = 0, we

can write (2.14) as

H =
~

2MR2

(
∑

a<b

L2
ab −

∑

µ<ν

Σ2
µν

)

. (2.20)

In order to obtain the spectrum of this Hamiltonian, we have to determine the general form

of the IRR of SO(2k) that Lab could carry given that Σµν carries the
(
I
2

)
of SO(2k − 1).

This problem can be addressed by looking at the branching of SO(2k) IRRs in terms of

those of SO(2k − 1). Consider table 1 where first row in indicates a generic IRR of SO(2k)

SO(2k) λ1 , λ2 , · · · , λk−1 , λk

SO(2k − 1) µ1 , µ2 , · · · , µk−1

λ1 ≥ µ1 ≥ λ2 · · · ≥ µk−1 ≥ |λk|

Table 1: Branching of SO(2k) under SO(2k − 1)

4



labeled by integers or half odd integers (λ1, λ2 , · · · , λk) corresponding respectively to tensor

and spinor representations with λ1 ≥ λ2 · · · ≥ |λk|, where the last entry λk could be positive,

negative or zero and satisfies |λk| ≥ 0 for the former and |λk| ≥
1
2 for the latter case. IRRs

of SO(2k) with opposite sign of λk are conjugate representations. Second row stands for the

(µ1 , µ2 , · · · , µk−1) IRR of SO(2k − 1) where µi are integers or half odd integers satisfying

µ1 ≥ µ2 · · · ≥ |µk−1| and µk−1 ≥ 0 or µk−1 ≥
1
2 , respectively. Third line gives the branching

rule [10]. Accordingly, for ( I2 ) of SO(2k − 1) to appear in this branching, we must have

λ1 ≥ I
2 , λ2 = λ3 = · · · = λk−1 = I

2 and |λk| ≤
I
2 . Thus, we may write λ1 = n + I

2 for some

integer n and using the notation λk = s (s ≤ I
2 ) we see that (n+

I
2 ,

I
2 , · · · ,

I
2 , s) is the general

form of the SO(2k) IRR, whose branching under SO(2k − 1) includes the
(
I
2

)
IRR of the

latter. In fact the complete branching of the former can be written out as the direct sum of

SO(2k − 1) IRRs as
(

n+
I

2
,
I

2
, · · · ,

I

2
, s

)

=
⊕n+ I

2

µ1=
I

2

⊕ I

2

µ2=s

(

µ1,
I

2
, · · · ,

I

2
, µ2

)

. (2.21)

Spectrum of the Hamiltonian can be written out using the eigenvalues of the quadratic

Casimir operators C2
SO(2k) and C2

SO(2k−1) of SO(2k) and SO(2k − 1) in the IRRs (n +
I
2 ,

I
2 , · · · ,

I
2 , s), (

I
2 ,

I
2 , · · · ,

I
2 ), respectively. Eigenvalues for these Casimir operators in generic

IRRs are given in the appendix. Explicitly, we have

E =
~

2MR2

(

C2
SO(2k)

(

n+
I

2
,
I

2
, · · · ,

I

2
, s

)

− C2
SO(2k−1)

(
I

2
,
I

2
, · · · ,

I

2

))

=
~

2MR2

(

n2 + s2 + n(I + 2k − 2) +
I

2
(k − 1)

)

. (2.22)

Thus, given a fixed background charge I, the lowest Landau level (LLL) is characterized by

setting n = 0 and s = 0 if I is an even integer or setting n = 0 and s = ±1
2 if I is an odd

integer. In these cases we get

ELLL =

{
~

2MR2

I
2 (k − 1) for even I ,

~

2MR2

(
I
2 (k − 1) + 1

4

)
for odd I

(2.23)

It is possible to interpret n and s as the quantum numbers labeling the Landau levels. We

further see that the degeneracy in each Landau level is given by the dimension of the IRR

(n+ I
2 ,

I
2 , · · · ,

I
2 , s) of SO(2k), which can be written compactly as

d(n, s) =

k∏

i<j

(
mi −mj

gi − gj

) k∏

i<j

(
mi +mj

gi + gj

)

. (2.24)

where gi = k − i and m1 = n+ I
2 + g1 , mi =

I
2 + gi (i = 2, · · · , k − 1) and mk = s+ gk. It

is easy to estimate from (2.24) that for large I, d(0, 0) ≈ I
1

2
(k−1)(k+2) ≈ d(0,±1

2 ), and shows

us how fast the LLL degeneracy grows for a given magnetic background on S2k−1. We note

also that for the LLL with I odd the degeneracy is doubled since s takes on the values ±1
2 .

