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Abstract
Sheet metal forming processes are within the core of many modern
manufacturing technologies, as applied in, e.g., automotive and packaging
industries. Initially flat sheet material is forced to transform plastically into
a three-dimensional shape through complex loading modes. Deviation from a
proportional strain path is associated with hardening or softening of the material
due to the induced plastic anisotropy resulting from the prior deformation.
The main cause of these transient anisotropic effects at moderate strains is
attributed to the evolving underlying dislocation microstructures. In this paper,
a composite dislocation cell model, which explicitly describes the dislocation
structure evolution, is combined with a BCC crystal plasticity framework to
bridge the microstructure evolution and its macroscopic anisotropic effects.
Monotonic and multi-stage loading simulations are conducted for a single
crystal and polycrystal BCC metal, and the obtained macroscopic results and
dislocation substructure evolution are compared qualitatively with the published
experimental observations.

1. Introduction

For each car, the automotive industry manufactures more than 500 parts by multi-stage forming
operations, involving complex deformation paths. Deviation from a proportional strain path is
commonly associated with a change in the hardening (or softening) behavior of the material. In
order to achieve a first-time-right design, modern predictive tools relying on the finite element
method are commonly used nowadays. The anisotropy induced by complex deformation paths,
which may lead to premature failure (e.g. Sang and Lloyd (1979)), is crucial in this sense and
should be included in the constitutive models used in the analysis.

The overall plastic anisotropy in BCC metals, induced by the imposed deformation,
originates from different sources at different length scales. Slip asymmetry and intrinsic
anisotropy effects caused by the non-planar spreading of screw dislocation cores are active at
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the microlevel (e.g. Bassani et al (2001), Duesbery and Vitek (1998), Ito and Vitek (2001),
Yalcinkaya et al (2008)) whereas the development of dislocation substructures is
relevant at the mesolevel (e.g. Rauch and Schmitt (1989), Wagoner and Laukonis (1983),
Rao and Laukonis (1983), Wilson and Bate (1994), Gardey et al (2005)). At the macrolevel,
the texture development of polycrystalline metal contributes dominantly (e.g. Bacroix et al
(1994), Bacroix and Hu (1995), Nesterova et al (2001)). Upon switching strain paths, the
intrinsic properties obviously have a substantial effect on the observed anisotropy due to
changes in the dislocation activity. However, the evolution of dislocation microstructures has
been recognized as a main driver triggering the observed anisotropic material behavior. In a
recent report, Li et al (2006) commented on the strong anisotropy, i.e. larger than expected
from the texture, induced by the dislocation structure in IF steel increasing with the rolling
prestrain. The prediction of dislocation microstructures within the individual dislocation
descriptions and continuum theories has been a challenging subject in the last decades in the
material science community (see Groma (1997) for an overview). While transmission electron
microscopy (TEM) observations have been a powerful tool to understand their origin and to
derive the physical parameters that govern their evolution (e.g. Fernandes and Schmitt (1983)),
discrete dislocation models and atomistic considerations improved the understanding of the
formation and the evolution of dislocation microstructures and the related plastic anisotropy.
However, only a limited number of micromechanical modeling approaches have been
addressing the anisotropy induced by evolving dislocation cells with a crystal plasticity
framework.

Among the attempts to develop plastic anisotropy models that incorporate the
microstructure evolution for complex deformation histories, the most remarkable one is the
constitutive model proposed by Teodosiu and Hu (1995). This phenomenological model uses
the Hill criterion for the onset of yielding while the hardening is associated with the dislocation
structures. The polarity of dislocation walls, the back-stress and the strength of the dislocation
structure are accounted for by internal variables. Recently, Wang et al (2008) presented an
improvement of this model especially concentrating on continuous loading path changes from
uniaxial tension to simple shear without unloading the material.

Another attempt to describe the occurring phenomena is presented by Peeters et al (2000)
dealing with a polycrystal plasticity model that incorporates more details of the microstructure
evolution at the grain scale, where cell boundary dislocation densities, cell block boundary
dislocation densities and directionally movable dislocation densities are taken as internal
variables. This model attributes a major part of the strain path change effects to the evolution
of cell block boundaries and the polarization of these structures. Additional to the above
mentioned models, Hoc and Forest (2001), Mollica et al (2001) and Tarigopula et al (2008)
presented some other approaches dealing with the anisotropic strain path change effects. In
this paper the concentration is focused on a crystal plasticity model that incorporates the
evolution of dislocation cell structures. As originally introduced by Mughrabi (1987), a
cell structure can be idealized as a two-component material, distinguishing cell walls and
cell interiors. It is characterized by the wall thickness w, the cell size r (see figure 1),
the dislocation densities in the cell walls ρw and the cell interiors ρc. The macroscopic
anisotropy effects are obtained by the evolution of these internal variables during monotonic
deformation and multi-stage loading processes. Inside the cell structure, a BCC crystal
plasticity framework (e.g. Yalcinkaya et al (2008)) is incorporated, which goes beyond the
developments of Viatkina et al (2003) for FCC metals in which a classical von-Mises plasticity
model was used. From this perspective, it is the first example that incorporates a physically
motivated constitutive model into the evolution of dislocation substructures for BCC metals,
in order to model the anisotropy due to strain path changes.
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Figure 1. Composite representation of the cell structure.

The plan of this paper is as follows. Section 2 discusses the evolution of dislocation
substructures under monotonic and multi-stage deformations. Next, in section 3 the
formulation of the BCC crystal plasticity framework is summarized. Section 4 handles the
incorporation of the dislocation cell evolution model into the crystal plasticity framework,
along with a summary of the numerical implementation. Further, in section 5 computational
results of single crystal and polycrystal tests are presented on the basis of which the crystal
anisotropy is distinguished from the dislocation cell anisotropy. The accordance of the results
with respect to published experimental results is discussed. Finally, concluding remarks are
given in section 6.

Cartesian tensors and associated tensor products will be used throughout this paper, making
use of a Cartesian vector basis {e1e2e3}. Using the Einstein summation rule for repeated
indices, the following conventions are used in the notations of vectors, tensors, related products
and crystallography:

• scalars a

• vectors a = aiei

• second-order tensors A = Aijei ⊗ ej

• fourth-order tensors 4A = Aijklei ⊗ ej ⊗ ek ⊗ el

• C = a ⊗ b = aibjei ⊗ ej

• C = A · B = AijBjkei ⊗ ek

• C = 4A : B = AijklBlkei ⊗ ej

• crystallographic direction, family [uvw], 〈uvw〉
• crystallographic plane, family (hkl),{hkl}
• slip system, family (hkl)[uvw], {hkl} 〈uvw〉

2. Dislocation substructure evolution

Dislocation substructuring is characterized by the clustering of dislocations after a certain
amount of plastic deformation, where an initially statistically homogeneous distribution
of dislocations develops towards a dislocation pattern with high density dislocation walls
enveloping low density dislocation areas. This self-organization of the microstructure in
the grains is often referred to as the low-energy, steady state configuration of dislocations
(Kuhlmann-Wilsdorf 1989). TEM analyses (e.g. Keh et al (1963)) revealed that for
deformations larger than 3–4% a well-developed dislocation cell structure forms in steel at
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Figure 2. Schematic evolution of a dislocation cell structure under strain path change.

ambient temperature. Further deformation renders a polarized structure with dislocation sheets
or cell block boundaries, which envelope a number of dislocation cells. These structures are
the result of the interactions between dislocations gliding on the most active slip planes and the
secondary dislocations (Teodosiu 1992). However, the occurrence of the dislocation sheets is
not always manifest and sometimes the microstructure is partitioned by ordinary cell boundaries
having no particular crystallographic or macroscopic orientation (Hansen and Huang 1997).
For that reason, depending on the grain orientation and the strain direction, either parallel
dislocation walls or more equiaxed closed cells are observed (e.g. Rauch and Schmitt (1989))
in low-carbon steels. Besides, different materials end up in different types of microstructures.
It is neither experimentally nor computationally an easy task to identify the type of evolving
dislocation microstructure, yet formation of dislocation cells is mostly observed. Thereof, this
paper concentrates on the formation and evolution of these dislocation cell structures.

As discussed above, dislocation cell structures develop upon plastic strain in most metals,
and evolve in a distinct way depending on the applied strain path. The main features are
visualized in figure 2. Under monotonic deformation a dislocation cell structure appears and
evolves towards a decreasing cell size r , and wall thickness w accompanied by an increasing
dislocation density in the cell walls ρw (e.g. Fernandes and Schmitt (1983)). After a strain
path change, the developed cell structure adjusts to the new loading and the dislocation
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microstructure induced by the prestrain becomes unstable. It is disrupted and dissolved, and
a new dislocation structure typical of the new strain path forms (Barlat et al 2003). The
characteristic features of the initial cell structure disappear as the deformation proceeds in
the new direction. Unfortunately, there is no clear interpretation of what is occurring with
the dislocation microstructure during the adaptation nor is there a unique terminology to
describe this evolution. Here we distinguish between two different scenarios; dissolution
of cells as in the cross test and disruption as occurring under reversed loading. There
appears to be no consistency in the literature in the use of the dissolution, disruption and
disintegration of dislocation cells, and most of the time any cell evolution after a strain path
change is described as a dissolution process (e.g. Rauch and Schmitt (1989), Rauch (1992),
Rauch (1991), Gardey et al (2005), Rao and Laukonis (1983)). Indeed, both dissolved and
disrupted structures appear as disorganized structures with a higher degree of homogeneity
compared with the state before the strain path change. Nevertheless, there are indications
that there is a morphological difference between the two microstructure evolution scenarios
mentioned above (e.g. Gardey et al (2005)) in correspondence with the difference between
the driving forces and their physical origins.