In the thermodynamic limit I,R −→ ∞ with a finite “magnetic length” scale ℓM = R√
I
,

we immediately find

E(n, s) −→
~

2Mℓ2M

(

n+
1

2
(k − 1)

)

, ELLL =
~

2Mℓ2M

k − 1

2
, (2.25)
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and see that the spacing between LL levels remains finite and the LLL energy has the same

form as in the standard IQHE in two dimensions up to an overall constant.

What about the wave functions corresponding to these Landau levels? Compactly they

can be given in terms of the Wigner D-functions D(n+ I

2
, I
2
,··· , I

2
,s)(g)[L][R] of SO(2k) carrying

the (n + I
2 ,

I
2 , · · · ,

I
2 , s) IRR of the latter. Here [L][R] are two sets of collective labels that

give the states in this IRR of SO(2k) with respect to the IRRs of SO(2k − 1) that appear

in the branching (2.21). Since [R] labels all the states in the IRR
(
I
2 , · · · ,

I
2

)
, [L] is further

subject to certain selection rules that restrict both the IRRs in (2.21) and states in each of

the latter, which we do not attempt to determine here. Nevertheless, the 2k−1-component

spinors

Ψ± =
1

2

1
√

R(R+ x2k)
((R + x2k)I2k−1 ∓ ixµγ

µ)φ̃ , Ψ =

(

Ψ+

Ψ−

)

(2.26)

obtained from (2.6) are indeed the LLL wave functions for I = 1, with ± signs corresponding

to s = 1
2 and s = −1

2 , respectively and 2k−1 fold degeneracy in each sector. Using the

compact notation, Ψ±
α := K±

αβ φ̃β , we see that

LµνΨ
±
α = K±

αβ(Σµν)βγ φ̃γ , L2kµΨ
±
α = K±

αβ(∓
1

2
γµ)βγ φ̃γ , (2.27)

from which, after several steps of calculation, we find

∑

a<b

L2
abΨ

± =
∑

µ<ν

(

Σ2
µν +

1

4
γ2µ

)

Ψ± ,

=
∑

µ<ν

Σ2
µν +

1

2

(

k −
1

2

)

, (2.28)

indicating the claimed result upon using (2.20). Thus the LLL wave functions for the case

of odd I are then obtained by the I-fold symmetric product of Ψ±
α

ΨI =
∑

α1 ,···αI

fα1 ···αI
Ψα1

· · ·ΨαI
, (2.29)

where each α takes on values from 1 to 2k−1 and the coefficients fα1 ··· ,αI
are totally symmetric

in its indices and satisfy Γa
α1α2

fα1 α2···αI
= 0, fααα3···αI

= 0 to exclude the non-symmetric

representations that appear in the I-fold tensor product of
(
1
2

)
IRR of SO(2k − 1).

For N particles the LLL wave function can be obtained via the Slater determinant of ΨI

and reads

ΨI
N =

∑

α1 ,···αI

εα1 ···αI
ΨI

α1
(x1) · · ·Ψ

I
αI
(xN ) , (2.30)

where εα1 ··· ,αI
is the usual permutation symbol, which is totally antisymmetric in its indices.

2.2. The Equatorial S2k−2

It appears possible to probe further the physics at the equatorial spheres S2k−2. To see how

the physics matches with the known results of Landau problem on even spheres S2k−2 we

proceed as follows. We first note that

(K±)2 =
1

R
(x2k(I2k−1 ∓ ixµγ

µ) , (K±
0 )2 := (K±)2

∣
∣
∣
x2k=0

= ∓i
1

R
xµγ

µ . (2.31)

6



We may now define the idempotent on the equatorial S2k−2 as

Q = i(K±
0 )2 , Q† = Q , Q2 = I2k−1 , (2.32)

which allows us to write down the rank 1 projection operators

P± =
I2k−1 ±Q

2
. (2.33)

Denoting the algebra of functions on S2k−2 as A, we may write the free A-module as A2k−1

=

A ⊗ C
2k−1

and form the projective modules P±A2k−1

. In other words, we may decompose

the free A2k−1

-module as

A2k−1

= P+A
2k−1

⊕ P−A
2k−1

, (2.34)

where each summand is of dimension 2k−2.