In the example shown in figure 2, two different strain path changes have been considered
where the two types of evolution phenomena can be distinguished. A cross test, e.g. tension
followed by simple shear or a tension test followed by tension in a different direction,
reveals progressive cell evolution (e.g. Rao and Laukonis (1983)). It has been observed
that after a strain path change cell walls become thicker while the dislocation density in
the walls becomes smaller (e.g. Schmitt et al (1991)). Hence, the dislocation distribution
is more uniform and the cell structure is less organized. This evolution process can cause
partial or complete dissolution of the existing cell structure, while concurrently a new cell
structure develops with a morphology related to the new loading direction. The cell structure
evolution resulting from a stress reversal has received more attention in the context of
the analysis of the well-known Bauschinger effect (e.g. Rauch (1991)). The evolution of
the cell structure under stress reversal can be characterized by the disruption of cell walls
(e.g. Viatkina (2005), Christodoulou et al (1986)). The thickness of the cell walls does not
change significantly; however, the walls tend to disconnect. Experimental observations (e.g.
Christodoulou et al (1986)) also report a strong flux of dislocations from the walls to the cell
interiors, decreasing the wall dislocation density and increasing the density in the cell interiors.
Accordingly, the descriptive modeling of the dislocation distribution relies on an increase in
cell size and a dislocation redistribution (Viatkina 2005). With ongoing deformation cell walls
reappear and a new cell structure originates.

Upon sustained loading after a strain path change, the microstructure always evolves
such that transient effects disappear and the macroscopic stress–strain curve saturates to the
monotonic deformation curve (see figure 3).

3. Computational model

The constitutive behavior of each composite constituent (cell walls or cell interiors) is modeled
in a finite strain crystal plasticity framework with plastic slip governed by the thermally
activated motion of dislocations. The kinematics starts with the multiplicative decomposition
of the deformation gradient tensor into an elastic and a plastic part of each component, as
developed by Lee (1969), Rice (1971), Hill and Rice (1972) in the classical plasticity theory,

F i = F i
e · F i

p , (1)
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Figure 3. Left: Experimental results for mild steel DC06 subjected to monotonic simple shear and
simple shear followed by load reversal (10% and 30%) (Bouvier et al 2006) (reversed loading)
Right: experimental results for IF-steel subjected to monotonic simple shear and tensile tests (10%
and 20%) followed by shear (Peeters et al 2000) (orthogonal loading).

where the superscript i indicates the specific component (w: wall, c: cell) and tensor F i
p

defines the stress-free intermediate configuration. In this configuration, resulting from plastic
shearing along well-defined slip planes of the crystal lattice, the orientation of the slip systems
is unaltered. The tensor F i

e reflects the lattice deformation and local rigid body rotations. The
slip systems are labeled by a superscript α, with α = 1, 2, ..., ns where ns is the total number
of slip systems. The vectors mα,i

0 and nα,i
0 denote the slip direction and the slip plane normal

in the reference and intermediate configurations. In the current state they are represented by
mα,i and nα,i , respectively.

The crystallographic split of the plastic flow rate Li
p = Ḟ i

p · F i
p
−1 is given by

Li
p =

ns∑
α=1

γ̇ α,imα,i
0 ⊗ nα,i

0 , (2)

with γ̇ α,i the individual slip rate on the slip system α.
The second Piola–Kirchhoff stress tensor Si is expressed in terms of the elastic Green–

Lagrange strain tensor Ei
e, both relative to the intermediate state,

Si = 4C : Ei
e with Ei

e = 1
2 (F i

e
T · F i

e − I), (3)

with I the second-order unity tensor and 4C the fourth order tensor consisting of elastic moduli.
From the second Piola–Kirchhoff stress the Kirchhoff stress in the current configuration

can be determined by a push-forward operation,

τ i = F i
e · Si · F i

e
T
. (4)

From the Kirchhoff stress the Cauchy stress can be derived according to

σi = 1

J i
e

τ i with J i
e = det(F i

e ). (5)

The Schmid resolved shear stress is the projection of the Kirchhoff stress on the slip systems, i.e.

τα,i = mα,i · τ i · nα,i = mα,i
0 · C i

e · Si · nα,i
0 with C i

e = F i
e

T · F i
e , (6)

which is the driving force for the dislocation movement on a certain slip system α. There has
been various discussions and contradictions considering the active slip systems of BCC crystals,
and recent studies show that the slip system activation is highly temperature dependent (see
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Yalcinkaya et al (2008)). At room temperature the {1 1 2} slip system family is dominantly
active. The effect of the non-Schmid stresses on the non-planar screw dislocation cores
which contributes to the orientation dependence of BCC crystals at the single crystal level
can be taken into account as an additional contribution to the driving stress in equation (6)
(Yalcinkaya et al 2008); however, this contribution affects the initial anisotropy of these metals
rather than the transient effects observed during the strain path changes (see figure 3). Including
this effect would increase the material parameters while it does not contribute to the aim of
this paper. Hence it was decided not to account for this effect here.

The motion of dislocations is obstructed by thermal and a-thermal barriers which are
caused by the dislocation interactions upon flow, the elastic stress field due to other dislocations
and grain boundaries. Hence the slip resistance distinguishably originates from a thermal
part s

α,i
t and an a-thermal part sα,i

a . For the slip rates the following slip law is adopted (see
Yalcinkaya et al (2008)):

γ̇ α,i = γ̇
α,i
0 exp

{
−G0

kT

[
1 −

(
τ

α,i
eff

s
α,i
t

)]}
sign(τα,i), (7)

where τ
α,i
eff = |τα,i |− sα,i

a is the effective driving stress on the slip systems, G0 is the activation
free energy, k is Boltzmann’s constant, T is the absolute temperature and γ̇

α,i
0 is a reference

strain rate. For isothermal cases, the thermal part sα,i
t of the slip resistance is taken constant and

the a-thermal slip resistance is related to the dislocation densities on all slip systems through

sα,i
a = Gb

√√√√ ns∑
u=1

Aαu|ρu,i |, (8)

where G is the shear modulus, b is the magnitude of the Burgers vector, Aαu are the
interaction coefficients between the slip systems α and u and ρu,i the dislocation density
on the slip system u of component i. The dislocation interaction coefficients of the matrix
Aαu depend on the type of interaction between dislocations on different slip systems (e.g.
Franciosi and Zaoui (1982), Queyreau et al (2008)). Because of the lack of data on {1 1 2}
slip systems, only the interactions between the dislocations belonging to the same slip system,
i.e. α = u, and different slip systems, i.e. α �= u, will be distinguished for Aαu.

The macroscopic mechanical response of the composite model is obtained by applying a
Taylor averaging assumption where the deformation in each component is assumed to be equal
to the macroscopic deformation and where the rule of mixtures gives the macroscopic stress
from the local stresses in each component according to

σ = f σw + (1 − f )σc. (9)

In this equation f represents the actual volume fraction of the cell walls, expressed in terms
of the microstructural morphology parameters w and r according to

f = V w

V
= 3

w

r
− 3

(w

r

)2
+

(w

r

)3
, (10)

where V and V w are the volumes of the entire composite and the wall component, respectively.
Experimental studies (e.g. Fernandes and Schmitt (1983)) suggest that the wall thickness

w, the cell size r (see figure 1), the dislocation densities in the cells ρα,c, and the walls
ρα,w evolve with increasing applied strain. Moreover, these quantities are dependent on the
deformation history, and therefore they are taken into account as internal variables in this
framework. Corresponding evolution equations are to be formulated that describe the cell
structure development during monotonic loading as well as complex strain path histories. This
is done in the following section, where the incorporation of a dislocation cell structure evolution
model into the crystal plasticity framework is presented.
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4. Modeling of microstructure evolution

In order to give a clear understanding of the model, three distinct types of loading cases
are considered, namely monotonic loading, orthogonal loading and reverse loading. The
purpose of the model consists in unifying these cases by capturing effects under continuous
combinations of these deformations, through a single set of evolution equations. It is assumed
that the cell orientation is dictated by the loading, and that there are always enough slip systems
to accommodate that cell, independently of the crystal orientation.