Projections of rank I are obtained by writing

PI
± =

I∏

i=1

I±Qi

2
, Qi = I2k−1 ⊗ I2k−1 ⊗ · · · ⊗Q⊗ · · · ⊗ I2k−1 , (2.35)

where Qi is an I-fold tensor product whose ith entry is Q. PI
± and Qi act on the free module

A2k−1

I = A ⊗ C
2k−1

I , where C
2k−1

I is the I-fold symmetric tensor product of C2k−1

, whose

dimension is that of the
(
I
2 ,

I
2 , · · · ,

I
2

)
IRR of SO(2k − 1)

SO(2k−1) and SO(2k−2) are groups of rank k−1 and the branching of the
(
I
2 ,

I
2 , · · · ,

I
2

)

IRR of the former under the IRRs of the latter reads

(
I

2
,
I

2
, · · · ,

I

2

)

=

I

2⊕

µ=− I

2

(
I

2
,
I

2
, · · · ,

I

2
, µ

)

. (2.36)

PI
± are indeed the projections to the

(
I
2 ,

I
2 , · · · ,±

∣
∣ I
2

∣
∣
)
IRRs of SO(2k − 2) appearing in the

r.h.s. of the decomposition given in (2.36). These are the projective modules PI
±A

2k−1

I whose

dimensions are equal and given by the dimension of
(
I
2 ,

I
2 , · · · ,±

∣
∣ I
2

∣
∣
)
.

We are now in a position to observe that the connection two-forms associated with PI
±

are [11]

F± = PI
± d (PI

±) d (P
I
±) . (2.37)

Thus it follows from the remark ensuing (2.36) that F± are nothing but the SO(2k− 2) con-

stant background gauge fields on S2k−2 which are characterized by the IRRs
(
I
2 ,

I
2 , · · · ,±

∣
∣ I
2

∣
∣
)

of SO(2k − 2). Finally, we note that the (k − 1)th Chern number is given by

c±k−1 =
1

k!(2π)k

∫

S2k−2

PI
±
(
d (PI

±)
)2k−2

. (2.38)

where ck−1 ≡ c+k−1 > 0 and c−k−1 = −ck−1. These numbers match with the degeneracy of the

the LLL on S2k−2 via the relation ck−1(I) = dS
2k−2

LLL (k−1, I−1). ck−1(I) also matches exactly

with the number of zero modes, i.e. the index of the gauged Dirac operator on S2k−2, as an

independent solution of the Landau problem and Dirac-Landau problem on S2k−2 given in

[4] confirms. Our brief analysis in this subsection shed further light on the relation between

QHE problem over even and odd spheres.
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2.3. QHE on S3

This is the case considered first by Nair and Daemi [5] and recently by Hasebe [4]. S3 ≡

SO(4)/SO(3), which follows by setting k = 2 in (2.22). Energy spectrum takes the form

E =
~

2MR2
(n2 + 2n + In+

I

2
+ s2) (2.39)

and the degeneracy of (2.39) is given by the dimension of the
(
n+ I

2 , s
)
IRR of SO(4)

d(n, s) = (n+
I

2
+ s+ 1)(n+

I

2
− s+ 1) = (n+

I

2
+ 1)2 − s2 (2.40)

For the LLL we have

ELLL =
~

2MR2

I

2
, I even , ELLL =

~

2MR2

(
I

2
+

1

4

)

, I odd (2.41)

with the degeneracies

d(n = 0, s = 0) = (
I

2
+1)2 , d(n = 0, s = ±

1

2
) = d(0,+1/2)+ d(0,−1/2) =

1

2
(I+1)(I +3) ,

(2.42)

which are all in agreement with the results of [5] and [4].

2.4. QHE on S5

Our next example is S5 ≡ SO(6)/SO(5), which follows from setting k = 3 in (2.22). In this

case the energy spectrum takes the form

E =
~

2MR2
(n2 + 4n + In+ I + s2) (2.43)

with the degeneracy of (2.43) given by the dimension of the
(
n+ I

2 ,
I
2 , s

)
IRR of SO(6) as

d(n, s) =
1

12
(n+ 1)2(n+ I + 3)

(

(n+
I

2
+ 2)2 − s2

)(

(
I

2
+ 1)2 − s2

)

. (2.44)

Inspecting the LLL, we can write down the energy spectrum and degeneracies as

ELLL =
~

2MR2
I , I even , ELLL =

~

2MR2

(

I +
1

4

)

, I odd (2.45)

d(n = 0, s = 0) =
1

3 · 26
(I + 2)2(I + 3)(I + 4)2 , I even , (2.46)

and

d(n = 0, s = ±
1

2
) = d(0,+1/2) + d(0,−1/2) =

1

3 · 25
(I + 1)(I + 3)3(I + 5) , I odd . (2.47)

There is an exact correspondence between the union of Hilbert spaces of LLLs with I

ranging from 0 to Imax = 2K or Imax = 2K+1 correspond respectively to the Hilbert spaces

of the fuzzy CP 3 or that of winding number ±1 line bundle over CP 3 at level K [11, 12].