4.1. Monotonic deformation

The evolution of a two-phase dislocation cell structure has been schematized in figure 2. During
monotonic deformation, the cell size r and the wall thickness w decrease, yielding a decrease
in the length scales of the spatial dislocation patterns that is inversely proportional to the flow
stress, often referred to as the law of similitude (Kuhlmann-Wilsdorf 1962). Experimental
observations (e.g. Mughrabi et al (1986)) suggest that the dislocation density inside the cell
interiors does not change significantly. Accordingly, a constant dislocation density ρα,c in the
cell interior component is assumed here. The derivation of the evolution of the dislocation
density in the walls ρα,w departs from the frequently used balance between the multiplication
of mobile dislocations and annihilation events,

ρ̇α,w = 1

b

[
I
√

ρα,w − Rρα,w
] ∑

α

|γ̇ α,w| +
ρα,c − ρα,w

f
ḟ (11)

where R is the recovery length and I is a dislocation multiplication parameter. The last term
in the equation accounts for the change in volume occupied by the wall component. The initial
state of the composite is modeled as if the wall component is occupying the entire volume;
the initial value of its dislocation densities is determined by the value ρ0 of the initial uniform
distribution. This in fact correctly represents the case when no dislocation pattern is present.

The following empirical relation between the cell size r and the flow stress σy is suggested
in the literature (e.g. Barker et al (1989), Mughrabi (1987)),

σy = CGb

rm
, (12)

which is consistent with the experimental observations of Fernandes and Schmitt (1983) and
commonly used theoretical investigations (e.g. Mughrabi (1987)). The parameter C is a
material constant and the exponent m is generally close to 1 for cell structures. In this
framework, equation (12) is rewritten in terms of slip variables at the slip system level instead of
the continuum level yield stress σy . This is done by using evolving a-thermal slip resistances on
the active slip systems, i.e. r ∼ CGb/σy

∼ CGb/
∑

α sa , whereby the parameter C accounts
for the scaling between the two levels as well. The cell size evolution is approximated by
incorporating the rule of mixtures for the different components of the composite,

r = CGb

f
∑

α s
α,w
a + (1 − f )

∑
α s

α,c
a

. (13)

The evolution of the wall thickness w is adopted from Viatkina et al (2003) and assumed to
be governed by an effective plastic strain rate measure

∑
α |γ̇ α| according to

ẇ = km(winf − w)
∑

α

|γ̇ α|

with ∑
α

|γ̇ α| = f
∑

α

|γ̇ α,w| + (1 − f )
∑

α

|γ̇ α,c|. (14)

8
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In this evolution law a decrease in the wall thickness with a saturation factor km is incorporated,
with a final saturation value equal to winf , which is consistent with experimental observations
(e.g. Fernandes and Schmitt (1983)).

The implementation of the model presented above follows an incremental-iterative
solution procedure, which is applied for each of the composite components with the same
imposed deformation (Taylor approach). The first step in this procedure is the initial estimate
for the elastic part F i

e , resulting in an estimate for the plastic part F i
p through (1). With the

kinematics defined, both the stress and the Schmid stress is calculated. These values together
with the slip resistance (8) (which is calculated from dislocation density evolution (11)) enter
the slip law (7) resulting in the slip rates on each slip system. The updated plastic part of
the deformation gradient is obtained from the calculated slip rates through a time integration
scheme. Generally, the calculated and the imposed deformation will be different, which results
in a residual. Iteration on the residual leads to updated values of variables including F i

p and
F i

e . With the current values of r and w the volume fraction f is calculated with (10), which
is used to determine the macroscopic stress (9). The procedure is repeated for all time steps,
which results in the entire history of stress, slip and internal variable evolution.

4.2. Orthogonal change in deformation

An orthogonal change in the deformation path leads to dissolution of dislocation cell walls,
which is captured through an increase in the wall thickness. In the limit the wall occupies
the whole material where w becomes equal to r , representing a full recovery of a uniform
dislocation configuration (i.e. no cells present). This limit case is rarely observed in practice.
After the dissolution process, new cells originate accommodating the new loading direction.
Next, the cell size and dislocation density are considered to evolve in the same way as
for monotonic deformation, i.e. the dislocation density increases in the walls and remains
constant inside the cell. More experimental evidence is needed to improve further on this
phenomenological relation.

The dissolution process is leading to a transient increase in the cell wall thickness driven
by the overall slip rate as given by

ẇ = kd(r − w)
∑

α

|γ̇ α|, (15)

where kd is the dissolution factor. The saturation value of the wall thickness logically equals
the cell size r corresponding to a complete dissolution of the cell. When both the dissolution
and the redevelopment processes are taken into account, the wall evolution becomes

ẇ = pkd(r − w)
∑

α

|γ̇ α| + (1 − p)km(winf − w)
∑

α

|γ̇ α|, (16)

where the first contribution on the right-hand side reflects equation (15) accounting for the
effect of the loading in the new direction, i.e. the dissolution process. The second contribution
on the right-hand side of (16) represents the development of the wall structure according to
equation (14). The transition parameter p, to be specified in the following, defines the relative
contribution of the dissolution process in the evolution of w. It is characterized by taking into
account: (i) the dissolution process depends only on the angle between successive deformation
paths and (ii) the dissolution effect disappears as the deformation proceeds in the new direction.
In this context, the following expression for p is taken:

p = (1 − |θ |) exp

{
−B

[∑
α

|γ α| −
∑

α

|γ α
pre|

]}
, (17)

9
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where θ is a scalar measure that identifies the strain path change and
∑

α |γ α
pre| indicates the

accumulated plastic deformation prior to the strain path change and B is a material parameter.
To characterize the strain path change measure θ , a commonly used definition is adopted here

θ = Lp1 : Lp2

|Lp1||Lp2| , (18)

where Lp1 and Lp2 are the macroscopic plastic velocity gradient tensors prior to and after the
strain path change. Here θ = 1 refers to monotonic deformation, θ = 0 to a cross test and
θ = −1 to a reverse test.

Equations (16) and (17) describe the evolution of the wall thickness during the whole
deformation process. During monotonic deformation where θ = 1, equation (16) reduces
to equation (14) describing cell wall thinning. After a strain path change, the dissolution is
initiated with an intensity proportional to (1 − |θ |). The dislocation walls start widening,
governed by the competition between the new structure development and the old structure
dissolution. As the deformation proceeds in the new direction, the dissolution process fades
out and accordingly p approaches 0 due to (17) and the wall thickness tends to decrease again:
a new dislocation structure is developing.

4.3. Reverse deformation

The cell structure degeneration after a stress reversal, the so-called cell disruption, is modeled
by a temporary increase in the cell size. As already discussed in section 2, the thickness of the
cell walls does not change significantly due to stress reversal. Therefore, the other parameters,
i.e. the wall thickness and the dislocation density, are assumed to evolve in a similar way as
under monotonic deformation. The disruption of cells is observed to be a rapid process in
which the size of the cells rapidly increases after a stress reversal and then slowly decreases
(e.g. Viatkina et al (2003), Christodoulou et al (1986)). As the deformation proceeds in the
opposite direction the cell size recovers to the level corresponding to the monotonic strain path
(13). In order to model this temporary increase in the cell size, an additional (transient) term
is incorporated in equation (13) for the cell size evolution:

r = CGb

f
∑

α s
α,w
a + (1 − f )

∑
α s

α,c
a

+ A exp

[
−kc

(∑
α

|γ α| −
∑

α

|γ α
pre|

)]
, (19)

where A defines the degree of disruption and kc is a constant reflecting the recovery speed
(governed by slip). The entire term in the right-hand side (added to (13)) determines the
immediate increase in the cell size. This effect vanishes with ongoing deformation depending
on the value of the parameter kc. As soon as the disruption contribution gradually disappears,
the cell size again follows the evolution as given for the monotonic deformation case. To reflect
the fact that the cell disruption is triggered by a stress reversal, the coefficient A depends on
the strain path change through

A =
{

a|θ | if θ < 0,

0 if θ � 0,
(20)

where a is a fitting parameter. Consequently, the Bauschinger test triggers the highest
disruption. For more complex strain path changes with negative values of θ both equations
(16) and (19) have non-zero strain path change contributions (p > 0 and A > 0), describing
a process with coexisting dissolution and disruption of cells. When p = 0 and A = 0, the
model describes the evolution under monotonic deformation. In this way the resulting system
of equations effectively unifies different types and combinations of strain path changes.
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Table 1. Material parameters for monotonic loading case. Some of the parameters, i.e. γ̇0, G0 and st
have already been identified in previous work (Yalcinkaya et al 2008). The parameters b and G are
taken from Frost and Ashby (1982). The value of ρ0 is presented by Krejci and Lukas (1971). The
latent interaction coefficient Aαu is identified and the self-interaction coefficient Aαα is obtained by
assuming a ratio of 1.4 between latent and self-hardening. The remaining parameters are identified
by comparing the experimental trends with computational results. Additional parameters needed
for complex strain paths are commented in the text.