This interesting relationship essentially follows due to the fact that the isometry group SU(4)

8



for CP 3 is isomorphic to that of S5 which is Spin(6) ≈ SO(6). We can demonstrate this

relation very easily.

Let us recall that the fuzzy CP 3 at level K is given in term of the matrix algebraMat(dK),

where dK = 1
6(K + 3)(K + 2)(K + 1). It covers all the IRRs of SU(4) which emerge from

the tensor product
(
K

2
,
K

2
,
K

2

)

⊗

(
K

2
,
K

2
,−

K

2

)

=

K⊕

k=0

(k, k, 0) (2.48)

Expansion of an element of Mat(dK) in terms of SU(4) harmonics carries the IRRs of SU(4)

appearing in the direct sum decomposition given in the r.h.s of (2.48). We observe, that each

summand in the latter is equal to the SU(4) ≈ SO(6) IRR carried by the LLL for I = 2k.

This readily implies that, for even I, I = 2k, the union of all the LLL Hilbert spaces with

0 ≤ k ≤ 2K spans the matrix algebra Mat(dK) of CP 3
F .

Sections of complex line bundles with winding number 1 over CP 3
F are described via the

tensor product decomposition

(
K + 1

2
,
K + 1

2
,
K + 1

2

)

⊗

(
K

2
,
K

2
,−

K

2

)

=
K⊕

k=0

(k +
1

2
, k +

1

2
,
1

2
) (2.49)

Elements in this nontrivial line bundle are dK+1 × dK rectangular matrices forming a right

module A(1)(CP 3
F ) under the action of Mat(dK). We observe that each summand in the r.h.s

of (2.49) corresponds to an SO(6) IRR carried by the LLL for I = 2k + 1 ans s = 1
2 . Thus,

the union of all the LLL Hilbert spaces with 0 ≤ k ≤ 2K +1 spans A(1)(CP 3
F ) over CP

3
F . In

particular, it is straightforward to check that total number of states in this union of LLL is

precisely dK+1dK :

K∑

k=0

1

12
(k + 4)(k + 3)(k + 2)2(k + 1) = dK+1dK (2.50)

A similar correspondence for the unions of LLLs with s = −1
2 and A−1(CP 3

F ) corresponding

to winding number −1 sectors is established starting with the tensor product
(
K
2 ,

K
2 ,

K
2

)
⊗

(
K+1
2 , K+1

2 ,−K+1
2

)
.

3 Dirac-Landau Problem on S2k−1

In this section, our aim is to determine the spectrum of the Dirac operator for charged

particles on S2k−1 under the influence of a constant SO(2k − 1) gauge field background.

Let us briefly recall the situation in the absence of a background gauge field. In this case

Dirac operator for odd dimensional spheres S2k−1 is well-known. It can be expressed in the

form [14]

D± =
1

2
(I∓ Γ2k+1)

∑

a<b

(−ΞabL
(0)
ab + k −

1

2
) , (3.1)

where L
(0)
ab is given after (2.18) and carriers the (n, 0, · · · , 0) IRR of SO(2k) and Ξab given

in (2.2) carries the reducible representation
(
1
2 ,

1
2 , · · · ,

1
2

)
⊕
(
1
2 ,

1
2 , · · · ,−

1
2

)
of SO(2k). The

9



projectors P∓ = 1
2(I∓ Γ2k+1) allows us to pick either the two inequivalent representations.

To obtain the spectrum of D±, we simply need to observe that

(n, 0, · · · , 0)⊗

(
1

2
,
1

2
, · · · ,±

1

2

)

=

(

n+
1

2
,
1

2
, · · · ,±

1

2

)

⊕

(

n−
1

2
,
1

2
, · · · ,∓

1

2

)

, (3.2)

Since the
(
1
2 ,

1
2 , · · · ,±

1
2

)
IRRs of SO(2k) are conjugates, both representations yield the same

spectrum for the Dirac operator D± as expected, which is found to be [14]

E↑ = n+ k −
1

2
, E↓ = −(n+ k −

3

2
) , (3.3)

for the spin up and spin down states, respectively. Using the notation j↑↓ = n ± 1
2 , we can

express the spectrum of D± more compactly as E↑↓ = ±(j↑↓ + k − 1).