Young’s modulus E 139 GPa
Shear modulus G 64 GPa
Poisson’s ratio ν 0.362
Reference strain rate γ̇0 1.07 × 106 s−1

Burgers vector length b 0.248 × 10−9 m
Interaction coefficient (self) Aαα 0.00072
Interaction coefficient (latent) Aαu 0.001
Initial dislocation density ρ0 0.18 × 1014 m−2

Activation free energy G0 2.95 × 10−18 J
Dislocation multiplication parameter I 0.228
Dislocation annihilation rate parameter R 5.1 × 10−9

Boltzmann constant k 1.3807 × 10−23 J K−1

Thermal dislocation resistance st 15 MPa
Saturation factor km 150
Saturation value winf 0.18 × 10−6 m
Material constant C 20

5. Numerical examples

Using reported experimental trends, this section presents and qualitatively validates typical
results: (i) the evolution of the internal variables during monotonic deformation and the intrinsic
orientation effect during strain path changes of BCC single crystals and (ii) the macroscopic
stress–strain behavior of BCC polycrystals during multi-stage loading processes. Due to
the lack of quantitative experimental data, however, an adequate quantitative comparison
is not possible, preventing a reliable quantification of the material parameters. Within
a physically acceptable range of material parameters, it will be shown that the presented
model is well capable of capturing all experimental trends. Young’s modulus E, Poisson’s
ratio ν, the reference strain rate γ̇0, the shear modulus G, the magnitude of the Burgers
vector b, the interaction coefficients Aαα and Aαu, the activation energy G0, thermal slip
resistance st , the dislocation multiplication parameter I and the recovery length R are the
standard parameters in the constitutive model describing the BCC material, whereas ρ0, ρc,
kd, km, winf , C, B, a and kc are the additional parameters associated with the dislocation cell
structure evolution. The set of standard parameters are well documented in the literature (see
table 1). The remaining parameters have a restricted range and they are estimated to establish
a qualitative agreement with experimental observations. The initial value of the dislocation
densities in the walls ρ0 logically equals ρc (no cells exist yet) and the initial value of the cell
size r0 can be calculated by using equation (13) where f = 1 and ρα

w = ρα
0 .

5.1. Example 1: monotonic deformation of single crystals

Experimental observations of the microstructure evolution during monotonic deformation have
been reported in section 2. In most cases, the length scales of the spatial patterns formed by
the dislocations decrease with increasing strain. To analyze this change in the microstructure,
several studies have been conducted. For instance, Sevillano et al (1981) present several
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Figure 4. Evolution of the cell structure variables during monotonic deformation for α-Fe. Left:
wall thickness w and cell size r . Right: volume fraction of the walls.

curves for the average cell size with respect to the deformation during rolling and drawing
processes for different materials, and Fernandes and Schmitt (1983) give data on the wall
thickness and dislocation cell size of low-carbon steel under various types of loading. In this
framework, the parameters in the evolution equations are identified to retrieve this characteristic
behavior.

In figure 4 the evolution of the microstructure of an α-Fe single crystal during a uniaxial
tension simulation at 298 K and a strain rate of 5 × 10−4 s−1 is presented with the material
parameters given in table 13. The cell size shows a decreasing trend with increasing strain as
expected. The wall thickness decreases quickly and stabilizes at a constant value. The volume
fraction approaches a value of around 0.1 after a sharp decrease. This trend can also be found
in the literature, where it is stated that the volume fraction of dislocation walls remains at a
constant value (e.g. Peeters (2002)).

5.2. Example 2: strain path change of single crystals

In this example the effect of the intrinsic anisotropy of single BCC crystals during multi-stage
loading is illustrated. In figure 5 the results of a cross loading simulation are presented where
the crystal was first loaded in the [0 0 1] direction and next in the [0 1 1] direction after unloading
at a strain value of 0.15. For comparison purposes a reference calculation is performed in which
the evolution of the microstructure is not incorporated, i.e. transient hardening and softening
effects due to the strain path change (see solid line in figure 3) are absent. The dashed line
presents the outcome of the full microstructure evolution computation, in which both the crystal
slip anisotropy and the dislocation cell anisotropy are revealed. The purpose of this example is
to discriminate these two intrinsic sources of anisotropy at the single crystal level. Obviously,
both mechanisms here contribute to a larger yield stress after reloading. Whereas this increase
is systematic for dislocation cell contribution, it is obviously orientation dependent for the slip
anisotropy contribution.

3 Note that the number of papers focusing on the determination of the interaction coefficients in BCC single crystals
are very limited. Moreover, the actual value strongly depends on the actual BCC crystal considered and impurities
present and the initial dislocation density. Values may therefore differ considerably, where a difference of a factor 10
can be easily found throughout the literature.
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Figure 5. Stress–strain curve for the [0 0 1] uniaxial tension followed by the [0 1 1] uniaxial tension
with (dashed line) and without (solid lines) microstructure evolution effect for α-Fe single crystal.

5.3. Example 3: strain path change of polycrystals

In this subsection, the performance of the model in the context of complex deformation histories
is evaluated by determining the response of a BCC polycrystal with a random texture under
a sequence of: (i) two uniaxial tension tests in different directions to obtain the cross effect;
(ii) simple shear and reversal in order to capture the Bauschinger effect.

As explained previously, at a single crystal level the effect of intrinsic crystallographic
anisotropy during a strain path change is noticeably high. The initial anisotropy, the
so-called orientation dependence of BCC single crystals has been studied before (e.g.
Yalcinkaya et al (2008)) and this effect adds up to anisotropy due to the dislocation
microstructure evolution. In this example the main interest focuses on the anisotropy due
to substructure evolution during multi-stage loading processes for the case where the intrinsic
orientation effect is known to contribute less. To this purpose polycrystal simulations have
been conducted, where 100 randomly oriented crystals are considered interacting according
to a Taylor averaging scheme.

First, the cell dissolution process and its macroscopic cross effect are analyzed. The
characteristic feature of the stress–strain curve in figure 3 is the transient change induced by a
change in the deformation path. An initial increase in the yield stress is followed by moderate
softening. The cross effect vanishes gradually and the curve saturates towards to the monotonic
case. In order to measure this effect experimentally either tension followed by simple shear
or two successive orthogonal tensile experiments need to be conducted. With respect to the
latter approach Schmitt et al (1991) presented clear experimental results where various tensile
sequences were examined, with different angles between the succeeding tensile directions equal
to 15◦, 45◦ and 90◦ with different amounts of prestrain. In Schmitt et al (1991), it was reported
that no evolution of cell-blocks was observed, supporting the case examined here, where the
cell structure development is assumed to be the main mechanism accompanying the strain path
change. The sequence of two uniaxial tests with 45◦ between the tensile axes is, according to
equation (18), characterized by θ = 0.25, and it is rather close to a cross test exhibiting the
highest cell dissolution. Additional to the parameters used during monotonic deformation (see
table 1), kd and B are identified as 300 [—] and 20 [—] respectively. The obtained typical
cross effect is presented in figure 6. This transient effect is observed in many materials and
the size of the effect is determined by the amount of applied prestrain while the shape of the
hardening and softening zones depends on the material.
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Figure 6. Predicted stress–strain curve of a 45◦ cross tensile test of an α-Fe polycrystal.
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Figure 7. Bauschinger effect for shear–reverse shear test of an α-Fe polycrystal.

The second example concerns the Bauschinger effect, which yields a reduction in the
yield strength of the material after a load reversal. A simple shear and reversal simulation
is presented in figure 7, where the evolution of the cell size r is dominantly contributing to
the anisotropy at this continuum level. Additional to the parameters used during monotonic
deformation in table 1, the parameters a and kc are identified as 1 × 10−4 m and 14 [—]
respectively, to validate this part of the model.

Even though both the cross effect and the Bauschinger effect are extensively documented
in the literature, quantitative data on the evolution of dislocation cell structure during strain path
changes remain hard to find. For this reason, a qualitative analysis rather than a quantitative
study has been conducted here.

6. Summary and conclusion

This paper has presented a computational study on the anisotropy effects induced by
strain path changes for BCC structured metals. For this purpose a composite dislocation
cell model, which describes the dislocation substructure evolution, has been combined
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with a BCC crystal plasticity framework to bridge the dislocation cell structure evolution
and its macroscopic anisotropic effects. The BCC crystal plasticity framework was
based on Yalcinkaya et al (2008) and the composite cell model was built upon the
contribution of Viatkina et al (2003), who analyzed strain path dependence phenomena in
a phenomenological plasticity framework at small strains for FCC structured materials.

The presented computational framework assumed a composite aggregate, in which the
material with a cell structure was considered to consist of two components: a soft cell interior
component and hard cell wall components. The constitutive response of each component has
been obtained from crystal plasticity simulations, while a set of phenomenological evolution
equations for the cell size, the wall thickness and the dislocation density inside the walls
captured the evolution of the microstructure.

The numerical examples of this work have revealed an adequate qualitative agreement
between the simulations and the experimental trends for strain path change tests, i.e. a cross
test and a Bauschinger test. Further quantitative analyses call for more extensive and more
qualitative experimental results to compare with.

The paper clearly forwards a number of original contributions:

• A phenomenological cell structure evolution model embedded into a crystal plasticity
framework is well able to reproduce all essential characteristics of strain path changes
reported, consistently with experimental observations at two scales.

• The model proposed allows one to study the interaction between different sources of
anisotropy, where a clear example at the single crystal and polycrystal has been given.

• The level at which the enrichment of the crystal plasticity model was made, enables its
use in more complex microstructures as, e.g., multi-phase steels.
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