Let us now consider the gauged Dirac operator, which can be written by replacing L
(0)
ab

with Λab = Lab −R2Fab as

D±
G =

1

2
(I∓ Γ2k+1)

∑

a<b

(

−Ξab(Lab −R2Fab) + k −
1

2

)

. (3.4)

It is not possible to obtain the spectrum DG in the same manner as that of the zero gauge

field background case. There is, however, a well-known formula on symmetric spaces that

relate the square of the gauged Dirac operator to the gauged Laplacian, the Ricci scalar of

the manifold under consideration and a Zeeman energy term related to the curvature of the

background gauge field [13]. Furthermore, on a symmetric coset space, say K ≡ G
/
H, a

particular gauge field background which is compatible with the isometries of K generated by

G (in the sense that the Lie derivative of the gauge field strength along a Killing vector of

K is a gauge transformation of the field strength) is given by taking the gauge group as the

holonomy group H and identifying the gauge connection with the spin connection. Then the

square of the Dirac operator can be expressed as [13]

(iD±
G)

2 = C2(G) − C2(H) +
R

8
, (3.5)

whereR is the Ricci scalar of the manifoldK and C2(G) and C2(H) are quadratic Casimirs of

G, H, respectively, where C2(H) is evaluated in the IRR of H characterizing the background

gauge field, while C2(G) is evaluated in certain IRRs of G containing the fixed combinations

of the background isospin of the gauge field and the intrinsic spin of the fermion. These

considerations fit perfectly with our problem for odd spheres S2k−1 under fixed SO(2k − 1)

gauge field backgrounds, since in the present problem we have taken the gauge group as

the holonomy group SO(2k − 1) of the odd-spheres and the gauge connection is identified

with the spin connection and taken explicitly in the IRR of SO(2k − 1) which is the I-fold

symmetric tensor product of the fundamental spinor representation
(
1
2 , · · ·

1
2

)
. Therefore we

can write

(iD±
G)

2 = C2
SO(2k) (n+ J, J, · · · , J,±s̃)−C2

SO(2k−1)

(
I

2
,
I

2
, · · · ,

I

2

)

+
1

4
(2k2 − 3k + 1) (3.6)

where 2(2k2 − 3k+1) is nothing but the Ricci scalar of the sphere S2k−1 and J takes on the

values J = I
2 +

1
2 (I ≥ 0) and J = I

2 −
1
2 (I ≥ 1) corresponding to the spin up and spin down

10



states, respectively and |s̃| ≤ J . We find

E↑ = n(n+ 2k − 1) + I(n+ k − 1) + k(k − 1) + s̃2 , I ≥ 0 , (3.7)

E↓ = n(n+ I + 2k − 3) + s̃2 , I ≥ 1 (3.8)

It is readily seen that the spectrum of left and right chiral cases coincide with s̃ → −s̃.

Degenarcy of E↑ and E↓ are given by the dimensions of the IRRs
(
n+ J, J, · · · , J, s ± 1

2

)

with J = I
2+

1
2 and J = I

2−
1
2 , respectively. They can be computed from (2.24) with gi = k−i

and m1 = n+ J + g1 , mi = J + gi (i = 2, · · · , k − 1) and mk = s̃+ gk.

The Hamiltonian for the Dirac-Landau problem may be taken as H = 1
2MR2 (iD

±
G)

2.

For even I, we see that then the LLL is given by taking n = 0 and s̃ = ±1
2 in (3.8)

yielding ELLL
↓ = 1

4 with the same degeneracy for both the operators given as d(n = 0, s̃ =
1
2) + d(n = 0 , s̃ = −1

2), which can be computed from (2.24) using the facts given in the

previous paragraph. For odd I, we see that LLL is given by taking n = 0 and s̃ = 0 in (3.8)

yielding ELLL
↓ = 0. These are the zero modes of the Dirac operators D±

G with the degeneracy

d(n = 0, s̃ = 0).

For S3, we find that the LLL degeneracy for even I is given as I(I+2)
4 and for odd I it is

(I+1)2

4 , which is the number of zero modes of Dirac operators D±
G. These match with results of

[5]. Another example is S5, with the LLL degeneracy for even I given as 1
3·26 I(I+2)3(I+4),

and for odd I it is 1
3·26 (I + 1)2(I + 2)(I + 3)2.

We may recall that on even dimensional manifolds, Atiyah-Singer index theorem relates

the number of zero modes, i.e. index of the Dirac operator to Chern classes, which are integers

of topological significance [15]. On odd dimensional manifolds, however, there is known such

general index theorem. One possible candidate for a topological number on these manifolds

could be conceived as the Chern-Simons forms. Nevertheless, for odd spheres it is not too

hard to see that these vanish identically when evaluated for the SO(2k−1) connection given

in (2.11). Thus, it remains an open question to find out if and how the zero modes of D±
G

are related to a number of topological origin.

Finally, let us also note that setting I = 0 in (3.7), we have s̃ = ±1
2 and we find

E↑ = (n + k − 1
2)

2, which matches with the known result for D± given in (3.3). Explicitly,

we have E↑ =
√

E↑, while E↓ = −
√

E↑ with n → n− 1. The latter is necessary to match the

IRR
(
n+ 1

2 ,
1
2 , · · · ,

1
2 ,±

1
2

)
with the second summand in (3.2).
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Appendix

A. Some Representation Theory

1.1. Branching Rules

Irreducible representations of SO(N ) and SO(N − 1) can be given in terms of the high-

est weight labels [λ] ≡ (λ1 , λ2 , · · · , λN−1 , λN ) and [µ] ≡ (µ1 , µ2 , · · · , µN−1) respectively.

Branching of the IRR [λ] of SO(N ) under SO(N − 1) IRRs follows from the rule [16]

[λ] =
⊕

λ1≥µ1≥λ2≥µ2≥···≥λk−1≥µk−1≥|λk|
[µ], for N = 2k (A.1)

[λ] =
⊕

λ1≥µ1≥λ2≥µ2≥···≥λk−1≥µk−1≥λk≥|µk|
[µ], for N = 2k + 1 (A.2)

1.2. Quadratic Casimir operators of SO(2k) and SO(2k − 1) Lie algebras

Eigenvalues for the quadratic Casimir operators of SO(2k) and SO(2k − 1) in the IRRs

[λ] ≡ (λ1, λ2 · · · λk), [µ] ≡ (µ1, µ2 · · · µk−1), respectively are given as [10]:

C
SO(2k)
2 [λ] =

k∑

i=1

λi(λi + 2k − 2i) (A.3)

C
SO(2k−1)
2 [µ] =

k−1∑

i=1

µi(µi + 2k − 1− 2i) . (A.4)

Eigenvalues of quadratic Casimir operators of some specific IRRs are given as

C
SO(4)
2

(

n+
I

2
, s

)

=
I2

4
+ In+ I + n2 + 2n + s2 (A.5)

C
SO(3)
2

(
I

2

)

=
I2

4
+

I

2
(A.6)

C
SO(6)
2

(

n+
I

2
,
I

2
, s

)

=
I2

2
+ In+ 3I + n2 + 4n + s2 (A.7)

C
SO(5)
2

(
I

2
,
I

2

)

=
I2

2
+ 2I (A.8)

1.3. Relationship between Dynkin and Highest weight labels

Throughout this paper highest weight labels (HW) have been used to label the irreducible

representations of Lie algebras. Another common way to label the IRRs is given by the Dykin

indices. The relationship between Dykin indices and highest weight labels are as follows.

For a SO(4) IRR the labels are

(p, q)Dynkin ≡ (λ1, λ2)HW , (A.9)

where the relation between these labels are given by

p = (λ1 + λ2) , q = (λ1 − λ2) . (A.10)

13



For instance,
(
n+ I

2 , s
)

HW
which is the IRR used in section 2.3. to label the LL on S3

corresponds to
(
n+ I

2 + s, n+ I
2 − s

)

Dynkin
, whle the LLL are given by either

(
I
2 ,

I
2

)

Dynkin

or
(
I
2 ± 1

2 ,
I
2 ∓ 1

2

)

Dynkin
.

For a SO(5) IRRs, the labels are

(p, q)Dynkin ≡ (λ1, λ2)HW , (A.11)

and the relation between these labels are given by

p = λ1 − λ2 , q = 2λ2 , (A.12)

For instance, I-fold symmetric tensor product of (12 ,
1
2 )HW is ( I2 ,

I
2)HW and in terms of Dynkin

index labels this corresponds to (0, I)Dynkin.

Finally, for SO(6) IRRs the labels are given as

(p, q, r)Dynkin ≡ (λ1, λ2, λ3)HW , (A.13)

and the relation between these labels are given by

p = λ2 + λ3 q = λ1 − λ2 r = λ2 − λ3 . (A.14)
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